• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of flow fluctuation attenuation performance of a surge tank*

    2013-06-01 12:29:59GUOLanlan郭蘭蘭
    關(guān)鍵詞:李東蘭蘭

    GUO Lan-lan (郭蘭蘭)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China, E-mail: gllgo@163.com

    LIU Zheng-gang (劉正剛), GENG Jie (耿介), LI Dong (李東), DU Guang-sheng (杜廣生)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    Numerical study of flow fluctuation attenuation performance of a surge tank*

    GUO Lan-lan (郭蘭蘭)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China, E-mail: gllgo@163.com

    LIU Zheng-gang (劉正剛), GENG Jie (耿介), LI Dong (李東), DU Guang-sheng (杜廣生)

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    (Received September 11, 2013, Revised September 26, 2013)

    The surge tank plays an important role in ensuring the stability of a water flow standard device. To study the influence of the structure and the working conditions on the regulator performance of a surge tank, a three-dimensional model, including a surge tank, the pipeline and the water tank is built, and the VOF model in the Fluent software is used to simulate the two-phase pulsatile flow in the surge tank. The inlet flow pulsation is defined by the User Defined Functions (UDF), and the outlet flow is set to be a free jet. By calculating the flow fluctuation coefficient of the variation under different flow conditions, the influences of the pulse frequency, the initial water level height and the baffle plate structure on the flow stability are analyzed. It is shown that the surge tank has a good attenuation effect on high-frequency pulsations, there is an optimal initial water level to suppress the fluctuations, the round holes of the baffle should ensure a certain circulation area with the bore diameter small enough to have the necessary damping effect.

    surge tank, numerical simulation, VOF, flow stability

    Introduction

    The flow stability is an important feature and indicator of the water flow standard device, which is related directly with the repeatable verification of the flow meters and has an impact on the uncertainty calculation of differential pressure flowmeters[1]. The flow fluctuation is caused by the pressure pulsation at the water pump outlet. To stabilize the flow, a tower or surge tank is usually installed between the pump and the test line. The tower can ensure a constant pressure and achieve a good flow stability through the overflow. However, the tower has many shortcomings such as the limited pressure head, the long construction period, the high investment and the difficulty to relocation. The surge tank is a sealed pressure tank which uses the compressibility of the enclosed air and the baffle located in the tank to suppress the flow fluctuation. Compared with the tower, the surge tank can have a higher pressure head, a smaller size and a lower investment. So the surge tank is widely used by many small and medium enterprises, as well as scientific research and measurement institutions to ensure a constant water pressure of flow standard devices.

    The surge tank is a kind of pulsation attenuator used to relieve the pressure and the flow pulsation in the pipeline. The studies of the pulsation attenuator involve the pulse generating mechanism, the process of the pulse transfer in the pipe, the performance of the attenuation and the matching between the attenuation and the system[2-6]. Reference [7] proposed mathematical models of the system by the wave method or the frequency method to study the attenuation performance, and the local pressure was assumed constant in the process of solving related equations, regardless of the shape of the cavity and the impact of the local pressure loss. References [8]-[10] made quantitative analyses of the structural parameters related with the attenuation performance impact, but the outlet pressurewas still treated as a fixed value, which is clearly incompatible with the actual situations. The flow in the surge tank is an air-water two-phase flow and is more complex than a single-phase flow. Reference [11] presented a simulation of the pure liquid phase flow, without considering the effect of the gas phase and the attenuation of the pulsating flow. This paper establishes a model that contains the surge tank, the pipelines and the water tank with an atmospheric pressure outlet, to simulate the two-phase flow in the surge tank by using the VOF numerical model. The jet boundary condition is used while the water flows into the water tank and the constant pressure boundary condition is used in the top of the water tank. The boundary conditions are consistent with the actual situation. On this basis, the flow stabilization performance of the surge tank is studied with the VOF model through using the Fluent software.

    Fig.1 Calculation domain

    1. Numerical models

    In the surge tank are air-water two phase fluids. The free surface is simulated by the VOF model, with a volume fraction variable for each phase. The interface between the two phases is determined by solving for the volume fraction variable. In the surge tank is a turbulent flow, so the standardkε- turbulence model is used. The near-wall region is processed with the wall function.

