周竹超龔軼一倪泉興
1.復(fù)旦大學(xué)附屬華山醫(yī)院普外科,上海200040;
2.復(fù)旦大學(xué)附屬腫瘤醫(yī)院胰腺外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032
胰腺腫瘤干細(xì)胞研究新進(jìn)展
周竹超1龔軼一1倪泉興2
1.復(fù)旦大學(xué)附屬華山醫(yī)院普外科,上海200040;
2.復(fù)旦大學(xué)附屬腫瘤醫(yī)院胰腺外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032
胰腺腫瘤尤其是胰腺導(dǎo)管腺癌的惡性程度高,轉(zhuǎn)移性強(qiáng),預(yù)后差。以往研究表明腫瘤干細(xì)胞(cancer stem cells,CSC)在胰腺腫瘤的發(fā)生、發(fā)展過程中起重要作用,深入了解胰腺腫瘤的發(fā)病機(jī)制將有助于針對(duì)性治療。在胰腺發(fā)育過程中,復(fù)雜的信號(hào)通路和轉(zhuǎn)錄因子決定了其前體細(xì)胞分化方向,在胰腺發(fā)生惡變過程中,這些因素又參與其中,因而往往可以作為追溯CSC的標(biāo)志。一些研究也應(yīng)用特定蛋白來篩選胰腺CSC?,F(xiàn)就胰腺CSC的來源、鑒定和靶向治療進(jìn)行綜述。
胰腺癌;干細(xì)胞;腫瘤干細(xì)胞;信號(hào)通路;靶向治療
臨床上胰腺惡性腫瘤主要為胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC),其惡性程度高,早期診斷困難,易局部浸潤和全身轉(zhuǎn)移,在美國和日本分別位居癌癥死亡的第4位[1]和第5位[2]。迄今,PDAC的手術(shù)切除率僅20%,由于對(duì)常規(guī)化療和放療不敏感,易復(fù)發(fā)和轉(zhuǎn)移,術(shù)后的5年生存率僅20%~25%[3-4]。所以研究胰腺腫瘤細(xì)胞起源、癌變機(jī)制和轉(zhuǎn)化過程具有很重要的臨床意義。近年來,對(duì)于胰腺腫瘤來源于腫瘤干細(xì)胞(cancer stem cells,CSC)的假說日益受到關(guān)注,其理論核心是胰腺腫瘤中存在很小一部分具有自我更新和多向分化能力的CSC,異常增殖分化形成腫瘤。由于CSC具有干細(xì)胞特性,在腫瘤發(fā)生、發(fā)展、侵襲、轉(zhuǎn)移和治療后復(fù)發(fā)中起決定性作用,所以對(duì)胰腺CSC的分離和鑒定、微環(huán)境和信號(hào)通路的調(diào)控作用以及耐藥性和轉(zhuǎn)移機(jī)制的研究,可為胰腺腫瘤特異性靶向治療提供突破性的結(jié)果。
胰腺具有外分泌和內(nèi)分泌兩種功能:前者指由腺泡細(xì)胞與連接腺泡和導(dǎo)管間的泡心細(xì)胞(centroacinar cells, CAC)分泌消化酶和水電解質(zhì),經(jīng)過導(dǎo)管細(xì)胞組成的導(dǎo)管進(jìn)入腸道幫助消化;后者主要是由分泌胰高血糖素、胰島素、生長抑素、胰多肽的胰島α、β、δ、PP細(xì)胞組成。
胰腺起源于內(nèi)胚層,研究發(fā)現(xiàn),與胰腺相關(guān)最早的胚胎學(xué)變化為間充質(zhì)聚集在內(nèi)胚層原腸腔十二指腸原基處背側(cè)。小鼠胚胎第9.5天(人類妊娠第26天)時(shí),內(nèi)胚層外翻進(jìn)入疊加的間充質(zhì)內(nèi)并逐漸外突形成背側(cè)胰芽。大約12 h(人類為第6天)后,肝膽原基的尾側(cè)外翻形成腹側(cè)胰芽。在小鼠胚胎第12~13天(人類妊娠第37~42天)時(shí),隨著原腸腔的旋轉(zhuǎn)和背側(cè)胰芽的延伸,背腹側(cè)胰芽慢慢融合,在十二指腸原基處形成一個(gè)環(huán)狀(C-loop)結(jié)構(gòu),即是胰腺器官雛形。在小鼠胚胎第13~14天時(shí),胰腺內(nèi)分泌細(xì)胞數(shù)迅速擴(kuò)增,尤其是β細(xì)胞開始大量分化,并取代α細(xì)胞占胰島細(xì)胞中的大部分,相應(yīng)地導(dǎo)致胚胎中胰島素和胰高血糖素的分泌水平發(fā)生逆轉(zhuǎn)。與此同時(shí),胰腺導(dǎo)管不斷形成側(cè)支,伴隨著腺泡酶基因表達(dá)呈指數(shù)型增加,導(dǎo)管和腺泡在形態(tài)和功能上分化成熟[5]。
