• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion of chemically reactive species in Casson fluid flow over an unsteady permeable stretching surface*

    2013-06-01 12:29:58MUKHOPADHYAYSwati

    MUKHOPADHYAY Swati

    Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India, E-mail: swati_bumath@yahoo.co.in

    VAJRAVELU Kuppalapalle

    Department of Mathematics, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 - 1364, USA

    Diffusion of chemically reactive species in Casson fluid flow over an unsteady permeable stretching surface*

    MUKHOPADHYAY Swati

    Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India, E-mail: swati_bumath@yahoo.co.in

    VAJRAVELU Kuppalapalle

    Department of Mathematics, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 - 1364, USA

    (Received May 30, 2012, Revised October 22, 2012)

    In this paper we investigate the two-dimensional flow of a non-Newtonian fluid over an unsteady stretching permeable surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First-order constructive/destructive chemical reaction is considered. With the help of a shooting method, numerical solutions for a class of nonlinear coupled differential equations subject to appropriate boundary conditions are obtained. For the steady flow, the exact solution is obtained. The flow features and the mass transfer characteristics for different values of the governing parameters are analyzed and discussed in detail.

    chemical reaction, Casson fluid, mass transfer, unsteady stretching, suction/injection

    Introduction

    Processes involving the effects of mass transfer have attracted the attention of researchers due to applications in chemical processing equipments[1]. The driving force for mass transfer is the difference in concentration. There are some fluids which react chemically with some ingredients present in them.

    In the recent years, the boundary-layer flows of non-Newtonian fluids have been given considerable attention due to ever increasing engineering applications. In order to obtain a thorough cognition of non-Newtonian fluids and their various applications, it is necessary to study their flow behaviors. It is well known that the mechanics of non-Newtonian fluids present a special challenge to engineers, physicists and mathematicians. The non-linearity can manifest itself in a variety of ways in many fields, such as food processing, drilling operations and bio-engineering. The Navier-Stokes theory is inadequate for such fluids and no single constitutive equation is available in the literature which exhibits the properties of all fluids. Because of the complexity of these fluids, there is not a single constitutive equation which exhibits all properties of such non-Newtonian fluids. Thus a number of non-Newtonian fluid models have been proposed. In literature, the majority of non-Newtonian fluid models are concerned with simple models like the power-law and grade two or grade three fluids[2,3]. These simple fluid models have shortcomings that render to results not having accordance with fluid flows in the reality. The power-law model has a vast usage in modeling fluids with shear-dependent viscosity but it cannot predict the effects of elasticity. The fluids of grade two or grade three can account for the effects of elasticity but the viscosity in these models is not shear-dependent, and also they cannot predict the effects of stress relaxation. A subclass of rate type fluids namely the Maxwell model can predict the stress relaxation. This rheological model, also, excludes the complicating effects of shear-dependent viscosity from any boundary-layer analysis. There is another fluid model for non-Newtonian fluid, namely the Casson fluid, examples of which include jelly, tomato sauce, honey, soup, concentrated fruit juices, etc.. Human blood canalso be treated as a kind of Casson fluid. Due to the presence of several substances like, protein, fibrinogen and globulin in aqueous base plasma, human red blood cells can form a chainlike structure, known as aggregates or rouleaux. If the rouleaux behaves like a plastic solid then there exists a yield stress that can be identified with the constant yield stress in the Casson fluid. The Casson fluid can be defined as a shear thinning liquid which is assumed to have an infinite viscosity at zero rates of shear, a yield stress below which no flow occurs and a zero viscosity at an infinite rate of shear. Boyd et al.[4]investigated the Casson fluid flow for the steady and oscillatory blood flows.

    In most of the above studies, the flow, temperature, and the concentration fields are considered to be at steady state. However, in practice, the flow, heat, and mass transfer fields are unsteady: This could be due to a sudden stretching of the flat sheet or due to a step change in the temperature of the sheet. When the stretching velocity and the concentration (surface temperature) of the sheet vary with time, not much research is being done. Some authors[5-7]studied the problem for unsteady isothermal stretching surface by using a similarity method to transform governing time-dependent boundary layer equations into a set of ordinary differential equations. Sharidan et al.[8]studied the unsteady flow and heat transfer over a stretching sheet in a viscous and incompressible fluid. Recently, Mukhopadhyay[9,10],Chamkha et al.[11]obtained similarity solutions for unsteady flow and heat transfer over a stretching sheet under different conditions. Bhattacharyya et al.[12]analyzed the effects of slip on unsteady boundary-layer stagnation point flow past a stretching sheet. Of late, Hayat et al.[13]discussed the three-dimensional flow of Jeffery fluid past a stretching surface.

    The process of suction and injection (blowing) is also important in many engineering applications such as in the design of thrust bearing and radial diffusers, and thermal oil recovery. Suction is applied to chemical processes to remove reactants. Blowing is used to add reactants, to cool the surfaces, to prevent corrosion or scaling and to reduce the drag. Injection or withdrawal of fluid through a porous heated or cooled bounding wall is of practical interest in problems involving film cooling, control of boundary-layers, and so forth.