    1.1VOF model[12]

    The continuity equation for the volume fraction

    The momentum equation where (the subscript 1 represents the gas phase and the subscript 2 the liquid phase ):χis the volume fraction of the gas phase,ρis the density of the mixture,ρ=χρ1+(1-χ)ρ2,μis the viscosity coefficient,μ=χμ1+(1-χ)μ2,tis the time,uis the velocity vector of the two phase fluid,pis the pressure,gis the acceleration of gravity,Fis the equivalent volume force due to the surface tension.

    1.2The standardkε-model[13]

    kequation

    wherekσandεσare the turbulent Prandtl numbers ofkandεcoefficients,kGis the turbulent kinetic energy produced by the gradient of the average velocity,bGis the turbulence kinetic energy produced by the flotage,MYexpresses the panting action caused bythe diffusivity of the compressible turbulent flow,1Cε,C2ε,C3εare constant coefficients, andSεandSkare the source items user-defined.

    Fig.2 Structure sizes of the surge tank and baffle

    2. The geometric model and boundary conditions

    2.1Computing area and meshingThe c

    alculation domain is shown in Fig.1. The water from the pump flows into the water tank after the pressure fluctuations are suppressed by the surge tank. At the initial time, the top of the surge tank and the whole water tank are filled with air, the bottom of the surge tank is filled with water. The surge tank is a cylindrical container, which is divided into inlet and outlet cavities by a vertical baffle. Their structure sizes are shown in Fig.2. The inner diameter of the surge tank isDb=0.28 m, its height is 0.5 m and the head radius isR=0.022 m. The height and the thickness of the baffle are 0.35 m and 0.004 m. The diameter of the round holes in the baffle isDh=0.02 m, and the space between them is 0.0044 m. Fig.3 shows grids of the surge tank. The round holes of the baffle and the head portion of the surge tank are meshed with unstructured grids, and the other area is meshed with structured grids. The grids in the round hole are refined, and the minimum mesh size is 0.002 m. The whole grid number is about 1.2×106. By monitoring residuals (10–6for energy, and 10–3for others), the convergence of each calculation step is checked.

    Fig.3 Grid meshing

    2.2Boundary conditions

    The flow fluctuation caused by the pressure fluctuation on the centrifugal pump outlet can be considered as in a sine form:Qi=Q+Δqsin(2πft), where the amplitude Δqis about 5% of the average flow rate14,15], f is the frequency of the pressure pulsation. A is the mass flow rate inlet and the sine periodic signal is defined by the UDF.Bis the pressure outlet.

    3. Validation of the calculation method

    The ab

    ove settings are adopted to simulate the fluctuation flow. The flow stability of the monitor surface is represented by the flow fluctuation coefficient[ 15]

    wheremδis the flow fluctuation coefficient,maxvqandminvqare, respectively, the maximum and the minimum instantaneous flow at a certain flow rate.

    Fig.4 Experimental set-up

    The average flow rate at the surge tank inlet isQ=5.4 m3/h, the pulsation frequency isf=10 Hz and the amplitu de is Δq=5%/Q. In order t o verify thecorrectnessofthenumericalcalculation,experi-mental measurements using the same equipment (see Fig.4.) are made, and 60 instantaneous flow rates are recorded with the electromagnetic flow meters to calculate the flow fluctuation coefficient. A comparison of the results is shown in Table 1.

    Table 1 Comparison of experimental and numerical values

    4. Numerical calculation and analysis

    The effect of the surge tank is related to many factors, such as the pulse frequency, the structure or state parameters, the installation position and the pipeline characteristics[14].

    4.1Influence of the pulsation frequency on the flow stability

    The flow rate3of the centrifugal pump before the surge tank is 8 m/h and its head is 65 m. In Ref.[14]where the pump is a closed structure with a small flow rate and a high head, the frequency of the3outlet pulsation is low. When the flow rate is 2.8 m/h, the main characteristic frequencies are 3 times, 5 times and 6 times of 1 Hz, 10 Hz, 36 Hz, 44 Hz, 29 Hz. So the simulations are carried out at the same flow rate point at frequencies of 2 Hz, 3 Hz, 5 Hz, 10 Hz, 20 Hz, 30 Hz, 40 Hz and 50 Hz.