在胰腺發(fā)育成熟過程中,胰腺前體細(xì)胞受到多種信號(hào)通路的調(diào)控,確切機(jī)制復(fù)雜,尚未明了。已知的相關(guān)信號(hào)通路包括TGF-β、Notch、Sonic hedgehog(Shh)、FGF、EGF、Retinoids、Wnt、Bmi1、Pten、Hippo等。多種轉(zhuǎn)錄因子如胰十二指腸同源盒1(pancreas duodenum homeobox-1,PDX1)、Nkx2.2、Nkx6.1 and Nkx6.2、HlxB9、Ptf1a(p48)、MIST1、NeuroD(BETA2)、Neurogenin 3(Ngn3)、Isl1、Pax4、Pax6、MafA、HNF cascade、Sox9、Sox4、Myt1、GATA6和GATA4等也在胰腺的發(fā)育中起作用[6-9]。起決定作用的3個(gè)主要調(diào)節(jié)因素包括Shh信號(hào)通路的關(guān)閉、PDX1的表達(dá)增加和 Notch信號(hào)通路的調(diào)控[10]。此外,Shh、Notch和PDX1還與胰腺內(nèi)、外分泌干細(xì)胞的“干細(xì)胞”特性保持密切相關(guān)并參與腫瘤的生成。Shh編碼Hedgehog蛋白,其下游作用因子Gli直接作用于靶基因。Hedgehog信號(hào)通路調(diào)節(jié)胚胎發(fā)育和成體許多組織器官干細(xì)胞的自我更新與增殖。內(nèi)胚層原腸腔上皮細(xì)胞Shh信號(hào)的關(guān)閉決定了十二指腸原基處內(nèi)胚層分化成胰腺而不是相鄰的腸道。在胰芽形成和生長的過程中起主要作用的是PDX1。PDX1是由Hox-like同源結(jié)構(gòu)基因所編碼的轉(zhuǎn)錄因子,敲除PDX1的小鼠胚胎無法發(fā)育形成一個(gè)完整的胰腺,證明它在胰腺發(fā)育中至關(guān)重要[11]。由于其功能較多,也被稱為胰島素啟動(dòng)因子1(insulin promoter factor-1,IPF1)、生長抑素轉(zhuǎn)錄激活因子1(somatostatin transactivating factor-1,STF1)、胰島素下游因子(insulin upstream factor-1,IFU1)、葡萄糖敏感因子(glucose-sensitive factor)等。在成體胰腺中它主要在內(nèi)分泌細(xì)胞中表達(dá),對(duì)胰島素、生長抑素、胰淀粉酶、葡萄糖轉(zhuǎn)運(yùn)子-2和葡萄糖激酶的表達(dá)起重要作用[12]。隨著胰腺發(fā)育,Notch信號(hào)處于正常水平時(shí),胰腺祖細(xì)胞表達(dá)Hes-1(hairy and enhancer of split Ⅰ)和p48向外分泌方向分化;與之相反,抑制Notch信號(hào)通路導(dǎo)致Ngn3表達(dá)增強(qiáng),使胰腺祖細(xì)胞向內(nèi)分泌方向分化[13](圖1)[14]。
De Back等[15]研究認(rèn)為,在早期胰腺發(fā)育過程中細(xì)胞間側(cè)向穩(wěn)定(lateral stabilization)耦合側(cè)向抑制(lateral inhibition)作用決定了其內(nèi)分泌和外分泌細(xì)胞的發(fā)育方向,這對(duì)Notch信號(hào)通路單純通過側(cè)向抑制來控制胰腺多能細(xì)胞發(fā)展方向的理論作了補(bǔ)充。Notch信號(hào)通路中的Notch受體分為4個(gè)亞型,分別為Notch1、Notch2、Notch3、Notch4。Lammert等[16]在小鼠胚胎發(fā)育過程中進(jìn)行原位雜交實(shí)驗(yàn)發(fā)現(xiàn),在胰腺胚胎發(fā)育過程中Notch1最先開始表達(dá),當(dāng)Hes-1同時(shí)表達(dá)時(shí)提示Notch1通路被激活,隨后Notch2表達(dá)在導(dǎo)管,Notch3、Notch4則表達(dá)在胰腺間充質(zhì)和內(nèi)皮細(xì)胞中。Murtaugh等[17]在轉(zhuǎn)基因小鼠模型中發(fā)現(xiàn),在PDX1陽性的胰腺前體細(xì)胞中異位活化表達(dá)Notch可使其向內(nèi)分泌和外分泌的分化同時(shí)停止,并停留在祖細(xì)胞階段,這說明Notch信號(hào)通路在胰腺早期發(fā)育中起著維持胰腺上皮祖細(xì)胞處于未分化狀態(tài),直至分化條件成熟的作用。