    Despite the overwhelming applications and frequent occurrence of non-Newtonian behavior in industry and technology, not much attention has been paid so far to analyze the Casson fluid flow and mass transfer past an unsteady stretching surface. Motivated by this, an attempt is made in this paper to extend the work of Andersson et al.[5]for Casson fluid flow and mass transfer. With the help of similarity transformation the governing partial differential equations are transformed into the ordinary differential equations, and the reduced ordinary differential equations are then solved numerically using a shooting method. Exact solution of the momentum equation for the steady case is also obtained. The effects of unsteadiness parameter, the Casson parameter, the suction/injection parameter, the Schmidt number and the reaction rate parameter on the velocity and the concentration fields are investigated and analyzed with the help of their graphical representations.

    1. Equations of motion

    Consider two-dimensional laminar boundarylayer flow and mass transfer of an incompressible Casson fluid over an unsteady stretching sheet. The fluid flow and mass transfer start at =0t. The sheet emerges out of a slit at the origin (=0x, =0y) and moves with the velocity U(x,t)=bx/(1-αt) where b>0, α≥0 are constants with b the initial stretching rate.

    The rheological equation of state for an isotropic and incompressible flow of a Casson fluid is

    Here π=eijeijand eijis the (i,j)thcomponent of the deformation rate, π is the product of the component of deformation rate with itself,cπ is a critical value of this product based on the non-Newtonian model,Bμ is plastic dynamic viscosity of the non-Newtonian fluid, andyp is the yield stress of the fluid. LetwC be the concentration at the sheet and C∞is the concentration far away from the sheet. Also, let there be a firstorder homogeneous chemical reaction of species with reaction rate constant1k.

    Under these assumptions, the continuity, momentum[14]and concentration equations are, in the usual notations,

    where u and υ are the velocity components in the x and y directions, ν is the kinematic viscosity of the fluid,is parameter of the Casson fluid, C is the concentration, D is the diffusion coefficient of the diffusing species in the fluid, k(t)=k0/ (1)tα- is the time-dependent reaction rate, 0k>stands for destructive reaction whereas 0k< stands for constructive reaction, and0k is a constant.

    1.1 Boundary conditions

    The appropriate boundary conditions for the problem are

    where0C is a (positive or negative) reference concentration at x=0. The expressions for U(x,t),Cw(x,t), k(t),υw(t) are valid for time t<α-1.

    1.2 Method of solution

    By introducing u=?ψ/?y, υ=-?ψ/?x and φ=(C-C∞)/(Cw-C∞) (ψ being stream function) and defining

    the governing equations can be reduced to

    where =/Abα is the unsteadiness parameter, =Sc ν/D is the Schmidt number, and R=k0/b is the reaction rate parameter.

    The boundary conditions (4) and (5) then become

    2. Exact solution for a special case

    The exact solution of Eq.(6) subject to the corresponding boundary conditions for steady case, i.e., when =A0, is given by

    3. Method of numerical solutions

    The differential Eqs.(6) and (7) along with boundary conditions (8)-(9) are solved by converting to an initial value problem. We set

    In order to integrate Eqs.(10) and (11) as an initial value problem we require a value for (0)p. That is, we need (0)f′ and (0)φ′, but no such values are given. The most important factor of shooting method is to choose the appropriate finite values of η∞. In order to determine η∞for the boundary value problem, we start with some initial guess values for a particular set of physical parameters to obtain (0)f′ and (0)φ′. The solution processes will be repeated with another appropriate value of η∞until two successive values of f′(0) and φ′(0) differ only by the specified significant digit. The last value of η∞is finally chosen to be the most appropriate value of the limit η∞for that particular set of parameters. The value of η∞may changefor another set of physical parameters[16]. Once the finite value of η∞is determined, the integration is carried out. We compare the calculated values for f′and φ at =η10 say with the given boundary conditions f′(10)=0 and φ(10)=0, and then adjust the estima- ted values of (0)f′ and (0)φ′ to give a better appro- ximation for the solution. We take the series of values for (0)f′ and (0)φ′, and apply the fourth-order cla- ssical Runge-Kutta method with the step-size =h0.01. The above procedure is repeated until we get the resu- lts up to the desired degree of accuracy 10–5.

    4. Results and discussion

    In order to validate the numerical method used in this study, a comparison is made with available results of Sharidan et al.[8]and Chamkha et al.[11], corresponding to the skin-friction coefficient (0)f′ for the unsteady flow of viscous incompressible fluid (see Table 1), and found a very good agreement.

