龍菲菲
(蘭州理工大學(xué)理學(xué)院,甘肅蘭州 730050)
一類帶積分邊界條件的三階微分方程邊值問題的解
龍菲菲
(蘭州理工大學(xué)理學(xué)院,甘肅蘭州 730050)
運(yùn)用Banach壓縮映射原理以及Leray-Schauder連續(xù)性原理,在非線性項(xiàng)為L1-Caratheodory函數(shù)的條件下,研究了一類帶積分邊界條件的三階微分方程邊值問題解的唯一性、存在性以及解集的緊性.
邊值問題;解;唯一性;存在性;緊性
DO I:10.3969/j.issn.1008-5513.2013.04.013
三階微分方程起源于應(yīng)用數(shù)學(xué)和物理學(xué)的許多不同領(lǐng)域,譬如,帶有固定或變化橫截面的屈曲梁的撓度、三層梁、電磁波、地球引力吹積的漲潮等.帶積分邊界條件的邊值問題不僅包含兩點(diǎn)及三點(diǎn)邊值問題作為其特殊情形,而且還可以更精確地描述許多重要的現(xiàn)象,例如,在熱傳導(dǎo)、化學(xué)工程、地下水流、熱彈性、等離子物理等領(lǐng)域中,對(duì)許多問題的討論都可以歸結(jié)為對(duì)帶積分邊界條件的邊值問題的研究.目前對(duì)帶積分邊界條件的三階微分方程邊值問題的研究越來越多[18].特別地,2011年,文獻(xiàn)[8]研究了Banach空間E中的三階微分方程
下正解的存在性和不存在性,其中,f∈C([0,1]×P,P),這里,P是E中的錐.使用的主要工具是錐上的不動(dòng)點(diǎn)定理和不動(dòng)點(diǎn)指數(shù)理論.
參考文獻(xiàn)
[1]Wang Youyu,GeWeigao.Existence of solutions for a third order dif erential equation w ith integralboundary cond itions[J].Com pu t.M ath.A pp l.,2007,53:144-154.
[2]Graef JR,Yang Bo.Solution and positive solution of a sem ilinear third-order equation[J].Discrete Contin. Dyn.Syst.Ser.S,2008,1:89-97.
[3]Graef J R,Webb J R L.Third order boundary value p rob lem s with non local boundary conditions[J]. Non linear Anal.,2009,71:1542-1551.
[4]Boucherif A,Bouguima SM,A l-Malki N,et al.Third order dif erential equationsw ith integral boundary conditions[J].Non linear Anal.,2009,71:1736-1743.
[5]Sun Jianping,Li Haibao.Monotone positive solution of non linear third-order BVP w ith integral boundary cond itions[J].Bound.Value Prob l.,2010,20:1-12.
[6]孫建平,靳存程.帶積分邊界條件的三階邊值問題的單調(diào)正解[J].蘭州大學(xué)學(xué)報(bào):自然科學(xué)版,2012,48:98-101.
[7]Zhang Haie,Sun Jianping.Existence and iteration ofmonotone positive solutions for third order non local BVPs involving integral cond itions[J].E lectron.J.Qual.Theory D if er.Equ.,2012,18:1-9.
[8]Zhao Jun fang,Wang Peiguang,Ge Weigao.Existence and nonexistence of positive solutions for a class of third order BVP w ith integral boundary conditions in Banach spaces[J].Commun.Nonlinear Sci.Numer. Simul.,2011,16:402-413.
[9]G ranas A,Dugund ji J.Fixed Point Theory,Sp ringer M onographs in M athem atics[M].New York:Sp ringer, 2003.
The solu tion for a class of th ird-order d if eren tial equation BVP w ith in tegral boundary cond itions
Long Feifei
(School of Science,Lanzhou University of Technology,Lanzhou 730050,China)
By using Banach contraction princip le and Leray-Schauder continuation p rincip le,the uniqueness and existence of solutions and the com pactness of solutions set are investigated for a class of third-order differential equation BVP with integral boundary conditions under the condition that the nonlinear term is an L1-Caratheodory function.
boundary value p rob lem,solution,uniqueness,existence,com pactness
O175
A
1008-5513(2013)04-0425-08
2013-04-10.
龍菲菲(1988-),碩士生,研究方向:應(yīng)用微分方程.
2010 M SC:34B 15