胰腺正常干細(xì)胞(normal stem cell,NSC)的研究是胰腺疾病替代治療的重點(diǎn),和胰腺CSC的研究相輔相成,盡管近年來已經(jīng)取得了一定的進(jìn)展,但仍缺乏可靠的標(biāo)志物及可信的評(píng)價(jià)系統(tǒng)。目前胰腺NSC較公認(rèn)的特異性標(biāo)志物有PDX1、Ngn3、巢素蛋白(nestin)、Notch信號(hào)、細(xì)胞角蛋白(cytokeratin,CK)、MSH2、β-半乳糖苷酶、酪氨酸羥化酶(tyrosine hydroxylase, TH)等[18]。
圖 1 胰腺發(fā)育中的主要影響因子[14]Fig. 1 Key factors involved in pancreas development: Shh, Pdx1 and Notch signal pathway[14]
胰腺腫瘤起始于胰腺CSC[19]。PDAC的癌前期病變可以分為胰腺上皮內(nèi)瘤變(pancreatic intraepithelial neoplasia,PanIN)、導(dǎo)管內(nèi)乳頭狀黏液瘤(intraductal papillary mucinous neoplasia,IPMN)和黏液囊性瘤(mucinous cystic neoplasia,MCN),其中PanIN 最為常見。Hruban等[20]和Stanger等[21]認(rèn)為,PanIN起源于連接胰腺腺泡和導(dǎo)管的CAC,并且在CAC增生與PanIN之間存在一個(gè)腺泡-導(dǎo)管化生(acinar-ductal metaplasia, ADM)過程。De La等[22]研究證實(shí)ADM是胰腺腫瘤形成的第一步,且ADM過程需要Notch和K-ras的協(xié)同作用來完成。Lee等[23]報(bào)道,nestin是外分泌胰腺干細(xì)胞的標(biāo)志之一,而nestin陽性細(xì)胞表達(dá)Notch2,此類胰腺干細(xì)胞可以轉(zhuǎn)型分化為導(dǎo)管細(xì)胞。Mazur等[24]發(fā)現(xiàn),選擇性阻斷Notch2能使PanIN進(jìn)程停止,而阻斷Notch1則無效,這說明Notch2是調(diào)控PanIN發(fā)展及向PDAC演變的關(guān)鍵信號(hào)。Miyamoto等[25]發(fā)現(xiàn)CAC中Notch信號(hào)持續(xù)活化,Notch信號(hào)的靶基因Hes-1是已知的CAC標(biāo)志,結(jié)合其在胰腺中的特殊位置,推斷CAC可能為胰腺干細(xì)胞或胰腺癌起始細(xì)胞。
Rovira等[26]用醛脫氫酶(aldehydedehydrogenase,ALDH)為標(biāo)志分離了一部分泡心細(xì)胞和終末導(dǎo)管細(xì)胞,發(fā)現(xiàn)這群細(xì)胞能高表達(dá)胰腺發(fā)育過程中一些基因,能形成自我更新的細(xì)胞球體,并可分化成內(nèi)分泌和外分泌胚胎細(xì)胞。不僅如此,當(dāng)胰腺上皮受到慢性損傷時(shí),此群細(xì)胞驟然增殖,顯示其對(duì)胰腺上皮的修復(fù)再生能力。此外,選擇性敲除PTEN,一種磷脂酸肌醇3激酶(phosphatidylinositol 3-kinase, PI3-K)信號(hào)的負(fù)調(diào)控因子,會(huì)引起泡心細(xì)胞數(shù)量的激增,在ADM過程中直接取代腺泡細(xì)胞并分化成導(dǎo)管,并可導(dǎo)致胰腺導(dǎo)管的惡變[27]。上述發(fā)現(xiàn)均提示泡心細(xì)胞可能是胰腺腺泡和導(dǎo)管的干細(xì)胞,很可能為PDAC的細(xì)胞來源。近來也有研究認(rèn)為表達(dá)LGR5和Nanog的胰腺β細(xì)胞可能是胰腺癌干細(xì)胞的來源[28],但具體需要更多實(shí)驗(yàn)去證明。