    Table 1 The values of (0)f′ for various values of unsteadiness parameter A for Newtonian fluid

    Fig.1 Stream function ()fη and velocity ()fη′ with η for steady motion

    Moreover, to verify the accuracy of the present numerical scheme, a comparison of the results corresponding to the stream function profiles ()fη and velocity profiles ()fη′ with the exact solution for steady motion (=0)A is presented in Fig.1, and found an excellent agreement. Furthermore, to analyze the behavior of the velocity and concentration fields for Casson fluid, a comprehensive numerical computation is carried out for various values of the parameters, and the results are presented in Figs.2-7.

    Fig.2(a) Velocity profiles for variable unsteadiness parameter A in the presence of suction

    Fig.2(b) Velocity profiles for variable unsteadiness parameter A in the presence of blowing

    Fig.2(c) Concentration profiles for variable unsteadiness parameter A in presence of suction/blowing

    Figure 2(a) exhibits the velocity profiles for several values of the unsteadiness parameter A in the presence of suction. It is seen that the velocity along the sheet decreases initially with the increase in the unsteadiness parameter A. That is, there is a reduction in the thickness of the momentum boundary layer near the wall, but away from the wall, the fluid velocity increases with increasing unsteadiness. Similar behaviour of velocity field is also noted in case of blowing (Fig.2(b)).

    Figure 2(c) represents the effects of the unsteadiness parameter on the concentration distribution in thepresence of suction/injection. From this figure, it is noticed that the concentration at a point is found to decrease significantly with increasing unsteadiness parameter. However, the rate of mass transfer decreases with increasing A. As the unsteadiness parameter A increases, less solute is transferred from the sheet to the fluid, hence, the concentration ()φη decreases (Fig.2(c)). Since the fluid flow is caused solely by the stretching sheet, and the sheet surface concentration is higher than free stream concentration, the velocity and concentration decrease with increasing η. It is important to note that the rate of mass transfer is much faster for higher values of the unsteadiness parameter, whereas it may take longer time for steady flow.

    Fig.3(a) Velocity profiles for variable values of Casson parameter β for steady/unsteady motion in the absence of suction/blowing

    Fig.3(b) Concentration profiles for variable values of Casson parameter β for steady/unsteady motion in the absence of suction/blowing

    The effects of Casson parameter β on the velocity and concentration profiles for both steady and unsteady flows in the absence of suction/injection are clearly exhibited in Figs.3(a)-3(b) respectively. For both steady and unsteady flows, the effect of increasing values of β is to reduce the velocity and hence the boundary-layer thickness decreases (Fig.3(a)). It is observed that ()fη′ and the associated boundarylayer thickness are decreasing functions of β. The velocity curves in Fig.3(a) show that the rate of transport is considerably reduced with the increase of β. The effect of increasing β is to enhance the concentration field for both steady and unsteady flows (Fig.3(b)). This effect is more pronounced for steady motion. The thickening of the solute boundary-layer occurs due to the increase in the elasticity stress parameter. It can also be seen from Fig.3(a) that the momentum boundary-layer thickness decreases as β increases, and hence results in an increase in the absolute value of the velocity gradient at the surface.

    Fig.3(c) Velocity profiles for variable values of Casson parameter β for unsteady motion in presence of suction/blowing

    Fig.3(d) Concentration profiles for variable values of Casson parameter β for unsteady motion in presence of suction/blowing

    Figures 3(c)-3(d) exhibit the changes in the velocity and the concentration fields for different values of the Casson parameter in the presence suction/injection for unsteady motion. Here also, fluid velocity decreases with increasing β for both cases of suction and injection (Fig.3(c)). Fluid velocity is much suppressed in the case of suction than that in the case of injection. However, the concentration increases in this case (Fig.3(d)).

    The effects of suction/blowing parameter S on velocity and concentration fields are presented in Figs.4(a)-4(b) respectively. With increasing suction (0)S>, fluid velocity is found to decrease (Fig.4(a)). That is, the effect of suction is to decrease the fluidvelocity in the boundary-layer and in turn, the wallshear stress decreases. The increase in suction causes thinning of the boundary-layer. However, the injection (0)S< has the opposite effect (Fig.4(a)). Concentration at a point is found to decrease with increasing S (Fig.4(b)). This causes a decrease in the rate of mass transfer. Quite opposite is the case for blowing (S<0). The solute boundary layer is thinner in the case of suction (0)S> as compared to the case of impermeability (=0)S.

    Fig.4(a) Velocity profiles for variable values of suction/blowing parameter S for unsteady motion

    Fig.4(b) Concentration profiles for variable values of suction/ blowing parameter S for unsteady motion

    Figures 5(a)-5(b) display the effects of reaction rate parameter R on concentration field in the presence suction and blowing respectively. In the case of constructive chemical reaction (0)R<, concentration at a point on the sheet increases with increasing (absolute) values of the reaction rate parameter R for both cases of suction and blowing (Figs.5(a)-5(b)), whereas for destructive chemical reaction (0)R>, the opposite behavior is noted, That is, the reactive solute distribution decreases with increasing R. In other words, the reaction-rate parameter is a decelerating agent in this case (Figs.5(a)-5(b)). As a result, the solute boundary layer becomes thinner. This is due to the fact that the conversion of the species takes place as a result of chemical reaction and thereby reduces the concentration in the boundary-layer (Figs.5(a)-5(b)). This effect is more pronounced in case of the blowing than that of the suction. The solute boundary-layer decreases in the case of destructive chemical reaction.

