• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of modified k-ω model to predicting cavitating flow in centrifugal pump

    2013-06-22 13:25:26HoulinLIUDongxiLIUYongWANGXianfangWUJianWANG
    Water Science and Engineering 2013年3期

    Hou-lin LIU*, Dong-xi LIU, Yong WANG, Xian-fang WU, Jian WANG

    Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, P. R. China

    Application of modified k-ω model to predicting cavitating flow in centrifugal pump

    Hou-lin LIU*, Dong-xi LIU, Yong WANG, Xian-fang WU, Jian WANG

    Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, P. R. China

    Considering the compressibility of the cavity in the cavitating flow, this paper presents a modifiedk-ωmodel for predicting the cavitating flow in a centrifugal pump, in which the modifiedk-ωmodel and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standardk-ωmodels, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modifiedk-ωmodel showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modifiedk-ωmodel at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.

    modifiedk-ωmodel; cavitation model; centrifugal pump; experimental investigation

    1 Introduction

    In liquid flows, if the pressure drops below the saturated vapor pressure, the liquid will change its thermodynamic state by forming vapor-filled cavities. This phenomenon, generally associated with undesired effects, is known as cavitation. It can cause significant reduction in performance, as manifested by the reduced mass flow rates in pumps, load asymmetry, noise, vibration, and erosion. To avoid or minimize cavitation, detailed knowledge about the existence, extent, and behavior of cavitation is indispensable during the initial design stage. Nowadays, computational fluid dynamics (CFD) plays a major role in conducting inner flow field analyses in the early design process, and the advanced commercial CFD software can be used for a wide range of flow, such as the cavitating flow (Liu et al. 2010; Wang et al. 2011).

    In recent decades, the methods of cavitation simulation based on the Navier-Stokes equations have received increasing attention due to their superiority in physical modeling andcomputational capabilities for cavitation problems. These methods are largely divided into two main categories: interface tracking methods (Liu et al. 2006) and homogeneous flow models (Coutier-Delgosha et al. 2003a; Singhal et al. 2002; Zwart et al. 2004; Schnerr and Sauer 2001).

    The RANS method based on the homogeneous flow theory along with an additional transport equation for vapor volume fraction was used in this study. The mass transfer between vapor and liquid due to cavitation was modeled by a cavitation model. Therefore, the key to numerical simulation was the establishment of an appropriate turbulence model and a cavitation model. It is important to note that these methods assume that vapor and liquid phases are incompressible, and that they have the same instantaneous velocity field and pressure field. However, several recent studies have found that the cavitating flow in the mixed-phase region is locally compressible (Coutier-Delgosha et al. 2002; Wu et al. 2003, 2005; Sezal et al. 2006). In addition, the standard two-equation turbulence models (e.g., thek-ωclass), originally developed for single-phase non-cavitating flows, are limited to predicting the cavitating flow.

    According to the factors described, this paper presents a modifiedk-ωmodel for predicting the cavitating flow in a centrifugal pump, in which the modifiedk-ωmodel and Schnerr-Sauer cavitation model were combined with ANSYS CFX. The standard and modified turbulence models were verified by the numerical predictions, which were executed with three different values of the flow coefficient, and then the numerical results were compared with the experimental data. Finally, the cavitating flow in the centrifugal pump obtained by the modifiedk-ωmodel at the design flow coefficient of 0.102 was analyzed in detail.

    2 Mathematical models

    2.1 Governing equations

    The governing equations for mass and momentum of a mixture are

    whereuis the velocity;tis the timeδijis the Kronecker number;ρmis the mixture density;μandμtare the mixture dynamic viscosity and turbulent viscosity, respectively; andpis the pressure. The liquid-vapor mass transfer due to cavitation is governed by the vapor volume fraction transport equation:

    whereρvis the vapor density;αvis the vapor volume fraction; andReandRcare th e mass transfer rates related to the evaporation and condensation in cavitation, respectively.

    The mixture densityρmand the mixture dynamic viscosityμare defined as

    whereρlis the liquid density, andμvandμlare the vapor viscosity and liquid viscosity, respectively.

    2.2 Turbulence model

    The widely appliedk-ωmodel was adopted (Wilcox 2006). Taking the compressibility of the cavity in the cavitating flow into account, an improvement was made to thek-ωmodel by modifying the formula ofμtfollowing the idea of Coutier-Delgosha et al. (2003b). However, in the modified method, the expressions and the constants of the turbulence kinetic energy (k) and specific dissipation rate (ω) equations are unchanged.