胰腺和乳腺同為腺體器官,有著相似的組織結(jié)構(gòu),因此篩選胰腺癌干細(xì)胞的表面標(biāo)志時(shí)借鑒了已被公認(rèn)的乳腺癌干細(xì)胞標(biāo)志物CD44+CD24lowESA+[29]。Li等[30]就以這3種標(biāo)志不同組合對(duì)人胰腺癌小鼠移植瘤細(xì)胞用流式方法進(jìn)行分類篩選,再將篩選出的細(xì)胞接種到NOD/SCID小鼠。結(jié)果顯示,在胰腺癌細(xì)胞中僅占0.2%~0.8%的CD44+CD24+ESA+細(xì)胞具有明顯的腫瘤形成能力,由此類細(xì)胞分化增殖形成的異質(zhì)性腫瘤與直接從患者體內(nèi)取得的腫瘤組織在病理形態(tài)、胰腺癌分化標(biāo)志物S100P和分層蛋白(stratifin)的表達(dá)類型上均非常相近。不僅如此,此類細(xì)胞還高表達(dá)與胰腺癌早期發(fā)生相關(guān)的信號(hào)Shh,并可在懸浮培養(yǎng)中聚集形成細(xì)胞球體(sphere),顯示其自我更新能力。但也有學(xué)者對(duì)此項(xiàng)研究提出質(zhì)疑:①ESA是上皮細(xì)胞的標(biāo)志,因此把ESA-細(xì)胞(主要是非上皮的炎性、間質(zhì)和血管細(xì)胞)作為對(duì)照顯然有局限性[31]。②細(xì)胞周期分析顯示CD44+CD24+ESA+和CD44-CD24-ESA-兩群細(xì)胞沒有明顯區(qū)別,這不符合干細(xì)胞應(yīng)該處于靜止期的常規(guī),提示前者研究中的子代細(xì)胞可能并非來自推定的CSC,而僅是發(fā)生了表型標(biāo)志的改變。③CD44+CD24+ESA+細(xì)胞高表達(dá)Shh可能由于分選導(dǎo)致的富集,要證實(shí)干細(xì)胞通路Shh活化的直接靶標(biāo)應(yīng)該是定量PCR檢測(cè)其作用因子Gli。④研究中未給出有力的CSC按等級(jí)體系(hierarchy)分化的依據(jù),子代腫瘤表達(dá)了分化標(biāo)志S100P和stratifin如同原代腫瘤一樣僅顯示了腫瘤分化的狀態(tài),無法區(qū)分腫瘤的異質(zhì)性來源于克隆演變還是CSC。單個(gè)CSC能按等級(jí)體系分化成腫瘤的不同組分才是最根本的證明[32]。
Hermann等[33]發(fā)現(xiàn),占胰腺癌組織細(xì)胞總數(shù)1%~3%的CD133+細(xì)胞具有顯著的腫瘤起始能力。此外,胰腺癌L3.6pl 細(xì)胞系中CD133+細(xì)胞同樣有很強(qiáng)的致瘤性,能在無血清懸浮培養(yǎng)下形成可擴(kuò)增的球體細(xì)胞。值得注意的是,綜合檢測(cè)結(jié)果顯示標(biāo)志為CD44+CD24+ESA+和CD133+的兩組胰腺癌細(xì)胞重疊率僅14%,究竟是這兩群細(xì)胞代表了不同的胰腺癌干樣細(xì)胞抑或具有以上4種標(biāo)志的胰腺癌細(xì)胞具有更強(qiáng)的CSC特性有待進(jìn)一步研究。然而更多的報(bào)道對(duì)CD133+作為胰腺癌CSC的標(biāo)志提出異議:①CD133抗原可被糖基化修飾,在胰腺癌研究中不同小組采用不同的CD133抗體可引出相反的實(shí)驗(yàn)結(jié)論[34-35]。還有研究發(fā)現(xiàn)不論干樣細(xì)胞還是分化細(xì)胞,CD133在結(jié)腸上皮普遍表達(dá),提出CD133不適宜作為消化道CSC的標(biāo)志物[36-37]。②在神經(jīng)細(xì)胞CSC的鑒定中,CD133+球體細(xì)胞展示了分化成多種譜系細(xì)胞的能力,CD133+胰腺癌球體細(xì)胞在分化條件下可擴(kuò)增,但未給出明確的多向分化的依據(jù)[32,38]。③直接以NSC標(biāo)志物CD133或CD44、CD24作為假定的CSC標(biāo)志物進(jìn)行鑒定使得研究對(duì)象從開始就受到了限制。這種局限性存在于多種腫瘤的CSC研究中。理想的表面標(biāo)志物本身應(yīng)該和CSC自我更新的功能相關(guān),受到自我更新相關(guān)基因的調(diào)控。
