胡萬寶 吳小蘭 李倩
【摘 要】廣義漢明重量刻畫線性碼性能的一個(gè)重要參數(shù),而代數(shù)幾何碼來自于代數(shù)曲線,擁有較豐富的糾錯(cuò)能力強(qiáng)的好碼。一些學(xué)者通過不同方法計(jì)算出代數(shù)幾何碼的廣義漢明重量,本文就其研究現(xiàn)狀及發(fā)展作一綜述。
【關(guān)鍵詞】廣義漢明重量;代數(shù)幾何碼;線性碼;代數(shù)函數(shù)域
1.引言
差錯(cuò)控制碼廣泛應(yīng)用于不同信道的信息傳輸,為增加信道可信性設(shè)計(jì)。碼字的漢明(Hamming)重量是指這個(gè)字中的非零的項(xiàng)的個(gè)數(shù),這在線性碼中決定碼的糾錯(cuò)能力。廣義漢明重量的概念由第Wei [1] 在1991年引入,一個(gè)線性碼的r-級(jí)廣義漢明重量就是指其最小的r維子碼支集. 之后不久, Feng, Tzeng, and Wei [2]研究BCH碼及其它某些循環(huán)碼的廣義漢明重量. 在文章[3, 4]中, 第二和第三級(jí)幾何Goppa 碼(代數(shù)幾何碼)的廣義漢明重量由Munuera C. 和Ramirez D 部分得出,后來胡[7]將這些結(jié)果推廣到更高次數(shù)上.在系列文章[8-12]中, Homma M. 和 Kim S.J. 決定了Hermitian 曲線上的兩點(diǎn)碼的第二級(jí)漢明重量.
本文從代數(shù)曲線(代數(shù)函數(shù)域)出發(fā),介紹代數(shù)幾何碼,再綜述研究代數(shù)幾何碼的廣義漢明重量的一些方法和結(jié)果,在此基礎(chǔ)上推出了循環(huán)碼的廣義漢明重量的新結(jié)果,這里的碼長n=pm-1,p是素?cái)?shù)。
有限域上的代數(shù)函數(shù)域是我們研究的最有用的工具,參看[5],文章中的采用和[5]一致的記號(hào)。
2.一些線性碼的基本概念和熟知結(jié)果
先定義廣義漢明重量.
, ,
兩點(diǎn)代數(shù)幾何碼即為:.
文章[3,4,7,8,9,10,11] 等都利用Hermitian曲線上構(gòu)造代數(shù)幾何碼,并刻畫其廣義漢明重量. 由于篇幅所限,本文不再贅述.
實(shí)際上,除了Hermitian曲線外,還有更多的豐富的曲線能構(gòu)造更好的代數(shù)幾何碼,如(超)橢圓曲線等、有理函數(shù)域的初等 Abelian擴(kuò)張等都有良好的性質(zhì)和豐富的內(nèi)容, 可以作為未來研究碼的廣義漢明重量的發(fā)展方向.
參考文獻(xiàn):
[1]Victor K. Wei, “Generalized hamming weights for linear codes”, Transactions on Information Theory, vol. 37, no. 5, pp. 1412-1413, 1991.
[2]G. L. Feng, K. K. Tzeng, and V. K. Wei, “On the generalized Hamming weights of several classes of cyclic codes” , IEEE Trans. Inform. Theory, vol. 38, pp. 1125-1130, 1992.
[3]Munuera C., Ramirez D.,”The second and third generalized Hamming weights of Hermitian codes”. IEEE Trans. Inform. Theory, vol. 45, pp.709-713, 1999.
[4]Munuera C., “On the generalized Hamming weights of geometric Goppa codes”, IEEE Trans. Inform. Theory, vol. 40, pp. 2092-2099, 1994.
[5]H. Stichtenoth, “Algebraic function fields and codes”, Springer Universitext, 1998. The second version.
[6]Wolfmann, “New bounds on cyclic codes from algebraic curves,” in Lecture Notes in Computer Science, vol. 388. New York: Springer-Verlag, pp. 47-62, 1988
[7]Wanbao Hu, Generalized hamming weight of algebraic geometric codes from algebraic curves, J. of university of science and technology of China, vol.33, no.6, pp 641-645, 2003.
[8]Homma M., Kim S.J., “Toward the determination of the minimum distance of two-point codes on a Hermitian curve”, Des. Codes Cryptogr. vol. 37, pp. 111-132, 2005.
[9]Homma M., Kim S.J., “The two-point codes on a Hermitian curve with the designed minimum distance”, Des. Codes Cryptogr. vol. 38, pp. 55-81, 2006.
[10]Homma M., Kim S.J., “The two-point codes with the designed distance on a Hermitian curve in even characteristic”, Des. Codes Cryptogr. vol. 39, pp. 375-386, 2006.
[11]Homma M., Kim S.J., “The complete determination of the minimum distance of two-point codes on a Hermitian curve”, Des. Codes Cryptogr. Vol.40, pp.5-24, 2006.
[12]Masaaki Homma, Seon Jeong Kim, “The second generalized Hamming weight for two-point codes on a Hermitian curve”, Des. Codes Cryptogr. Vol. 50, pp.1-40, 2009.
[13]Zhi-min Li, Xin Xu, and Cun-hua Li, “On the Generalized Hamming Weights of Some Product Codes” Advances in Computer, Communication, Control & Automation, LNEE 121, pp. 281-288.
[14]Henning Stichtenoth and Conny VoB, Generalized Hamming Weights of Trace Codes, Transactions on Information Theory, vol. 40, no. 2, pp554—558,1994.