    Figure 5 shows the flow fluctuation coefficients at pulsation frequencies from 2 Hz to 50 Hz. It can be seen that when the frequency increases, the pulsation attenuation ratio of the flow rate is decreased. That is because the cycle of the low-frequency pulsation is longer than that of the high-frequency pulsation, and much more water flows into the surge tank at the same time. The volume of the air changes greatly, so does the pressure, which lowers the flow stability.

    Fig.5 Flow fluctuation coefficients at different frequencies

    Figure 6 shows the pulsation attenuation rate of the flow rate and the pressure at different frequencies. From Fig.5, it can be seen that the variation trend of the flow rate’s pulsation attenuation rate is in accordance with the pressure’s pulsation attenuation rate, which means that the surge tank suppresses both the pressure and the flow rate pulsation.

    Fig.6 Pulsation attenuation ratios at different frequencies

    Fig.7 Volume fraction cloud maps under different initial water levels

    4.2Influence of the initial water level on the flow stability

    The flow field is simulated at a frequency of 10 Hz with different water levelsL. The contour of the water’s volume fraction is shown in Fig.7. It can be seen that when /=Ld4.4 and /=Ld6, the waterlevel of the inlet cavity is lower than the height of the baffle and there is a big water level difference between the two cavities. The water is injected into the outlet cavity through the round holes in the baffle, which causes large fluctuations. Due to the low water level of the outlet cavity, the air at the free surface is sucked into the outlet pipe. As the water level drops, the suction occurs more frequently and more bubbles are created.

    When /=Ld10 and /=Ld10.8, the water level of the inlet cavity is higher than the height of the baffle and is equal to that of the outlet cavity, therefore, the outlet is immersed in the water and the suction of the air is avoided.

    Figure 8 shows the flow fluctuation coefficients with /=Ld8.4, 9.2, 10 and 10.8. It can be seen thatmδincreases with the water level, which shows that the air volume affects the flow stabilization. Too small volume of the air will hamper the surge action.

    Fig.8 Flow fluctuation coefficients with different initial water levels

    To sum up, too high or too low water level is not good for the flow stabilization. Due consideration of various aspects points to a conclusion that /=Ld9.2 is the most reasonable initial water level. That means that the air-water volume ratio in the surge tank is about 1/2.

    4.3Influence of the baffle structure on the flow stability

    The layout of the round holes in the baffle is shown in Fig.2(b). Simulations are carried out whenDh, respectively, is 0.01 m, 0.015 m, 0.018 m, 0.02 m, 0.022 m, 0.025 m and 0.03 m (f=10 Hz,L/d=9.2). Figure 9 shows the flow fluctuation coefficients with different initial water levels. It can be seen that whenDh=0.02 m and 0.022 m, the flow is most stable. WhenDhis less than 0.02 m,δmincreases evidently. This is because the circulation area is too small to let the water in the inlet cavity flow into the outlet cavity in time. So a water level difference between the inlet cavity and the outlet cavity will result in large fluctuations, as is shown in Fig.10(a). And the low water level of the inlet cavity is prone to bring bubbles into the outlet pipe. Figure 10(b) shows the contour of the water volume fractions whenDh=0.03 m. The water circulation area is enough to keep the water levels of the two cavities at the same surface, so the flow is more stable than whenDh=0.01 m. But with the increase of thehD, the drag coefficient of the baffle is decreased which reduces the surge effect on the water flow. So the curve ofmδrises slightly whilehDis larger than 0.022 m.

    Fig.9 Flow fluctuation coefficients with different hole diameters

    Fig.10 Contours of water’s volume fraction

    5. Conclusions

    The influence of the two-phase flow on the pressure pulsation is studied based on the VOF model of CFD and the results are verified by experiments, which provide a large number of significant scientific data and theoretical guidance to the same type of flow.

    The initial water level in the surge tank is closely related with the surge effect. If the initial water level is too low, there will be a large water level difference between the inlet cavity and the outlet cavity, which make it easy to form the hit impact on the water surface and to suck the air into the outlet pipe. On the other hand, if it is too high, there will be no enough air to reduce the flow fluctuation. So the best surge effectwill be achieved when the volume ratio of air to water is about 0.5. The surge tank has a better attenuation effect on a higher frequency pressure pulsation. The pulsation attenuation ratio reduces rapidly when the pulsation frequency is lower than 10 Hz. The circulation area of the baffle holes should ensure a small water level difference between the inlet and outlet cavities. Then the diameter can be reduced properly to increase the absorption and the surge to the flow fluctuation. The application of the jet exit can provide a certain back pressure to the flow, as well as remove the bondage of the export conditions on the pulsation. One has to deal with a multiphase compressible problem in the study of the pulsation.