最近,有研究認(rèn)為ALDH能作為胰腺CSC的內(nèi)源性標(biāo)志。ALDH是一種內(nèi)生性的酶,在乙醇和視黃醛的代謝中起關(guān)鍵作用,為正常胰腺發(fā)育所必需且和胰腺癌的發(fā)生有關(guān)。研究顯示腫瘤組織標(biāo)本中陽性表達(dá)ALDH的胰腺癌患者預(yù)后較差。ALDH+胰腺癌細(xì)胞較ALDH-細(xì)胞具有更強(qiáng)的致瘤性、克隆形成能力和轉(zhuǎn)移侵襲能力。ALDH+和CD44+CD24+兩群細(xì)胞幾乎沒有重疊(CD44+CD24+ALDH+細(xì)胞比例<0.1%),而體外實(shí)驗(yàn)中前者似乎比后者更具侵襲力[39]。但在更全面的檢測(cè)中發(fā)現(xiàn)ALDH在胰腺腫瘤組織和正常胰腺組織中均有廣泛表達(dá),因此也不適宜作為胰腺CSC的標(biāo)志物[40]。
經(jīng)過長期體外傳代培養(yǎng)的胰腺癌細(xì)胞系遺傳物質(zhì)可能存在未知的改變,作為CSC的研究材料可信度固然不如原代腫瘤組織,但穩(wěn)定性和一致性卻是其優(yōu)點(diǎn)。Olempska等[41]以干細(xì)胞標(biāo)志物ABCG2和CD133為標(biāo)志測(cè)定了5種胰腺癌細(xì)胞株(Panc1、Panc89、Colo357、PancTul和A818-6)中的胰腺癌干細(xì)胞。推測(cè)標(biāo)志物ABCG2和CD133陽性細(xì)胞可能為胰腺癌干細(xì)胞。Gou等[42]將胰腺癌Panc1細(xì)胞培養(yǎng)在無血清條件下并添加生長因子等誘導(dǎo)球體形成,此類球體細(xì)胞能排斥熒光染料Hoechst,且在體外和體內(nèi)實(shí)驗(yàn)中均較常規(guī)培養(yǎng)下的Panc1細(xì)胞有更強(qiáng)的增殖能力,提出Panc1球體細(xì)胞有干細(xì)胞特性。但無血清培養(yǎng)下的細(xì)胞更具致瘤性是否與培養(yǎng)液中添加了促進(jìn)有絲分裂的生長因子bFGF和EGF有關(guān),還有待說明。Zhou等[43]檢測(cè)到Panc1細(xì)胞中側(cè)群細(xì)胞(side-population cell,SP)的比例為3.3%,經(jīng)吉西他濱(Gemcitabine)培養(yǎng)后比例上升至9.8%,此群細(xì)胞較非SP細(xì)胞高表達(dá)ABCB1和ABCG2,可能是其排斥Hoechst和耐藥性的原因。以往的研究證明SP細(xì)胞為卵巢CSC[44],但是胰腺腫瘤SP是否就是CSC還需要更多的實(shí)驗(yàn)數(shù)據(jù)證明。由于胰腺腫瘤發(fā)生機(jī)制較復(fù)雜和CSC含量較低,現(xiàn)階段的一些鑒定方法均無法給出權(quán)威的證據(jù),所以對(duì)于胰腺CSC標(biāo)志物的鑒定仍是研究胰腺腫瘤的重要課題。
開發(fā)選擇性靶向胰腺CSC的治療方法必須首先解決一個(gè)長期困擾研究者的問題,如何避免對(duì)NSC產(chǎn)生不良反應(yīng),因?yàn)檫@兩者有太多共性,甚至有研究者認(rèn)為它們的差異只是所處的微環(huán)境造成的[45]。盡管如此,近幾年在針對(duì)胰腺CSC的治療上仍取得了一定的突破。Muller等[46]在體外和體內(nèi)實(shí)驗(yàn)中均證明將干細(xì)胞相關(guān)信號(hào)通路Shh的抑制劑環(huán)杷明(cyclopamine)、哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)的阻斷劑雷帕霉素(rapamycin)和吉西他濱聯(lián)合應(yīng)用可有效殺滅胰腺CSC,進(jìn)而縮小腫瘤,抑制轉(zhuǎn)移,延長無瘤生存期,而單一應(yīng)用其中一種藥物則無此效果,稱為CRG方案。mTOR是一種非典型的絲氨酸/蘇氨酸蛋白激酶,屬于PI3K家族,mTOR信號(hào)通路在某些腫瘤發(fā)生過程中被不適當(dāng)?shù)募せ?,因此,mTOR信號(hào)通路的抑制劑可作為這些腫瘤患者的靶向性治療劑[47]。