    The formula for the turbulent viscosityμtin the standardk-ωmodel is

    The modified formula forμtis

    As can be observed in Eqs. (6) through (8), for the cavitating flow, the use off(ρm) observably decreases the turbulent viscosity in the flow field with a high vapor volume fraction. Nevertheless, for the non-cavitating liquid flow, the formula ofμtfollows the original form. The exponentn0was set as 10 in this study.

    2.3 Cavitation model

    The Schnerr-Sauer model, frequently used for the cavitating flow in hydrofoils, propellers, and axial-flow pumps (Frikha et al. 2009; Li 2011; Sato et al. 2009; Olsson 2008), was introduced in this study, and its applicability in the centrifugal pump was validated. The Schnerr-Sauer model is expressed as

    The radius of bubblesRBcan be computed by

    wherepvis the vapor pressure, andNis the number of vapor bubbles per unit volume of liquid.

    The mass transfer rates in the model are proportional toαv(1?αv). They approach zero whenαv=0 orαv=1, and reach maximum values at a certain value ofαvwithin the range of 0 to 1.Nis the only parameter that needs to be confirmed in this model. Extensive validation studies suggest that the optimal value ofNis in the neighborhood of 1013(Li et al. 2008).

    3 Simulation setup

    3.1 Geometry and grid

    The parameters of a pump used for cavitating flow simulation are as follows: the design flowQis 0.013 9 m3/s; the rotation speednis 2 900 r/min; the specific speednsis 99; the impeller radiusD2and base volute radiusD3are 0.168 m and 0.18 m, respectively; the outlet angleβ2is 31°; the blade numberZis 5; and the impeller outlet widthb2and volute inlet widthb3are 0.01 m and 0.02 m, respectively.

    The flow domain included four sub-domains: the impeller, the volute, and the prolongations for the impeller inlet and volute outlet, which are used to reduce the influ ence of the large velocity gradient on computational results. The three-dimensional models of the pump were produced by the professional software Pro/E, with the gap between the impeller and volute being added to the impeller.

    It is important to note that ANSYS CFX uses the CV-FEM (control volume-finite element method) method, and the CV-FEM method has a better performance with the hexahedral mesh than with the tetrahedral one, which tends to degrade the computing efficiency. In addition, smoothing the tetrahedral mesh may highly degrade the local quality of the mesh (Pierrat et al. 2008). Therefore, the hexahedral mesh generated by ICEM CFD was used in this study.

    Fig. 1 3-D model of centrifugal pump and wall grid of calculation domain

    3.2 Numerical method and boundary conditions

    With the CV-FEM method being used in ANSYS CFX 12, the linearized momentum and mass equations were solved simultaneously with an algebraic multi-grid method based on the additive correction multi-grid strategy. The implementation of this strategy in ANSYS CFX has been found to be very robust and efficient in predicting the swirl flow in turbomachinery. The high resolution scheme was adopted in space discretization to solve the differential equation, and it had the second-order space accuracy.

    Under the cavitation and non-cavitation conditions, the boundary conditions were specifically set, almost the same as one another. Generally, the total pressure at the pump inlet and mass flow rate at the pump outlet were selected. As for the wall boundary condition, a no-slip condition was enforced on the wall surface, and the automatic wall function was selected for the area near the wall. In addition, detailed analysis was performed on the measurement parameter (y+) of wall grids, and the y+ values were less than 10, which essentially met the calculation requirements. For the cavitation case, the volume fractions of vapor and water were assumed to be 0 and 1, respectively.

    4 Results

    For the convenience of dealing with the data from experiments and computations, the flow coefficient?is defined as, with; the cavitation numberσas, withpinbeing the static pressure at the pump inlet; the head coefficientψas, withpoutbeing the static pressure at the pump outlet; and the total pressure coefficient, withptandptinbeing the total pressure for the pump and the total pressure at the pump inlet, respectively.

    4.1 Head coefficient dropoff curves under cavitation conditions

    Fig. 2 shows the computed and experimental results with two turbulence models for three values of the flow coefficient. In the experiment, the decrease ofσwas achieved bydecreasing the pressure in the cavitation tank 5 to 10 kPa each time. Fig. 2 illustrates that the simulation results of the two turbulence models are in agreement with the experimental one for each flow coefficient. In addition, the simulation results of the modifiedk-ωmodel are closer to the experimental data than the standardk-ωmodel at the design flow coefficient (φ= 0.102) and low flow coefficient (φ= 0.082). However, with the high flow coefficient (φ= 0.122), the head coefficient dropoff curves computed with two turbulence models have almost no difference.