    Fig.5(a) Concentration profiles for variable values of reaction rate parameter R in presence of suction

    Fig.5(b) Concentration profiles for variable values of reaction rate parameter R in presence of blowing

    The behavior of the concentration profiles for the variation of Schmidt number in the presence of suction and blowing can be found from Figs.6(a)-6(b) respectively. For both cases of suction and blowing, the concentration decrease with increasing Sc (Figs.5(a)-(b)). Moreover, the solute boundary-layer thickness decreases with increasing Schmidt numbers. The wall concentration gradient is negative for all values of the Schmidt number which means that the mass is always transferred from the surface to the ambient fluid. An increase in the Schmidt number reduces the solute boundary-layer thickness since the Schmidt number is inversely proportional to the diffusion coefficient D. Concentration field is much suppressed in the presence of suction than that of blowing.

    Furthermore, the effects of unsteadiness parameter A and the Casson parameter β on (0)f′ (related to skin-friction coefficient) and (0)φ′ (related to mass transfer coefficient) in the absence of suction/blowing are presented in Figs.7(a) and 7(b). The magnitude of f′(0) decreases with increasing unsteadiness parameter A and also with the Casson parameter β, but the magnitude of mass transfer rate at the surface ((0))φ′decreases with β, increases with A. A drop in the skin friction as observed in this investigation has important applications to free coating operations, elastic properties of the coating formulations. This means that less force may be needed to pull a moving sheet at a given withdrawal velocity or equivalently higher withdrawal speeds can be achieved for a given driving force resulting from the increase in the rate of production.

    Fig.6(a) Concentration profiles for variable values of Schmidt number Sc in presence of suction

    Fig.6(b) Concentration profiles for variable values of Schmidt number Sc in presence of blowing

    Fig.7(a) Variation of (0)f′ related to skin-friction coefficient with Casson parameter β for three values of unsteadiness parameter A

    Figures 7(c)-7(d) show the effects of suction/blowing on (0)f′ and (0)φ′. The magnitudes of both f′(0) and φ′(0) increase with increasing values of S. From Figs.7(a) and 7(c), it is very clear that f′(0) is negative. Physically, the negative sign of f′(0) implies that surface exerts a drag force on the fluid and positive sign implies the opposite. Wall concentration gradient ((0))φ′ decreases with increasing Sc, but increases in the case of constructive chemical reaction than that of destructive one (Fig.7(e)).

    Fig.7(b) Variation of mass transfer coefficient with Casson parameter β for three values of unsteadiness parameter A

    Fig.7(c) Variation of (0)f′ related to skin-friction coefficient with Casson parameter β for three values of suction/ blowing parameter S

    Fig.7(d) Variation of mass transfer coefficient with Casson parameter β for three values of suction/blowing parameter S

    Fig.7(e) Variation of mass transfer coefficient with Schmidt number Sc for three values of reaction rate parameter R

    5. Conclusion

    The present study provides the numerical solutions for the boundary-layer flow and mass transfer of the Casson fluid over an unsteady permeable stretching surface in the presence of first order constructive/destructive chemical reaction. Fluid velocity decreases initially due to the increase in the unsteadiness parameter. In this case, the concentration decreases significantly. The effect of increasing values of the Casson parameter is to decrease the velocity field whereas the concentration is enhanced with increasing Casson parameter. The Schmidt number can be used to increase the rate of mass transfer. Moreover, an increase in the Schmidt number reduces the solute boundary-layer thickness. The solute boundary-layer thickness decreases in case of destructive chemical reaction.

    Acknowledgement

    We thank the reviewers for their constructive and helpful comments that led to definite improvement in the paper.

    [1] CORTELL R. MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(8): 721-728.

    [2] SIDDIQUI A. M., ZEB A. and GHORI Q. K. et al. Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates[J]. Chaos, Solitons and Fractals, 2008, 36(1): 182-192.

    [3] SAJID M., AHMAD I. and HAYAT T. et al. Unsteady flow and heat transfer of a second grade fluid over a stretching sheet[J]. Communications in Nonlinear Science Numerical Simulation, 2009, 14(1): 96-108.

    [4] BOYD J., BUICK J. M. and GREEN S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flow using the lattice Boltzmann method[J]. Physics of Fluids, 2007, 19(9): 093103.

    [5] ANDERSSON H. I., AARSETH J. B. and DANDAPAT B. S. Heat transfer in a liquid film on an unsteady stretching surface[J]. International Journal of Heat and Mass Transfer, 2000, 43(1): 69-74.