有研究發(fā)現(xiàn)在血液系統(tǒng)中敲除mTOR通路上游的負(fù)調(diào)控因子PTEN可使NSC衰竭,但卻同時(shí)使白血病起始細(xì)胞增多,而采用mTOR抑制劑則起到相反的作用[48]。這個(gè)結(jié)果的意義在于研究者終于可以通過抑制mTOR通路而在打擊CSC時(shí)避免損傷NSC和正常組織細(xì)胞。此外,CRG方案的3種藥物,均已分別在臨床使用,縮短了研發(fā)周期,藥代動(dòng)力學(xué)和不良反應(yīng)也已被掌握,期待其聯(lián)合應(yīng)用能早日進(jìn)入臨床。
萊菔硫烷(sulforaphane,SFN,SF,又名蘿卜硫素),是一種主要存在于西蘭花和其他十字花科蔬菜中的異硫氰酸鹽類物質(zhì),可預(yù)防許多化學(xué)致癌物誘導(dǎo)的DNA損傷和多種腫瘤的發(fā)生,是潛在的腫瘤治療藥物。Kallifatidis等[49]發(fā)現(xiàn),將SF與化療藥物聯(lián)合應(yīng)用可抑制胰腺CSC的集落生成、球體形成和ALDH活性,小鼠體內(nèi)實(shí)驗(yàn)更證實(shí)了SF能增強(qiáng)細(xì)胞毒類藥物對(duì)胰腺CSC的效力,卻未增加化療毒性。進(jìn)一步研究發(fā)現(xiàn)在SF基礎(chǔ)上再聯(lián)合同樣對(duì)胰腺CSC有效的多靶點(diǎn)抗腫瘤藥物索拉非尼(sorafenib,SO)可顯著誘發(fā)胰腺腫瘤細(xì)胞凋亡,抑制腫瘤血管增殖和上皮間變(epithelial-mesenchymal transition,EMT),縮小腫瘤體積,有希望成為另一種對(duì)抗胰腺CSC的藥物組合[50]。除此以外,干細(xì)胞相關(guān)信號(hào)通路(如Shh[51]、mTOR、Pten、Notch、Bmi1、Wnt)阻斷劑、MicroRNAs(如miR-34[52]、miR-200家族[53])、端粒酶模板拮抗劑(如GRN163L[54])等也是胰腺CSC生物學(xué)治療的研究方向。
迄今,雖然有多個(gè)研究組致力于胰腺CSC的分離和鑒定,并以特異性標(biāo)志物如CD44、CD24、ESA、CD133、CXCR4和ALDH等分離得到了多種胰腺癌干樣細(xì)胞群,但其間少有交集,也仍缺乏作為胰腺CSC的充分證據(jù)。此外,胰腺CSC的細(xì)胞來源、組織定位、信號(hào)通路調(diào)控機(jī)制、微環(huán)境的作用、耐藥和轉(zhuǎn)移的分子生物學(xué)機(jī)制等眾多問題尚未明確。胰腺CSC的研究仍處于早期階段。提高胰腺腫瘤的5年生存率是國際上的難題,其中靶向胰腺CSC的治療可以從源頭上殺滅腫瘤細(xì)胞,根治腫瘤,是非常有前景的研究領(lǐng)域,但高選擇性地只針對(duì)CSC而不損傷NSC是個(gè)巨大的挑戰(zhàn)。令人振奮的是,隨著對(duì)CSC抗藥性和調(diào)控機(jī)制的不斷深入剖析,針對(duì)胰腺CSC的多種生物治療已略見療效,可能在不久的將來,隨著機(jī)制的明確和多種療法的聯(lián)合應(yīng)用,對(duì)胰腺腫瘤的治療將取得突破性的進(jìn)展。
[1] JEMAL A, SIEGEL R, XU J, et al. Cancer statistics, 2010[J]. CA Cancer J Clin, 2010, 60(5): 277-300.
[2] QIU D, KUROSAWA M, LIN Y, et al. Overview of the epidemiology of pancreatic cancer focusing on the JACC Study[J]. J Epidemiol, 2005, 15(Suppl 2): 157-167.
[3] PHILIP P A, MOONEY M, JAFFE D, et al. Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment[J]. J Clin Oncol, 2009, 27(33): 5660-5669.