    Fig. 2 Comparison of computed and experimental head coefficient dropoff curves with three values of flow coefficient

    It can be seen that there is a certain deviation of the pump head coefficient between the simulated and experimental values. The difference is probably due to friction losses and imperfection of the CFD codes, as well as inaccuracies in the geometry.

    The predicted and experimental critical cavitation numbers for three different values of the flow coefficient are listed in Table 1. The critical cavitation numberσcis defined as the cavitation number corresponding to the head coefficient falling off 3%.

    Table 1 Critical cavitation numbers obtained with different turbulence models and experiments

    Based on the above analysis, it is concluded that the prediction precision of the modifiedk-ωmodel is higher than that of the standard model. Therefore, the modified model is more suitable for numerical simulation of the cavitating flow in centrifugal pumps.

    4.2 Vapor volume fraction distribution

    The vapor volume fraction contours on the cutting plane of the impeller with a span of 0.8 are plotted in Fig. 3, where the span is the dimensionless distance (between 0 and 1) from the hub to shroud.

    Fig. 3 Blade-to-blade view of vapor volume fraction on cutting plane with span of 0.8

    Forσ= 0.150, small cavities can be clearly seen on the suction side, attaching to the blade leading edge. The developing process of cavitation is also clearly observed on the pressure side: forσ= 0.056, cavities grow significantly; forσ= 0.045, cavities on the pressure side interact with those on the trailing edge of the neighboring blade; and forσ= 0.036, the channel is completely obstructed by cavities, generating large blockage to the internal flow and directly contributing to the breakdown of pump performances.

    Remarkably, the volume fraction distribution in the impeller passage shows asymmetry due to the existence of the volute, which breaks the symmetrical characteristic of the impeller passage and the coupling effects between the impeller and volute, making pressure distribution on the blade surface asymmetric.

    4.3 Total pressure coefficient distribution in impeller passage

    To study the energy transfer in the centrifugal pump, the impeller passage was divided into eight different regions by nine sections, from S0 near the blade leading edge to S8 near the blade trailing edge, as shown in Fig. 4. Subsequently, an analysis of the cavitating flow was performed in the eight flow regions.

    Fig. 4 Location of analyzed flow regions in impeller

    Fig. 5 Repartition of total pressure coefficient

    First of all, the total pressure coefficient of each section was computed by mass flow averaging from S0 to S8. Then, the rise of the total pressure coefficient from S0 to S8 was drawn. It can be seen clearly in Fig. 5 that the decrease of the difference between the totalpressure coefficients of two adjacent sections with the decrease of the cavitation number principally takes place in the upstream sections S0 to S3, while the development of cavitation has less effect on the downstream sections S4 to S8. Although the last fourσvalues are nearly constant, with the values varying from 0.056 to 0.036, the total downstream pressure coefficient for each section continues to decrease. In addition, it can be observed that the difference of the total pressure coefficients between S3 and S4 increases in the cases ofσ= 0.045 andσ= 0.040. Nevertheless, the difference between the total pressure coefficients of two adjacent downstream sections from S4 to S8 does not increase.

    5 Conclusions

    This paper presents a modifiedk-ωmodel and introduces a cavitation model frequently used in hydrofoils and propellers to model the cavitating flow in a centrifugal pump.

    The numerical investigation clearly demonstrates that the breakdown of pump performances is mainly due to the development of cavitation. The vapor-filled cavities attaching on blades fill up the impeller passage, resulting in the flow separating from the blades, and consequently the drop of the head coefficient.

    Furthermore, it is found that with the decrease of the cavitation number, the cavity generates on the suction side of blades near the leading edge at first and then expands to the impeller outlet, and that the total pressure coefficient of each impeller section decreases, with the development of cavitation mainly affecting the upstream sections and having less effect on the downstream sections.

    In a word, the simulation results indicate that the application of the modifiedk-ωmodel and the Schnerr-Sauer model can truly show the decline of the pump performance and improve the prediction accuracy.