    [6] DANDAPAT B. S., SANTRA B. and VAJRAVELU K. The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet[J]. International Journal of Heat and Mass Transfer, 2007, 50(5-6): 991-996.

    [7] ALI M. E., MAGYARI E. Unsteady fluid and heat flow induced by a submerged stretching surface while its steady motion is slowed down gradually[J]. International Journal of Heat and Mass Transfer, 2007, 50(1-2): 188-195.

    [8] SHARIDAN S., MAHMOOD T. and POP I. Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet[J]. International Journal of Applied Mechanics Engineering, 2006, 11(3): 647-654.

    [9] MUKHOPADHYAY S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium[J]. International Journal of Heat and Mass Transfer, 2009, 52(13-14): 3261-3265.

    [10] MUKHOPADHYAY S. Effects of slip on unsteady mixed convective flow and heat transfer past a porous stretching surface[J]. Nuclear Engineering Design, 2011, 241(8): 2660-2665.

    [11] CHAMKHA A. J., ALY A. M. and MANSOUR M. A. Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects[J]. Chemical Engineering Communnications, 2010, 197(6): 846-858.

    [12] BHATTACHARYYA K., MUKHOPADHYAY S. and LAYEK G. C. Slip effects on an unsteady boundary layer stagnation-point flow and heat transfer towards a stretching sheet[J]. Chinese Physics Letters, 2011, 28(9): 094702.

    [13] HAYAT T., AWAIS M. and SAFDAR A. et al. Unsteady three dimensional flow of couple stress fluid over a stretching surface with chemical reaction[J]. Non-Linear Analysis: Modeling and Control, 2012, 17(1): 47-59.

    [14] MUSTAFA M., HAYAT T. and POP I. et al. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate[J]. Heat Transfer–Asian Research, 2011, 40(6): 563-576.

    [15] MUKHOPADHYAY S., VAJRAVELU K. Effects of transpiration and internal heat generation/absorption on the unsteady flow of a Maxwell fluid at a stretching surface[J]. Journal of Applied Mechanics, 2012, 79(4): 044508.

    [16] MUKHOPADHYAY S. Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity [J], International Journal of Heat and Mass Transfer, 2009, 52(21-22): 5213-5217.