    [1] CHINA NATIONAL BUREAU OF TECHNICAL SUPERVISION, JJG164-2000.Chinese National Standards[S]. Beijing, China: Standards Press of China, 2000-06-01(in Chinese).

    [2] LAI Xu, YANG Jian-dong and CHEN jian-zhi. Effects of velocity head and momentum exchange on critical stable sectional area of downstream throttled surge tank[J].Journal of Energy Engineering,2003, 129(3): 96-106.

    [3] FAANES A., SKOGESTAD S. Buffer tank design for acceptable control performance[J].Industrial and Engineering Chemistry Research,2003, 42(10): 2198-2208.

    [4] ORTWIG H. Experimental and analytical vibration analysis in fluid power systems[J].International Journal of Solids and Structures,2005, 42(21-22): 5821-5830.

    [5] KIM S. H. Impluse response method for pipeline systems equipped with water hammer protection devices[J].Journal of Hydraulic Engineering, ASCE,2008, 134(7): 961-969.

    [6] FAANES A., SKOGESTAD S. A systematic approach to the design of buffer tanks[J].Computers and Chemical Engineering,2004, 24(2): 1395-1401.

    [7] KIM S. H. Design of surge tank for water supply systems using the impulse response method with the GA algorithm[J].Journal of Mechanical Science and Technology,2010, 24(2): 629-636.

    [8] SHAN Chang-ji, LIU Xian-hong and WANG Guo-zhi. Flow Characteristics CFD resolution of pressure pulsation attenuator of high pressure piston pump[J].Machine tool and Hydraulics,2005, (7): 113-114(in Chinese).

    [9] ZHANG Yin, Yu Jun and LI Shen et al. Experimental research and CFD simulation of pressure pulsation attenuator[J]. Chinese Hydraulics and Pneumatics,2011, (6): 47-50(in Chinese).

    [10] AN Jian-feng, ZHANG Jian and YU Xiao-dong et al. Influence of flow field on stability of throttled surge tanks with standpipe[J].Journal of Hydrodynamics,2013, 25(2): 294-299.

    [11] LI Zheng. Study on uncertainty and flow stability of water flow standard device[D]. Master Thesis, Tianjin, China: Tianjin University, 2009(in Chinese).

    [12] YUAN Ming-hao, YANG Yan-hua and LI Tian-shu et al. Simulation of free surface with phase change based on a VOF method[J].Journal of Engineering Thermophysics,2007, 28(6): 961-964(in Chinese).

    [13] LIU Yong-hui, DU Guang-sheng and LIU Zheng-gang. The influence of different design parameters and working conditions on characteristics of heat meter[J].Journal of Hydrodynamics,2009, 21(3): 394-400.

    [14] LI Yan-min, ZHANG Zhi-hui and ZHANG yong, Analysis of the flow field and optimal design for certain pressure pulsation attenuator based on fluent[J].Machine Tool and Hydraulics,2010, 38(11): 86-88(in Chinese).

    [15] SU Yan-xun, LIANG Guo-wei and SHENG Jian.Flow measurement and testing[M]. Beijing, China: China Metrology Publishing House, 2007(in Chinese).

    10.1016/S1001-6058(13)60443-6

    * Project supported by the National Natural Science Foundation of China (Grant No. 10972123).