    Coutier-Delgosha, O., Fortes-Patella, R., and Reboud, J. L. 2002. Simulation of unsteady cavitation with a two-equation turbulence model including compressibility effects.Journal of Turbulence, 3(1), 58-65. [doi:10.1088/1468-5248/3/1/058]

    Coutier-Delgosha, O., Reboud, J. L., and Fortes-Patella, R. 2003a. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation.Journal of Fluids Engineering, 125(1), 38-45. [doi:10.1115/1.1524584]

    Coutier-Delgosha, O., Hofmann, M., Stoffel, B., Fortes, P. R., and Reboud, J. L. 2003b. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition.Journal of Fluids Engineering, 125(6), 970-978. [doi:10.1115/1.1596238]

    Frikha, S., Coutier-Delgosha, O., and Astolfi, J. A. 2009. Inf l uence of the cavitation model on the simulation of cloud cavitation on 2D foil section.International Journal of Rotating Machinery, 2008(45), 1-12. [doi:10.1155/2008/146234]

    Li, D. 2011. Prediction of non-cavitating and cavitating performance of a SVA Potsdam propeller.Second International Symposium on Marine Propulsors. Hamburg: Hamburg University of Technology.

    Li, H. Y., Kelecy, J. K., Egelja-Maruszewski, A., and Vasquez, S. A. 2008. Advanced computational modeling of steady and unsteady cavitating flows.2008 American Society of Mechanical Engineers (ASME) International Mechanical Engineering Congress and Exposition.Boston: ASME.

    Liu, H. L., Wang, Y., Yuan, S. Q., Tan, M. G., and Wang, K. 2010. Effects of blade number on characteristics of centrifugal pumps.Chinese Journal of Mechanical Engineering, 23(6), 742-747. [doi:10.3901/CJME. 2010.06.742]

    Liu, L. J., Li, J., and Feng, Z. P. 2006. A numerical method for simulation of attached cavitation flows.International Journal for Numerical Methods in Fluids, 52(6), 639-658. [doi:10.1002/fld.1192]

    Olsson, M. 2008.Numerical Investigation on the Cavitating Flow in a Waterjet Pump. Ph. D. Dissertation. Sweden: Chalmers University of Technology.

    Pierrat, D., Gros, L., Couzinet, A., Pintrand, G., Le Fur, B., and Gyomlai, Ph. 2008. Experiment and numerical investigations of leading edge cavitation in a helico-centrifugal pump.The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.

    Sato, T., Nagahara, T., and Suzuki, S. 2009. Cavitation analysis on double-suction volute pump.Third International Association for the History of Religions (IAHR) International Meeting of Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery and System. Brno: IAHR.

    Schnerr, G. H., and Sauer, J. 2001. Physical and numerical modeling of unsteady cavitation dynamics.Fourth International Conference on Multiphase Flow. New Orleans: ICMF.

    Sezal, I. H., Schmidt, S. J., Schnerr, G. H., Thalhamer, M., and F?rster, M. 2006. Shock and wave dynamics of compressible liquid flows with special emphasis on unsteady load on hydrofoils and on cavitation in injection nozzles.Sixth International Symposium on Cavitation. Wageningen: Maritime Research Institute Netherlands.

    Singhal, A. K., Athavale, M. M., Li, H. Y., and Jiang, Y. 2002. Mathematical basis and validation of the full cavitation model.Journal of Fluids Engineering, 124(3), 617-624. [doi:10.1115/1.1486223]

    Wang, Y., Liu, H. L., Yuan, S. Q., Tan, M. G., and Wang, K. 2011. CFD simulation on cavitation characteristics in centrifugal pump.Journal of Drainage and Irrigation Machinery Engineering, 29(2),99-103. [doi:10.3969 /j. issn.1674-8530] (in Chinese)

    Wilcox, D. C. 2006.Turbulence Modeling for CFD. California: DCW Industries.

    Wu, J. Y., Utturkar, Y., Senocak, I., Shyy, W., and Arakere, N. 2003. Impact of turbulence and compressibility modeling on three-dimensional cavitating flow computations.33rd AIAA Fluid Dynamics Conference and Exhibit. Orlando: American Institute of Aeronautics and Astronautics .

    Wu, J. Y., Wang, G. Y., and Shyy, W. 2005. Time-dependent turbulent cavitating flow computations with interfacial transport and filter-based models.International Journal for Numerical Methods in Fluids, 49(7), 739-761. [doi:10.1002/fld.1047]

    Zwart, P., Gerber, A. G., and Belamri, T. 2004. A two-phase model for predicting cavitation dynamics.Fifth International Conference on Multiphase Flow. Yokohama: ICMF.