[4] LI D, XIE K, WOLFF R, ABBRUZZESE J L. Pancreatic cancer[J]. Lancet, 2004, 363(9414): 1049-1057.
[5] GITTES G K. Developmental biology of the pancreas: a comprehensive review[J]. Dev Biol 2009, 326(1): 4-35.
[6] RHIM A D, STANGER B Z. Molecular biology of pancreatic ductal adenocarcinoma progression: aberrant activation of developmental pathways[J]. Prog Mol Biol Transl Sci, 2010, 97: 41-78.
[7] JENSEN J. Gene regulatory factors in pancreatic development[J]. Dev Dyn, 2004, 229(1): 176-200.
[8] GEORGE N M, DAY C E, BOERNER B P, et al. Hippo signaling regulates pancreas development through inactivation of Yap[J]. Mol Cell Biol, 2012, 32(24): 5116-5128.
[9] PAN F C, BANKAITIS E D, BOYER D, et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration[J]. Development, 2013, 140(4): 751-764.
[10] EDLUND H. Developmental biology of the pancreas[J]. Diabetes, 2001, 50(Suppl 1): 5-9.
[11] JONSSON J, CARLSSON L, EDLUND T, et al. Insulinpromoter-factor 1 is required for pancreas development in mice[J]. Nature, 1994, 371(6498): 606-609.
[12] HUI H, PERFETTI R. Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood[J]. Eur J Endocrinol, 2002, 146(2): 129-141.
[13] APELQVIST A, LI H, SOMMER L, et al. Notch signalling controls pancreatic cell differentiation[J]. Nature, 1999, 400(6747): 877-881.
[14] HEZEL A F, KIMMELMAN A C, STANGER B Z, et al. Genetics and biology of pancreatic ductal adenocarcinoma[J]. Genes Dev, 2006, 20(10): 1218-1249.
[15] DE BACK W, ZHOU J X, BRUSCH L. On the role of lateral stabilization during early patterning in the pancreas[J]. J R Soc Interface, 2013, 10(79): 20120766.
[16] LAMMERT E, BROWN J, MELTON D A. Notch gene expression during pancreatic organogenesis[J]. Mech Dev, 2000, 94(1-2): 199-203.
[17] MURTAUGH L C, STANGER B Z, KWAN K M, et al. Notch signaling controls multiple steps of pancreatic differentiation[J]. Proc Natl Acad Sci U S A, 2003, 100(25): 14920-14925.
[18] BONNER-WEIR S, SHARMA A. Pancreatic stem cells[J]. J Pathol, 2002, 197(4): 519-26.
[19] REYA T, MORRISON S J, CLARKE M F, et al. Stem cells, cancer, and cancer stem cells[J]. Nature, 2001, 414(6859): 105-111.
[20] HRUBAN R H, MAITRA A, GOGGINS M. Update on pancreatic intraepithelial neoplasia[J]. Int J Clin Exp Pathol, 2008, 1(4): 306-316.
[21] STANGER B Z, DOR Y. Dissecting the cellular origins of pancreatic cancer[J]. Cell Cycle, 2006, 5(1): 43-46.
[22] DE LA O J, EMERSON L L, GOODMAN J L, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia[J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18907-18912.
[23] LEE K M, YASUDA H, HOLLINGSWORTH M A, et al. Notch 2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells[J]. Lab Invest, 2005, 85(8): 1003-1012.
[24] MAZUR P K, EINWACHTER H, LEE M, et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma[J]. Proc Natl Acad Sci U S A, 2010, 107(30): 13438-13443.
[25] MIYAMOTO Y, MAITRA A, GHOSH B, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis[J]. Cancer Cell, 2003, 3(6): 565-576.
[26] ROVIRA M, SCOTT S G, LISS A S, et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas[J]. Proc Natl Acad Sci U S A,2010, 107(1): 75-80.
[27] STANGER B Z, STILES B, LAUWERS G Y, et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas[J]. Cancer Cell, 2005, 8(3): 185-195.
[28] AMSTERDAM A, RAANAN C, SCHREIBER L, et al. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer[J]. Biochem Biophys Res Commun, 2013, 433(2): 157-162.
[29] AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A, 2003, 100(7): 3983-3988.
[30] LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037.
[31] LONARDO E, HERMANN P C, HEESCHEN C. Pancreatic cancer stem cells - update and future perspectives[J]. Mol Oncol, 2010, 4(5): 431-442.
[32] BHAGWANDIN V J, SHAY J W. Pancreatic cancer stem cells: fact or fiction? [J]. Biochim Biophys Acta, 2009, 1792(4): 248-259.