    Biography: GUO Lan-lan (1979-), Female, Ph. D. Candidate, Lecturer

    DU Guang-sheng,

    E-mail: du@sdu.edu.cn

    猜你喜歡
    李東蘭蘭
    On the green aurora emission of Ar atmospheric pressure plasma
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    Mosquitoes: Annoying but Amazing
    釣魚
    The influence of accounting information on the financial management of enterprises and the Countermeasures
    西部論叢(2019年25期)2019-10-21 05:42:40
    李東一:開放的山東更“美麗”
    金橋(2018年4期)2018-09-26 02:25:04
    找春天
    “1”的魅力
    青蘋果(2011年6期)2011-08-02 03:13:14
    在新加坡的蘭蘭姐姐(下)
    亚洲va日本ⅴa欧美va伊人久久| 在线av久久热| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 久久人人精品亚洲av| 亚洲熟妇熟女久久| 欧美成狂野欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 777久久人妻少妇嫩草av网站| 波多野结衣高清无吗| 久久精品影院6| 大香蕉久久成人网| 两个人看的免费小视频| 欧美精品亚洲一区二区| 久久精品aⅴ一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 女人被狂操c到高潮| 亚洲中文日韩欧美视频| 18禁观看日本| 极品教师在线免费播放| 亚洲成国产人片在线观看| 亚洲中文日韩欧美视频| 国产精品影院久久| 免费看美女性在线毛片视频| 此物有八面人人有两片| 成人免费观看视频高清| 免费不卡黄色视频| 99国产精品一区二区三区| 午夜免费成人在线视频| 久久人妻熟女aⅴ| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 在线观看www视频免费| 丰满的人妻完整版| 两性夫妻黄色片| 最新美女视频免费是黄的| 一级a爱视频在线免费观看| 日韩精品免费视频一区二区三区| 日韩视频一区二区在线观看| 国产单亲对白刺激| 老司机在亚洲福利影院| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 色尼玛亚洲综合影院| 日韩精品中文字幕看吧| 黄色女人牲交| 久久精品91无色码中文字幕| 久久人人爽av亚洲精品天堂| 亚洲成人久久性| 国产成年人精品一区二区| 亚洲精品久久国产高清桃花| 怎么达到女性高潮| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 亚洲第一电影网av| 国产一级毛片七仙女欲春2 | 给我免费播放毛片高清在线观看| 国产1区2区3区精品| 一区二区三区高清视频在线| 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 婷婷精品国产亚洲av在线| 视频区欧美日本亚洲| 在线观看免费午夜福利视频| 一本综合久久免费| 一区福利在线观看| 嫁个100分男人电影在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 黄网站色视频无遮挡免费观看| 国产精华一区二区三区| 男人操女人黄网站| 亚洲情色 制服丝袜| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 欧美日韩一级在线毛片| 真人做人爱边吃奶动态| 国产成人系列免费观看| 99riav亚洲国产免费| 精品第一国产精品| 日韩免费av在线播放| 美女高潮到喷水免费观看| 亚洲成av人片免费观看| 中出人妻视频一区二区| 青草久久国产| 美女高潮喷水抽搐中文字幕| 国产一区在线观看成人免费| 午夜免费成人在线视频| 精品人妻在线不人妻| 国产午夜精品久久久久久| 性色av乱码一区二区三区2| 嫁个100分男人电影在线观看| aaaaa片日本免费| 级片在线观看| 久久久久久久久中文| 成年版毛片免费区| 好男人电影高清在线观看| 99re在线观看精品视频| 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 国产精品久久久av美女十八| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 精品国产国语对白av| 午夜福利18| 69av精品久久久久久| 午夜成年电影在线免费观看| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 亚洲国产精品合色在线| 人人妻人人爽人人添夜夜欢视频| 亚洲免费av在线视频| 国产精品国产高清国产av| 久热这里只有精品99| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 久久久久久人人人人人| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看 | 日韩免费av在线播放| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 午夜精品国产一区二区电影| av视频在线观看入口| 国产精品永久免费网站| 日韩精品青青久久久久久| 香蕉丝袜av| www.