    (Edited by Ye SHI)

    This work was supported by the National Natural Science Foundation of China (Grants No. 51179075 and 51239005) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    *Corresponding author (e-mail:liuhoulin@ujs.edu.cn)

    Apr. 6, 2012; accepted Sep. 2, 2012

    亚洲精品日本国产第一区| 日本午夜av视频| 日韩大片免费观看网站| 91精品国产国语对白视频| 少妇熟女欧美另类| 精品人妻在线不人妻| 久久狼人影院| h视频一区二区三区| 国产一区二区三区综合在线观看 | 男的添女的下面高潮视频| av免费在线看不卡| 精品卡一卡二卡四卡免费| 女的被弄到高潮叫床怎么办| 五月开心婷婷网| 亚洲美女黄色视频免费看| 久久ye,这里只有精品| 久久久久精品性色| 黄色欧美视频在线观看| 交换朋友夫妻互换小说| 精品久久久久久久久av| 九色亚洲精品在线播放| 免费少妇av软件| 免费观看av网站的网址| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 日本91视频免费播放| 国产高清不卡午夜福利| 久久久久视频综合| 曰老女人黄片| 成人午夜精彩视频在线观看| 在线观看免费日韩欧美大片 | 国产在线免费精品| 日本vs欧美在线观看视频| 亚洲色图综合在线观看| 内地一区二区视频在线| 插逼视频在线观看| 午夜激情久久久久久久| 少妇 在线观看| 亚洲精品成人av观看孕妇| 老女人水多毛片| 大陆偷拍与自拍| 精品久久久久久电影网| 中文字幕精品免费在线观看视频 | 在线天堂最新版资源| 国产伦精品一区二区三区视频9| 久久 成人 亚洲| 亚洲国产成人一精品久久久| 亚洲,欧美,日韩| 欧美三级亚洲精品| 欧美日韩成人在线一区二区| 国产国语露脸激情在线看| 国产精品秋霞免费鲁丝片| 中文精品一卡2卡3卡4更新| 97超视频在线观看视频| 97超视频在线观看视频| 日本猛色少妇xxxxx猛交久久| 免费久久久久久久精品成人欧美视频 | 久久韩国三级中文字幕| 久久97久久精品| 一区二区三区四区激情视频| 在线观看免费高清a一片| av电影中文网址| 少妇 在线观看| 最新的欧美精品一区二区| 日韩av在线免费看完整版不卡| 大又大粗又爽又黄少妇毛片口| 成人国语在线视频| 久久影院123| 美女内射精品一级片tv| 亚洲人与动物交配视频| av黄色大香蕉| 中国美白少妇内射xxxbb| 国产精品一区二区在线观看99| 免费观看在线日韩| 全区人妻精品视频| 成人毛片a级毛片在线播放| 天天操日日干夜夜撸| 亚洲熟女精品中文字幕| 免费高清在线观看视频在线观看| 亚洲精品久久久久久婷婷小说| 国产 一区精品| 亚洲欧美成人综合另类久久久| 亚洲一级一片aⅴ在线观看| 国产精品免费大片| 91精品伊人久久大香线蕉| 国产精品蜜桃在线观看| 天堂中文最新版在线下载| 国产成人精品婷婷| 亚洲精品456在线播放app| 欧美日本中文国产一区发布| av免费在线看不卡| 久久久久国产精品人妻一区二区| 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 视频中文字幕在线观看| 精品人妻一区二区三区麻豆| 日韩人妻高清精品专区| 国产av国产精品国产| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站| 免费久久久久久久精品成人欧美视频 | 亚洲国产欧美在线一区| 欧美3d第一页| 国产有黄有色有爽视频| 激情五月婷婷亚洲| 午夜91福利影院| 日本vs欧美在线观看视频| 亚洲高清免费不卡视频| av专区在线播放| 婷婷色麻豆天堂久久| 伦理电影免费视频| 国产在视频线精品| 下体分泌物呈黄色| 精品一区在线观看国产| 18禁在线播放成人免费| 国产精品熟女久久久久浪| 乱码一卡2卡4卡精品| 91成人精品电影| 国产精品国产av在线观看| 满18在线观看网站| 国产一区二区在线观看日韩| 免费av中文字幕在线| videossex国产| 好男人视频免费观看在线| av女优亚洲男人天堂| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱| 99视频精品全部免费 在线| 3wmmmm亚洲av在线观看| 人人澡人人妻人| 中文字幕精品免费在线观看视频 | 热re99久久国产66热| 下体分泌物呈黄色| 尾随美女入室| 久久精品国产自在天天线| 王馨瑶露胸无遮挡在线观看| av黄色大香蕉| 女性生殖器流出的白浆| 97超碰精品成人国产| 国产精品99久久99久久久不卡 | 97超碰精品成人国产| 免费高清在线观看视频在线观看| 好男人视频免费观看在线| 亚洲三级黄色毛片| 