    10.1016/S1001-6058(11)60400-X

    * Biography: MUKHOPADHYAY Swati (1975-), Female, Ph. D., Assistant Professor

    VAJRAVELU Kuppalapalle, E-mail: kuppalapalle.vajravelu@ucf.edu

    男女午夜视频在线观看| 免费在线观看成人毛片| 欧美最黄视频在线播放免费| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| 国产午夜精品久久久久久| 国产精品av久久久久免费| av国产免费在线观看| 中文字幕最新亚洲高清| 亚洲人成网站高清观看| 欧美高清成人免费视频www| 在线观看舔阴道视频| 天堂av国产一区二区熟女人妻| 一本综合久久免费| 变态另类成人亚洲欧美熟女| 亚洲精品在线美女| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 国产v大片淫在线免费观看| 中文资源天堂在线| 欧美av亚洲av综合av国产av| 两个人视频免费观看高清| 欧美3d第一页| 亚洲专区字幕在线| 91字幕亚洲| 亚洲熟妇熟女久久| 很黄的视频免费| 窝窝影院91人妻| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| 欧美成人一区二区免费高清观看 | 色老头精品视频在线观看| 久久久国产欧美日韩av| 亚洲欧美日韩卡通动漫| 亚洲第一电影网av| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 禁无遮挡网站| 淫妇啪啪啪对白视频| 午夜两性在线视频| 变态另类丝袜制服| aaaaa片日本免费| 小蜜桃在线观看免费完整版高清| 国产精品影院久久| 听说在线观看完整版免费高清| 熟女人妻精品中文字幕| 中文资源天堂在线| 最新中文字幕久久久久 | 中文字幕高清在线视频| 久久久国产欧美日韩av| 亚洲aⅴ乱码一区二区在线播放| 欧美丝袜亚洲另类 | 国产一区二区激情短视频| 亚洲欧美精品综合一区二区三区| 国产综合懂色| 夜夜躁狠狠躁天天躁| 成人永久免费在线观看视频| 亚洲专区国产一区二区| 亚洲 国产 在线| 色噜噜av男人的天堂激情| 国产精品一及| 国产精品av久久久久免费| 十八禁人妻一区二区| xxxwww97欧美| 精品久久久久久久久久久久久| 香蕉久久夜色| 亚洲中文字幕一区二区三区有码在线看 | 天天一区二区日本电影三级| 国产精品久久久av美女十八| 麻豆av在线久日| 一本精品99久久精品77| 每晚都被弄得嗷嗷叫到高潮| 90打野战视频偷拍视频| 久久这里只有精品19| 国产亚洲精品综合一区在线观看| av国产免费在线观看| 久久久久久久精品吃奶| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 露出奶头的视频| xxxwww97欧美| www日本在线高清视频| 一a级毛片在线观看| 男女之事视频高清在线观看| 久久国产精品人妻蜜桃| 嫩草影视91久久| 俄罗斯特黄特色一大片| 蜜桃久久精品国产亚洲av| 免费av不卡在线播放| 免费av毛片视频| 最近最新免费中文字幕在线| 国产精品电影一区二区三区| 最好的美女福利视频网| 久久天躁狠狠躁夜夜2o2o| 欧美大码av| 亚洲国产高清在线一区二区三| 88av欧美| 99久久国产精品久久久| 国产精品一区二区三区四区免费观看 | 欧美一级a爱片免费观看看| 国产一区二区三区视频了| 国产精品一区二区三区四区久久| 亚洲人成伊人成综合网2020| 成人国产综合亚洲| 国产精品一区二区三区四区久久| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av香蕉五月| 久久久久九九精品影院| 最新美女视频免费是黄的| 麻豆久久精品国产亚洲av| 国产三级黄色录像| 色综合欧美亚洲国产小说| 国产精品99久久99久久久不卡| 国产精品一及| 亚洲成人久久爱视频| 天堂网av新在线| 精品电影一区二区在线| 免费人成视频x8x8入口观看| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 黑人欧美特级aaaaaa片| 亚洲国产精品sss在线观看| 69av精品久久久久久| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 久久久国产精品麻豆| 国产成人福利小说| 叶爱在线成人免费视频播放| 亚洲欧美日韩高清专用| 亚洲国产精品久久男人天堂| 一个人看视频在线观看www免费 | 国产一区二区三区视频了| 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 国产成人aa在线观看| 99热这里只有是精品50| 成年版毛片免费区| 久久久国产欧美日韩av| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 脱女人内裤的视频| www日本黄色视频网| 国产精品久久视频播放| 9191精品国产免费久久| 国产又色又爽无遮挡免费看| 成人性生交大片免费视频hd| 免费无遮挡裸体视频| 国产91精品成人一区二区三区| 亚洲欧美日韩高清专用| 欧美日韩瑟瑟在线播放| 久久中文看片网| 久99久视频精品免费| 亚洲一区二区三区不卡视频| 欧美午夜高清在线| 国产亚洲欧美98| h日本视频在线播放| 久久精品影院6| aaaaa片日本免费| 免费无遮挡裸体视频| 中文字幕人妻丝袜一区二区| 久久久久性生活片| 日本黄色视频三级网站网址| 一夜夜www| 国产高清videossex| 久久久久久九九精品二区国产| 叶爱在线成人免费视频播放| 午夜精品一区二区三区免费看| 此物有八面人人有两片| 国产高清有码在线观看视频| 免费一级毛片在线播放高清视频| 午夜a级毛片| 精品欧美国产一区二区三| 韩国av一区二区三区四区| 午夜a级毛片| 精品一区二区三区视频在线 | 日韩欧美精品v在线| 两个人视频免费观看高清| 国产成人欧美在线观看| 国产精品久久久久久人妻精品电影| 一个人免费在线观看电影 | 天天一区二区日本电影三级| 亚洲精品在线观看二区| 床上黄色一级片| 精品一区二区三区视频在线 | 香蕉久久夜色| 午夜福利18| 免费看美女性在线毛片视频| 国产日本99.