精华液| 亚洲熟女毛片儿| 欧美日本中文国产一区发布| 狂野欧美激情性xxxx| 亚洲欧美精品综合一区二区三区| 亚洲无线在线观看| 亚洲国产精品久久男人天堂| 97碰自拍视频| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 午夜a级毛片| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av | 午夜精品久久久久久毛片777| 在线国产一区二区在线| 丰满的人妻完整版| 国产极品粉嫩免费观看在线| www日本在线高清视频| 亚洲激情在线av| 国产欧美日韩一区二区精品| 日韩精品中文字幕看吧| 国产三级黄色录像| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三区在线| cao死你这个sao货| 中文字幕av电影在线播放| 亚洲国产精品sss在线观看| 中亚洲国语对白在线视频| 午夜免费鲁丝| av欧美777| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| 欧美日韩中文字幕国产精品一区二区三区 | 国产高清videossex| 精品国产亚洲在线| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 此物有八面人人有两片| 男人的好看免费观看在线视频 | 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| 久久性视频一级片| 欧美性长视频在线观看| 亚洲中文av在线| 国产成人欧美在线观看| 丝袜在线中文字幕| 久久久久久久久久久久大奶| netflix在线观看网站| 一区二区日韩欧美中文字幕| 波多野结衣一区麻豆| 欧美乱色亚洲激情| 天堂√8在线中文| 成人国语在线视频| 亚洲国产欧美日韩在线播放| 国产亚洲精品久久久久5区| 正在播放国产对白刺激| 国产在线观看jvid| 日本一区二区免费在线视频| 亚洲中文字幕日韩| 日本a在线网址| 久久人妻av系列| 99国产极品粉嫩在线观看| 老鸭窝网址在线观看| 欧美最黄视频在线播放免费| 久久天堂一区二区三区四区| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 一边摸一边做爽爽视频免费| 国产精品自产拍在线观看55亚洲| 久久久久久亚洲精品国产蜜桃av| 免费在线观看亚洲国产| 最近最新免费中文字幕在线| 精品无人区乱码1区二区| 看免费av毛片| 成人特级黄色片久久久久久久| 99re在线观看精品视频| 久久中文字幕人妻熟女| 免费在线观看黄色视频的| 两个人看的免费小视频| 国产视频一区二区在线看| 一区福利在线观看| 日日干狠狠操夜夜爽| 国产精品亚洲av一区麻豆| 日日夜夜操网爽| 男人舔女人的私密视频| 国产一卡二卡三卡精品| 亚洲精品国产区一区二| 色综合亚洲欧美另类图片| 1024视频免费在线观看| 久久久久精品国产欧美久久久| 18禁观看日本| tocl精华| 欧美成人午夜精品| 日韩av在线大香蕉| 无限看片的www在线观看| 亚洲av美国av| 精品熟女少妇八av免费久了| 中文字幕最新亚洲高清| 一进一出抽搐动态| 精品第一国产精品| 欧美乱码精品一区二区三区| 麻豆久久精品国产亚洲av| 丁香欧美五月| av视频在线观看入口| 国产成人欧美在线观看| 亚洲自偷自拍图片 自拍| 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美精品济南到| 91老司机精品| 久久精品91蜜桃| 国产一区二区三区综合在线观看| 色播亚洲综合网| 国产成人欧美在线观看| 午夜日韩欧美国产| 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 国产1区2区3区精品| 国产私拍福利视频在线观看| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 国产精品久久久久久人妻精品电影| 在线播放国产精品三级| 国产一区二区三区视频了| 亚洲第一青青草原| 午夜福利在线观看吧| 欧美久久黑人一区二区| av免费在线观看网站| 国产蜜桃级精品一区二区三区| av福利片在线| 丝袜在线中文字幕| 给我免费播放毛片高清在线观看| 亚洲av五月六月丁香网| 免费观看人在逋| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 十八禁人妻一区二区| 国产av一区二区精品久久| 欧美激情高清一区二区三区| 