日韩伦理黄色片| 高清欧美精品videossex| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 国产精品一二三区在线看| 亚洲中文av在线| 我的女老师完整版在线观看| 国产亚洲一区二区精品| 狠狠婷婷综合久久久久久88av| 2018国产大陆天天弄谢| 丰满饥渴人妻一区二区三| 国产免费现黄频在线看| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 日韩av不卡免费在线播放| 色视频在线一区二区三区| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 久久国产亚洲av麻豆专区| 精品人妻一区二区三区麻豆| 老司机影院毛片| 亚洲精品乱久久久久久| 色婷婷久久久亚洲欧美| 天天影视国产精品| 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 国产精品国产av在线观看| 日韩伦理黄色片| 五月天丁香电影| 女性被躁到高潮视频| 亚洲人成网站在线观看播放| 久久久久久久久大av| 丝袜脚勾引网站| 91精品一卡2卡3卡4卡| 欧美最新免费一区二区三区| 少妇 在线观看| 国产在线一区二区三区精| 午夜视频国产福利| 大陆偷拍与自拍| 人妻夜夜爽99麻豆av| 亚洲国产av新网站| 黑人欧美特级aaaaaa片| 婷婷色综合www| 亚洲av不卡在线观看| 精品视频人人做人人爽| 人体艺术视频欧美日本| 91国产中文字幕| 精品久久久久久久久av| 国产亚洲精品久久久com| 亚洲国产精品国产精品| 久久久国产精品麻豆| 亚洲精品日韩av片在线观看| 国产日韩一区二区三区精品不卡 | 中文字幕人妻丝袜制服| 亚洲情色 制服丝袜| 97在线人人人人妻| av免费观看日本| 一本一本综合久久| 色94色欧美一区二区| 欧美国产精品一级二级三级| 精品亚洲成国产av| 看非洲黑人一级黄片| 成年人午夜在线观看视频| 91精品三级在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产爽快片一区二区三区| 天天操日日干夜夜撸| av在线播放精品| 在线观看一区二区三区激情| 国产国语露脸激情在线看| 国产精品99久久99久久久不卡 | 国产 精品1| 大香蕉久久网| 亚洲情色 制服丝袜| tube8黄色片| 中文欧美无线码| av不卡在线播放| 国产成人freesex在线| 在线观看三级黄色| 亚洲av在线观看美女高潮| 亚洲av中文av极速乱| 王馨瑶露胸无遮挡在线观看| 久久鲁丝午夜福利片| 爱豆传媒免费全集在线观看| 国产亚洲精品久久久com| 欧美亚洲日本最大视频资源| 美女国产高潮福利片在线看| 18禁动态无遮挡网站| 在线精品无人区一区二区三| 男人操女人黄网站| av国产精品久久久久影院| 最近2019中文字幕mv第一页| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| videossex国产| 国产毛片在线视频| 国产精品免费大片| 亚洲国产欧美日韩在线播放| 欧美精品一区二区大全| 夜夜骑夜夜射夜夜干| 99re6热这里在线精品视频| 大片电影免费在线观看免费| 日本91视频免费播放| 国产熟女午夜一区二区三区 | 亚洲,一卡二卡三卡| 久久久久久久国产电影| 天天操日日干夜夜撸| 18禁在线播放成人免费| 秋霞在线观看毛片| 亚洲,一卡二卡三卡| 国产精品一二三区在线看| 热99久久久久精品小说推荐| 看非洲黑人一级黄片| 精品久久久精品久久久| 夜夜爽夜夜爽视频| 天天操日日干夜夜撸| 97在线视频观看| 成年人午夜在线观看视频| 久久这里有精品视频免费| 男女边摸边吃奶| 黄片播放在线免费| 亚洲av不卡在线观看| 欧美三级亚洲精品| 欧美国产精品一级二级三级| 在线观看www视频免费| www.av在线官网国产| 成人免费观看视频高清| 国产成人freesex在线| 街头女战士在线观看网站| 中文字幕最新亚洲高清| 秋霞在线观看毛片| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区| 国产黄片视频在线免费观看| 亚洲精品乱码久久久v下载方式| 高清午夜精品一区二区三区| 成人国语在线视频| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 男女啪啪激烈高潮av片| 久久影院123| 另类精品久久| 国产成人精品福利久久| 七月丁香在线播放| 国产精品一区www在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色综合www| 少妇高潮的动态图| 啦啦啦视频在线资源免费观看| 日韩在线高清观看一区二区三区| 男女高潮啪啪啪动态图| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 人人妻人人澡人人看| 热re99久久精品国产66热6| 