免费观看| 色综合婷婷激情| 男人舔奶头视频| cao死你这个sao货| 成人精品一区二区免费| 国产欧美日韩一区二区三| 国产美女午夜福利| 黄色日韩在线| 午夜亚洲福利在线播放| 高潮久久久久久久久久久不卡| 亚洲精品一区av在线观看| 嫩草影院入口| 国产午夜精品论理片| 国产精品一及| 国产成人欧美在线观看| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 九色国产91popny在线| 男人舔女人的私密视频| 久久性视频一级片| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 亚洲第一欧美日韩一区二区三区| 亚洲 国产 在线| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 黄色 视频免费看| 深夜精品福利| 可以在线观看的亚洲视频| 一区二区三区国产精品乱码| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 最新美女视频免费是黄的| 国产极品精品免费视频能看的| 国产成人福利小说| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 18禁国产床啪视频网站| 国产精品久久久久久人妻精品电影| 桃色一区二区三区在线观看| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 成人性生交大片免费视频hd| 国产1区2区3区精品| 午夜免费成人在线视频| 一夜夜www| 日本三级黄在线观看| 欧美日韩综合久久久久久 | 日韩免费av在线播放| 亚洲国产欧美人成| 美女 人体艺术 gogo| 91在线观看av| 成人三级黄色视频| 色播亚洲综合网| 精品久久久久久成人av| www日本在线高清视频| 最新中文字幕久久久久 | 亚洲avbb在线观看| 精品福利观看| 国产免费av片在线观看野外av| 久久久久国内视频| 夜夜躁狠狠躁天天躁| www.自偷自拍.com| 久久久久久大精品| 国产v大片淫在线免费观看| 黄色成人免费大全| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 国产 一区 欧美 日韩| 不卡一级毛片| 国产午夜精品久久久久久| 欧美色欧美亚洲另类二区| 免费无遮挡裸体视频| 97超视频在线观看视频| 日本免费a在线| 99久久精品热视频| 香蕉丝袜av| 桃色一区二区三区在线观看| 757午夜福利合集在线观看| 草草在线视频免费看| 桃红色精品国产亚洲av| 中文字幕久久专区| 国产三级中文精品| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 在线a可以看的网站| 亚洲18禁久久av| 精品无人区乱码1区二区| 搞女人的毛片| 亚洲片人在线观看| 好男人在线观看高清免费视频| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 久久九九热精品免费| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 国产探花在线观看一区二区| 亚洲av免费在线观看| 熟女少妇亚洲综合色aaa.| 国产精品影院久久| 99热6这里只有精品| 国产一区二区三区视频了| 午夜福利在线观看吧| 日韩国内少妇激情av| 精品久久久久久久毛片微露脸| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 国产欧美日韩一区二区精品| 国产极品精品免费视频能看的| 色精品久久人妻99蜜桃| 黄色日韩在线| 麻豆av在线久日| 国产毛片a区久久久久| 国产精品av久久久久免费| 国产精品野战在线观看| 国产黄a三级三级三级人| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 国产高清三级在线| 99精品欧美一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 久久这里只有精品中国| 日本在线视频免费播放| 久久精品夜夜夜夜夜久久蜜豆| 欧美黄色淫秽网站| av中文乱码字幕在线| 国产精品美女特级片免费视频播放器 | 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 村上凉子中文字幕在线| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费| 欧美色视频一区免费| 在线a可以看的网站| 亚洲黑人精品在线| 欧美不卡视频在线免费观看| 最近最新中文字幕大全免费视频| 国产精品国产高清国产av| 久久久久久国产a免费观看| 很黄的视频免费| 亚洲精品久久国产高清桃花| 观看免费一级毛片| 色哟哟哟哟哟哟| 在线观看美女被高潮喷水网站 | av在线蜜桃| 香蕉丝袜av| 中文字幕最新亚洲高清| 神马国产精品三级电影在线观看| 免费人成视频x8x8入口观看| 看免费av毛片| 欧美av亚洲av综合av国产av| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 国产成年人精品一区二区| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 亚洲av成人精品一区久久| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 88av欧美| 窝窝影院91人妻| 床上黄色一级片| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 丁香六月欧美| 视频区欧美日本亚洲| 看免费av毛片| 亚洲无线在线观看| 99久久99久久久精品蜜桃| 露出奶头的视频| 亚洲av片天天在线观看| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 国产精品精品国产色婷婷| 国产亚洲精品av在线| 露出奶头的视频| 亚洲午夜理论影院| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍图片 自拍| 男女之事视频高清在线观看| 白带黄色成豆腐渣| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 黄频高清免费视频| 99精品在免费线老司机午夜| 琪琪午夜伦伦电影理论片6080| 最新美女视频免费是黄的| 日韩欧美 国产精品| 日本免费a在线| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 国内精品久久久久久久电影| 女人高潮潮喷娇喘18禁视频| 99久久综合精品五月天人人| 九九久久精品国产亚洲av麻豆 | 日韩成人在线观看一区二区三区| 中出人妻视频一区二区| 国产精品av视频在线免费观看| 日本在线视频免费播放| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 欧美激情在线99| 