久久久久国产一级毛片高清牌| 成年版毛片免费区| 成人亚洲精品一区在线观看| 色综合欧美亚洲国产小说| 久久婷婷成人综合色麻豆| cao死你这个sao货| 色综合婷婷激情| 99re在线观看精品视频| 麻豆av在线久日| 国产aⅴ精品一区二区三区波| 动漫黄色视频在线观看| 久久天堂一区二区三区四区| 最近最新免费中文字幕在线| 人人澡人人妻人| 久久国产精品影院| 岛国视频午夜一区免费看| 久99久视频精品免费| 国产成人啪精品午夜网站| 神马国产精品三级电影在线观看 | 欧美日韩黄片免| 在线观看免费视频网站a站| 亚洲精品久久国产高清桃花| 国产亚洲欧美精品永久| 九色亚洲精品在线播放| 日韩成人在线观看一区二区三区| 琪琪午夜伦伦电影理论片6080| 三级毛片av免费| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三| 国产成人av教育| 看黄色毛片网站| 午夜福利高清视频| 国产一区二区三区在线臀色熟女| 99久久综合精品五月天人人| 精品国产亚洲在线| 亚洲熟妇熟女久久| 国产麻豆69| 中国美女看黄片| 久久久久久亚洲精品国产蜜桃av| 亚洲一区中文字幕在线| 黄色女人牲交| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 久久热在线av| 韩国精品一区二区三区| 满18在线观看网站| av天堂久久9| 18禁观看日本| 色播亚洲综合网| 黄片播放在线免费| 人人妻人人澡欧美一区二区 | 精品不卡国产一区二区三区| 日本 欧美在线| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 不卡av一区二区三区| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 操美女的视频在线观看| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 国产精品综合久久久久久久免费 | 高清毛片免费观看视频网站| 可以在线观看毛片的网站| 亚洲国产毛片av蜜桃av| 又大又爽又粗| 看黄色毛片网站| av在线播放免费不卡| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 国产又爽黄色视频| 黄片大片在线免费观看| 一级毛片精品| 国产在线观看jvid| 日本 欧美在线| 国产成人精品久久二区二区免费| 一区二区日韩欧美中文字幕| 18禁黄网站禁片午夜丰满| 老司机在亚洲福利影院| 1024香蕉在线观看| 欧美日本亚洲视频在线播放| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3 | 日韩欧美在线二视频| 亚洲 国产 在线| 一进一出抽搐动态| 男女午夜视频在线观看| 91麻豆av在线| av在线播放免费不卡| 美女扒开内裤让男人捅视频| 日韩欧美一区二区三区在线观看| 最新美女视频免费是黄的| 亚洲成人国产一区在线观看| 看免费av毛片| 露出奶头的视频| 精品国产国语对白av| 叶爱在线成人免费视频播放| 亚洲国产精品合色在线| 欧美成人一区二区免费高清观看 | 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 国产单亲对白刺激| 日本 av在线| 久久久久精品国产欧美久久久| 免费av毛片视频| 久久人妻av系列| www.999成人在线观看| 日韩大尺度精品在线看网址 | 欧美日韩瑟瑟在线播放| av超薄肉色丝袜交足视频| 亚洲专区国产一区二区| tocl精华| 波多野结衣高清无吗| 操美女的视频在线观看| 亚洲国产看品久久| 午夜久久久久精精品| 1024香蕉在线观看| 国产激情欧美一区二区| 国产精品精品国产色婷婷| 香蕉久久夜色| 久久亚洲真实| 国产午夜福利久久久久久| 久9热在线精品视频| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 午夜福利成人在线免费观看| 国产91精品成人一区二区三区| 人人澡人人妻人| 久久久水蜜桃国产精品网| 99国产精品99久久久久| 香蕉丝袜av| 美女国产高潮福利片在线看| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 老司机午夜十八禁免费视频| 午夜福利欧美成人| 久久热在线av| videosex国产| 757午夜福利合集在线观看| 久久亚洲真实| 身体一侧抽搐| 午夜老司机福利片| 成人三级黄色视频| 中文字幕最新亚洲高清| 女生性感内裤真人,穿戴方法视频| 亚洲av片天天在线观看| 国产成人精品无人区| 麻豆成人av在线观看| 久久性视频一级片| 亚洲伊人色综图| 大码成人一级视频| 国产91精品成人一区二区三区| 怎么达到女性高潮| 久久中文字幕一级| 在线观看66精品国产| 男人的好看免费观看在线视频 | 日本黄色视频三级网站网址| 老熟妇乱子伦视频在线观看| 日韩大码丰满熟妇| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 他把我摸到了高潮在线观看| 日日爽夜夜爽网站| 国产一区二区激情短视频| 亚洲色图综合在线观看| 