久久免费观看电影| 久久国产亚洲av麻豆专区| 欧美成人午夜免费资源| 久久精品国产亚洲网站| 日本91视频免费播放| 伊人亚洲综合成人网| 有码 亚洲区| 国产一级毛片在线| 五月开心婷婷网| 久久久久久伊人网av| 99九九在线精品视频| 亚洲欧美色中文字幕在线| 男女免费视频国产| 久久久国产一区二区| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 交换朋友夫妻互换小说| 9色porny在线观看| 超碰97精品在线观看| 亚洲中文av在线| 七月丁香在线播放| 久久久久国产精品人妻一区二区| 少妇的逼水好多| 美女大奶头黄色视频| 午夜激情久久久久久久| 热re99久久精品国产66热6| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 免费人成在线观看视频色| 日韩中文字幕视频在线看片| 黄色欧美视频在线观看| 国产男女内射视频| 两个人免费观看高清视频| 大片电影免费在线观看免费| h视频一区二区三区| 久久久亚洲精品成人影院| av卡一久久| 黄色配什么色好看| 美女福利国产在线| 欧美最新免费一区二区三区| 性色avwww在线观看| 国产在线免费精品| 大片免费播放器 马上看| 少妇高潮的动态图| 丝袜美足系列| 插逼视频在线观看| 免费日韩欧美在线观看| 亚洲精品aⅴ在线观看| 免费日韩欧美在线观看| 中文天堂在线官网| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 三级国产精品片| 18在线观看网站| 51国产日韩欧美| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| a级毛片在线看网站| 国产成人aa在线观看| 午夜福利网站1000一区二区三区| 人妻少妇偷人精品九色| 18在线观看网站| 日韩一区二区三区影片| 中文欧美无线码| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 久久 成人 亚洲| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 日韩免费高清中文字幕av| 国产精品一区二区三区四区免费观看| 国精品久久久久久国模美| 大香蕉久久网| 一级毛片我不卡| 欧美日韩一区二区视频在线观看视频在线| 日韩免费高清中文字幕av| 免费观看av网站的网址| 国产精品一区www在线观看| 久久免费观看电影| 久久久精品区二区三区| 看非洲黑人一级黄片| 99热这里只有精品一区| 桃花免费在线播放| 精品视频人人做人人爽| 久久久久人妻精品一区果冻| 免费看不卡的av| 成人漫画全彩无遮挡| 亚洲无线观看免费| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 国产视频内射| 欧美人与性动交α欧美精品济南到 | 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 男女高潮啪啪啪动态图| 欧美激情国产日韩精品一区| 国产成人a∨麻豆精品| 免费av不卡在线播放| 丰满少妇做爰视频| 人妻夜夜爽99麻豆av| 国产成人aa在线观看| 蜜臀久久99精品久久宅男| 三级国产精品片| 一区在线观看完整版| 久久久久久人妻| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 多毛熟女@视频| 97超碰精品成人国产| 天堂8中文在线网| 亚洲国产日韩一区二区| 亚洲,一卡二卡三卡| 亚洲成色77777| 一本大道久久a久久精品| 国产成人精品无人区| 美女国产高潮福利片在线看| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 中文乱码字字幕精品一区二区三区| 午夜免费男女啪啪视频观看| 男女国产视频网站| 成年人免费黄色播放视频| 99久久综合免费| 狠狠婷婷综合久久久久久88av| 国产老妇伦熟女老妇高清| 男女免费视频国产| 精品久久久精品久久久| 亚洲精品aⅴ在线观看| 少妇熟女欧美另类| 久久精品久久久久久噜噜老黄| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 精品少妇黑人巨大在线播放| 午夜91福利影院| 在线看a的网站| 大香蕉97超碰在线| 天天操日日干夜夜撸| 99热这里只有是精品在线观看| av福利片在线| 乱码一卡2卡4卡精品| 精品久久久久久久久av| 久久精品国产亚洲av涩爱| 18禁在线无遮挡免费观看视频| 天堂中文最新版在线下载| 五月天丁香电影| 国产永久视频网站| 特大巨黑吊av在线直播| 亚州av有码| 一级a做视频免费观看| av在线老鸭窝| 国国产精品蜜臀av免费| 91精品三级在线观看| 久久午夜福利片| a级片在线免费高清观看视频| 99九九线精品视频在线观看视频| 麻豆成人av视频| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 免费黄频网站在线观看国产| 国产极品天堂在线| 一区二区三区乱码不卡18| 五月开心婷婷网| 中文字幕最新亚洲高清| 青春草视频在线免费观看| 成人国产av品久久久| 国产精品国产三级国产av玫瑰| 狠狠精品人妻久久久久久综合| 国产精品成人在线| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| 老司机亚洲免费影院| 中文字幕人妻丝袜制服| 午夜91福利影院| 国产精品.