国语自产精品视频在线第100页| 亚洲精华国产精华精| 99国产精品一区二区三区| 国产欧美日韩精品亚洲av| 最新美女视频免费是黄的| 97超视频在线观看视频| 丁香六月欧美| 免费大片18禁| 国语自产精品视频在线第100页| 国模一区二区三区四区视频 | 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 久久这里只有精品中国| 精品一区二区三区av网在线观看| 久久精品综合一区二区三区| 特级一级黄色大片| 色精品久久人妻99蜜桃| av天堂中文字幕网| 天堂√8在线中文| 国产成人欧美在线观看| 18禁观看日本| 免费观看的影片在线观看| 国产精品乱码一区二三区的特点| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| av欧美777| 久久久国产成人精品二区| 好男人电影高清在线观看| 一本一本综合久久| 黄色成人免费大全| 狠狠狠狠99中文字幕| 久久久久久久久中文| 长腿黑丝高跟| 制服人妻中文乱码| 九九久久精品国产亚洲av麻豆 | 亚洲精品一卡2卡三卡4卡5卡| 搡老妇女老女人老熟妇| 真人做人爱边吃奶动态| 亚洲专区中文字幕在线| 亚洲美女黄片视频| 欧美成人一区二区免费高清观看 | 亚洲无线观看免费| 国产精品一区二区三区四区久久| 欧美中文综合在线视频| 91av网一区二区| 国内精品久久久久久久电影| 1000部很黄的大片| 青草久久国产| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 久久天躁狠狠躁夜夜2o2o| 国产免费男女视频| 俄罗斯特黄特色一大片| 少妇的逼水好多| 久久久水蜜桃国产精品网| 日日摸夜夜添夜夜添小说| 免费大片18禁| 日本成人三级电影网站| 国产成人aa在线观看| 久久久国产欧美日韩av| 天堂影院成人在线观看| 亚洲中文av在线| 搡老熟女国产l中国老女人| 亚洲国产精品成人综合色| 成人特级黄色片久久久久久久| 在线观看免费午夜福利视频| 美女免费视频网站| 国产 一区 欧美 日韩| 成年女人永久免费观看视频| 成人高潮视频无遮挡免费网站| 日韩高清综合在线| 精品电影一区二区在线| 成人三级做爰电影| 中文字幕人妻丝袜一区二区| 一本综合久久免费| 国产成人影院久久av| 999久久久国产精品视频| 国产成人欧美在线观看| 黄片小视频在线播放| 美女被艹到高潮喷水动态| 观看美女的网站| 国产亚洲av高清不卡| 18禁黄网站禁片午夜丰满| 18禁黄网站禁片免费观看直播| 制服人妻中文乱码| 天天添夜夜摸| 在线a可以看的网站| 操出白浆在线播放| 国产又色又爽无遮挡免费看| 精品国产乱子伦一区二区三区| 亚洲狠狠婷婷综合久久图片| av天堂中文字幕网| 日本一二三区视频观看| 日韩人妻高清精品专区| 久久这里只有精品19| 成人三级黄色视频| 国产av一区在线观看免费| 欧美黑人欧美精品刺激| 少妇的逼水好多| 欧美日韩乱码在线| 手机成人av网站| 欧美成人一区二区免费高清观看 | 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 国产男靠女视频免费网站| 性欧美人与动物交配| 亚洲美女视频黄频| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 精品日产1卡2卡| 日韩欧美 国产精品| 欧美日本亚洲视频在线播放| 欧美成狂野欧美在线观看| 成年版毛片免费区| 欧美性猛交╳xxx乱大交人| 脱女人内裤的视频| 他把我摸到了高潮在线观看| 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 在线观看免费午夜福利视频| 国产99白浆流出| 老鸭窝网址在线观看| 国内精品一区二区在线观看| 日本免费a在线| 香蕉久久夜色| 露出奶头的视频| 一区二区三区国产精品乱码| 99在线人妻在线中文字幕| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 婷婷丁香在线五月| 欧美日本亚洲视频在线播放| 精品午夜福利视频在线观看一区| 国产成年人精品一区二区| 特级一级黄色大片| 午夜精品在线福利| av国产免费在线观看| 啦啦啦韩国在线观看视频| 69av精品久久久久久| 国内少妇人妻偷人精品xxx网站 | 在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美一区二区综合| 久久欧美精品欧美久久欧美| 制服人妻中文乱码| 观看美女的网站| 人妻夜夜爽99麻豆av| 婷婷丁香在线五月| 国产精品九九99| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 宅男免费午夜| 免费在线观看视频国产中文字幕亚洲| 久久久色成人| 男女下面进入的视频免费午夜| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| 亚洲自拍偷在线| 国内精品久久久久精免费| 亚洲精品中文字幕一二三四区| 日韩欧美 国产精品| 日韩欧美在线二视频| 中文字幕熟女人妻在线| 日本黄色视频三级网站网址| 婷婷丁香在线五月| 久久久久久久午夜电影| av天堂中文字幕网| 日本黄色片子视频| 免费高清视频大片| 精品福利观看| 两人在一起打扑克的视频| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看 | 国产精品亚洲av一区麻豆| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 熟女人妻精品中文字幕| 香蕉av资源在线| 欧美绝顶高潮抽搐喷水| 成人av在线播放网站| 久久亚洲精品不卡| 国产亚洲精品综合一区在线观看| 国产精华一区二区三区| 国产成人系列免费观看| 国产1区2区3区精品| 日韩高清综合在线| 搡老岳熟女国产| 看片在线看免费视频| 18禁裸乳无遮挡免费网站照片| 国产成人系列免费观看| 国产激情偷乱视频一区二区| a在线观看视频网站| 巨乳人妻的诱惑在线观看| 成人精品一区二区免费| 免费观看的影片在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 一个人观看的视频www高清免费观看 | 国产精品日韩av在线免费观看| 黑人巨大精品欧美一区二区mp4| 国产单亲对白刺激| 琪琪午夜伦伦电影理论片6080| 亚洲成人免费电影在线观看| 精品日产1卡2卡| 亚洲狠狠婷婷综合久久图片| 身体一侧抽搐| 国产成人啪精品午夜网站| or卡值多少钱| 国内精品美女久久久久久| 色尼玛亚洲综合影院| 一个人免费在线观看电影 | 校园春色视频在线观看| 黄色视频,在线免费观看| 日韩欧美 国产精品|