[33] HERMANN P C, HUBER S L, HERRLER T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3): 313-323.
[34] IMMERVOLL H, HOEM D, SAKARIASSEN P O, et al. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas[J]. BMC Cancer, 2008, 8: 48.
[35] MAEDA S, SHINCHI H, KURAHARA H, et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer[J]. Br J Cancer, 2008, 98(8): 1389-1397.
[36] KEMPER K, SPRICK M R, DE BREE M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation[J]. Cancer Res, 2010, 70(2): 719-729.
[37] SHMELKOV S V, BUTLER J M, HOOPER A T, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors[J]. J Clin Invest, 2008, 118(6): 2111-2120.
[38] SINGH S K, CLARKE I D, TERASAKI M, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res, 2003, 63(18): 5821-5828.
[39] RASHEED Z A, YANG J, WANG Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma[J]. J Natl Cancer Inst, 2010, 102(5): 340-351.
[40] DENG S, YANG X, LASSUS H, et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers[J]. PLoS One, 2010, 5(4): 10277.
[41] OLEMPSKA M, EISENACH P A, AMMERPOHL O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines[J]. Hepatobiliary Pancreat Dis Int, 2007, 6(1): 92-97.
[42] GOU S, LIU T, WANG C, et al. Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties[J]. Pancreas, 2007, 34(4): 429-435.
[43] ZHOU J, WANG C Y, LIU T, et al. Persistence of side population cells with high drug efflux capacity in pancreatic cancer[J]. World J Gastroenterol, 2008, 14(6): 925-930.
[44] SZOTEK P P, PIERETTI-VANMARCKE R, MASIAKOS P T, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness[J]. Proc Natl Acad Sci U S A, 2006, 103(30): 11154-11159.
[45] LI L, NEAVES W B. Normal stem cells and cancer stem cells: the niche matters[J]. Cancer Res, 2006, 66(9): 4553-4557.[46] MUELLER M T, HERMANN P C, WITTHAUER J, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer[J]. Gastroenterology, 2009, 137(3): 1102-1113.
[47] INOKI K, CORRADETTI M N, GUAN K L. Dysregulation of the TSC-mTOR pathway in human disease[J]. Nat Genet, 2005, 37(1): 19-24.
[48] YILMAZ OH, VALDEZ R, THEISEN B K, et al. Pten dependence distinguishes haematopoietic stem cells from leukemia-initiating cells[J]. Nature, 2006, 441(7092): 475-482.
[49] KALLIFATIDIS G, LABSCH S, RAUSCH V, et al. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate[J]. Mol Ther, 2011, 19(1): 188-195.
[50] RAUSCH V, LIU L, KALLIFATIDIS G, et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics[J]. Cancer Res, 2010, 70(12): 5004-5013.
[51] FU J, RODOVA M, ROY S K, et al. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/ IL2R gamma null mice xenograft[J]. Cancer Lett, 2013, 330(1): 22-32.
[52] JI Q, HAO X, ZHANG M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. PLoS One, 2009, 4(8): 6816.
[53] BURK U, SCHUBERT J, WELLNER U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6): 582-589.
[54] HERBERT B S, GELLERT G C, HOCHREITER A, et al. Lipid modification of GRN163, an N3’-->P5’ thiophosphoramidate oligonucleotide, enhances the potency of telomerase inhibition[J]. Oncogene, 2005, 24(33): 5262-5268.
Recent progress on pancreatic cancer stem cells
ZHOU Zhu-chao1, GONG Yi-yi1, NI Quan-xing2(1.Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; 2. Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
NI Quan-xing E-mail: ni_quanxing@hotmail.com
Pancreatic neoplasm, especially pancreatic ductal adenocarcinoma tends to be with bad prognosis due to higher grade malignancy and metastasis. Formerly researches suggested that cancer stem cells play an important part in the initiation and process of pancreatic cancer, so that, well understanding on the mechanism of pathogenesis will contribute to a direct treatment on it. Complex signal pathways and transcription factors determined the differentiation of precursor cells during the development of pancreas, whereas, also involved in pancreatic malignant changes, which could be used as markers tracking cancer stem cells. Moreover, several special proteins were also employed as tools for pancreatic cancer stem cells screening. In this text, we reviewed origination and identification of pancreatic cancer stem cells, as well as targeted therapy.
Pancreatic carcinoma; Stem cells; Cancer stem cells; Signal pathways; Targeted therapy
10.3969/j.issn.1007-3969.2013.05.011
R735.9
:A
:1007-3639(2013)05-0382-07
2013-03-10
2013-04-15)
倪泉興 E-mail:ni_quanxing@hotmail.com