久久久| 国产av国产精品国产| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 在线看a的网站| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久| 午夜影院在线不卡| 丰满迷人的少妇在线观看| 成人亚洲精品一区在线观看| 黄色视频在线播放观看不卡| 观看av在线不卡| videos熟女内射| 丰满乱子伦码专区| videosex国产| 日韩 亚洲 欧美在线| 26uuu在线亚洲综合色| 亚洲欧美色中文字幕在线| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 亚洲欧美日韩另类电影网站| 亚洲国产av影院在线观看| 一区二区日韩欧美中文字幕 | 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| av线在线观看网站| 男女国产视频网站| 免费av不卡在线播放| 九色亚洲精品在线播放| 亚洲欧洲国产日韩| av视频免费观看在线观看| 卡戴珊不雅视频在线播放| 交换朋友夫妻互换小说| 国产精品蜜桃在线观看| 一边亲一边摸免费视频| 少妇高潮的动态图| 熟女人妻精品中文字幕| 亚洲av成人精品一二三区| h视频一区二区三区| 黄色毛片三级朝国网站| av网站免费在线观看视频| 国产精品蜜桃在线观看| 一边亲一边摸免费视频| 五月开心婷婷网| 丝袜脚勾引网站| 久久久久精品久久久久真实原创| 一区二区日韩欧美中文字幕 | 国产 精品1| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 91精品国产国语对白视频| 欧美精品一区二区大全| 18禁裸乳无遮挡动漫免费视频| 久久婷婷青草| √禁漫天堂资源中文www| 国产亚洲精品第一综合不卡 | 999精品在线视频| 日韩人妻高清精品专区| 黄色视频在线播放观看不卡| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 免费观看在线日韩| 黄色视频在线播放观看不卡| 亚洲av中文av极速乱| 久久久精品区二区三区| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 男女高潮啪啪啪动态图| 亚洲性久久影院| 久久精品久久精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 制服丝袜香蕉在线| 97精品久久久久久久久久精品| 久久99精品国语久久久| 嘟嘟电影网在线观看| 亚洲怡红院男人天堂| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品999| 最近手机中文字幕大全| 亚洲熟女精品中文字幕| 亚洲丝袜综合中文字幕| 美女内射精品一级片tv| 国产精品成人在线| 久久狼人影院| 亚洲婷婷狠狠爱综合网| av播播在线观看一区| 欧美97在线视频| 国产免费视频播放在线视频| freevideosex欧美| 又黄又爽又刺激的免费视频.| 国产黄片视频在线免费观看| 国产精品 国内视频| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 人成视频在线观看免费观看| 国产在线一区二区三区精| 国产精品女同一区二区软件| 国产成人精品久久久久久| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx在线观看| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美日韩在线播放| 欧美少妇被猛烈插入视频| 一级毛片黄色毛片免费观看视频| 欧美成人精品欧美一级黄| 建设人人有责人人尽责人人享有的| 日韩三级伦理在线观看| 亚洲中文av在线| 99热这里只有是精品在线观看| 欧美精品国产亚洲| 波野结衣二区三区在线| 欧美丝袜亚洲另类| 日本猛色少妇xxxxx猛交久久| 大陆偷拍与自拍| 国产精品久久久久久久久免| 欧美少妇被猛烈插入视频| 中文字幕人妻丝袜制服| 18禁观看日本| 一级二级三级毛片免费看| 纵有疾风起免费观看全集完整版| 精品亚洲乱码少妇综合久久| 日本av手机在线免费观看| 久久免费观看电影| 乱人伦中国视频| 国产亚洲午夜精品一区二区久久| 亚洲无线观看免费| 日韩中文字幕视频在线看片|