久久中文字幕一级| 侵犯人妻中文字幕一二三四区| tocl精华| 老熟妇仑乱视频hdxx| 很黄的视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 天堂影院成人在线观看| 成人免费观看视频高清| 日韩精品中文字幕看吧| 欧美乱妇无乱码| 国产精品久久久久久亚洲av鲁大| 校园春色视频在线观看| 亚洲熟妇中文字幕五十中出| av电影中文网址| av超薄肉色丝袜交足视频| 欧美亚洲日本最大视频资源| 国产97色在线日韩免费| 一进一出好大好爽视频| 成人精品一区二区免费| 69av精品久久久久久| 动漫黄色视频在线观看| 免费不卡黄色视频| 久久国产精品男人的天堂亚洲| 天堂影院成人在线观看| 久久久久久大精品| 精品福利观看| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 欧美大码av| av有码第一页| 久久精品亚洲熟妇少妇任你| 一本久久中文字幕| av天堂在线播放| 亚洲精品国产一区二区精华液| 精品乱码久久久久久99久播| 丝袜美足系列| 亚洲精华国产精华精| 免费在线观看影片大全网站| 久久草成人影院| 国产精品,欧美在线| 夜夜躁狠狠躁天天躁| 俄罗斯特黄特色一大片| 久久香蕉精品热| 黄色片一级片一级黄色片| 99re在线观看精品视频| 看免费av毛片| 最近最新中文字幕大全免费视频| 亚洲一区二区三区色噜噜| 十分钟在线观看高清视频www| 国产免费av片在线观看野外av| 一级毛片精品| 亚洲黑人精品在线| 日韩免费av在线播放| 午夜福利成人在线免费观看| 天堂√8在线中文| 欧美 亚洲 国产 日韩一| 亚洲人成电影观看| 国产精品久久久久久亚洲av鲁大| 色尼玛亚洲综合影院| 琪琪午夜伦伦电影理论片6080| 又黄又爽又免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 午夜福利18| 91大片在线观看| 大陆偷拍与自拍| 一级黄色大片毛片| 国产麻豆69| 丰满的人妻完整版| netflix在线观看网站| 色精品久久人妻99蜜桃| 黑人巨大精品欧美一区二区蜜桃| 国产激情久久老熟女| 亚洲精品国产精品久久久不卡| 久久精品亚洲精品国产色婷小说| 在线观看免费日韩欧美大片| 欧美日本亚洲视频在线播放| 两个人看的免费小视频| 国产亚洲精品久久久久5区| 激情视频va一区二区三区| 欧美黄色淫秽网站| 亚洲男人天堂网一区| 韩国av一区二区三区四区| 亚洲一码二码三码区别大吗| 亚洲一区中文字幕在线| 欧美午夜高清在线| cao死你这个sao货| 老司机在亚洲福利影院| 久久精品成人免费网站| 黑人巨大精品欧美一区二区mp4| 麻豆av在线久日| 欧美成人午夜精品| 久久九九热精品免费| 一区二区三区高清视频在线| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三区在线| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色 | 国产99白浆流出| 精品熟女少妇八av免费久了| 国产精品影院久久| 亚洲成国产人片在线观看| 一a级毛片在线观看| 正在播放国产对白刺激| 国产成年人精品一区二区| 国产成人免费无遮挡视频| 黄色视频,在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 男女下面插进去视频免费观看| 亚洲av成人一区二区三| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 老司机深夜福利视频在线观看| 男女下面插进去视频免费观看| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 不卡一级毛片| 国产极品粉嫩免费观看在线| 久久人人精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 久久精品aⅴ一区二区三区四区| 两个人看的免费小视频| 色综合站精品国产| 国产免费男女视频| 夜夜爽天天搞| 亚洲中文字幕一区二区三区有码在线看 | 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 999久久久国产精品视频| av片东京热男人的天堂| 巨乳人妻的诱惑在线观看| 级片在线观看| 久久精品影院6| 欧美性长视频在线观看| 一进一出抽搐动态| 久久中文看片网| 欧美精品啪啪一区二区三区| 国产成人av教育| 精品乱码久久久久久99久播| 久久久久国产精品人妻aⅴ院| 女警被强在线播放| 免费av毛片视频| 欧美 亚洲 国产 日韩一| 国产国语露脸激情在线看| 日韩欧美三级三区| 亚洲午夜精品一区,二区,三区| 老司机午夜十八禁免费视频| 中文字幕人妻丝袜一区二区| 亚洲一区中文字幕在线| 亚洲欧美激情综合另类| www.999成人在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区高清亚洲精品| 欧美激情极品国产一区二区三区| 一级a爱视频在线免费观看| 性欧美人与动物交配| 亚洲中文av在线| 久久精品91蜜桃| 国产成人啪精品午夜网站| 香蕉丝袜av| 亚洲 国产 在线|