• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Isolation and characterization of an isoamylase gene from rye

    2013-03-13 05:51:50KeZhengJieXuQingtoJingAndrLrocheYumingWeiYoulingZhengZhenxingLu
    The Crop Journal 2013年2期

    Ke Zheng,Jie Xu,Qingto Jing,André Lroche,Yuming Wei,Youling Zheng,*,Zhenxing Lu,*

    1.Introduction

    Rye (Secale cereale L.) is an important cereal crop worldwide.Rye grain is mainly used for animal feed,to make beer,whisky or vodka,and is also milled into flour for bread,pumpernickel or crisp bread [1].Compared to other cereal crops such as wheat (Triticum aestivum L.),barley (Horderum vulgare L.) and oat (Avena sativa L.),rye has a number of positive and special attributes,such as outstanding cold hardiness,excellent drought tolerance and strong disease resistance.Apart from its use as a minor cereal crop and a donor of the R genome to triticale(×Triticosecale),it has also been extensively used as an important germplasm source to introgress resistance genes into wheat [2].Some rye attributes are conserved in triticale,an artificial hybrid species made by crossing wheat and rye[3].Triticale is being explored for use as a novel bioindustrial crop in Canada.

    Starch synthesis is a complicated process in plants.The first step takes place inside and/or outside amylopasts via ADP-glucose pyrophosphorylase (AGPase,EC 2.7.7.27) for synthesis of ADP glucose,an activated glucosyl donor for starch synthesis[4–6].Subsequent steps lead to two separate pathways for amylose or amylopectin synthesis.Granule-bound starch synthase (GBSS,EC 2.4.1.21),also known as waxy protein,is responsible for the synthesis of amylose polymers [6–8].Amylopectin synthesis results from the elongation of glucan chains with both α-(1,4)-linkage and α-(1,6)-linkage synthesized by the multiple subunits or isoforms of starch synthase(SS,EC 2.4.1.21),starch-branching enzyme (SBE,EC 2.4.1.18) [9,10] and starch debranching enzymes(DBE).According to their different substrate specificities,DBEs are divided into two types:isoamylase (EC 3.2.1.68) and pullulanase (EC 3.2.1.41) [9,11].Genotypic mutants with low starch but high water-soluble polysaccharides were identified in maize(Zea mays L.)[5,12],rice(Oryza sativa L.) [13],barley [14] and Arabidopsis thaliana [15,16],demonstrating that DBEs,in conjunction with SS and SBE,play an essential role in development and accumulation of amylopectin [8,17].Characterization of barley mutants,transgenic potato and rice also indicate that isoamylase plays a crucial role in initiating the development of starch granules[14,18,19].

    Starch is the most important carbohydrate in crop grains,but gene interaction in starch synthesis and accumulation in polyploid crops has not been well explored.Since rye has contributed one third of the hexaploid triticale genome,rye isoamylase must be one of the essential enzymes for amylopectin synthesis in triticale grains.However,there is no scientific report about the molecular features of rye isoamylase genes available in public databases.In this study,we isolated genomic and cDNA sequences of a rye isoamylase gene,characterized its structure,domains and expression profiles,and its predicted protein,and also analyzed the evolutionary relationship of isoamylase proteins from rye and other plant species.This is the first report on identification and characterization of an isoamylase gene from the rye genome.

    2.Materials and methods

    2.1.Plant materials

    Hexaploid spring wheat (Triticum aestivum L.) cv.Chinese Spring and diploid spring rye (Secale cereale L.) cv.Rogo were grown under controlled environmental conditions(24 °C day,20 °C night with a 16 h photoperiod of 240 μmol m-2s-1) in the same growth cabinet.Various plant materials (stem,leaf,root,seed) were sampled,flash frozen in liquid nitrogen,and stored at-80 °C until used.

    2.2.Preparation of genomic DNA and RNA

    Genomic DNA was extracted from young leaf tissue at Zadoks growth Stage 22 [20] using a DNeasy Plant Mini Kit (Cat.No.69104,Qiagen Inc.,Mississauga,ON,Canada).Total RNA was isolated from immature seeds (12 days post anthesis,DPA)according to a phenol/SDS protocol [21].RNA was further purified using the RNeasy Plant Min Kit (Cat.No.74904,Qiagen Inc.,Mississauga,ON,Canada).

    2.3.Primers and PCR amplification

    Primers for cloning the rye isoamylase gene were designed according to the conserved regions of Aegilops tauschii isoamylase gene sequence (GenBank accession no.AF548379)[22],wheat iso1 mRNA sequence (GenBank accession no.AJ301647)[23]and barley isoamylase mRNA sequence(GenBank accession no.AF490375) [14].Ten pairs of primers were designed to amplify the overlapping genomic DNA sequences that correspond to the rye isoamylase gene.Furthermore,three pairs of primers were developed to amplify the overlapping cDNA sequences.Typically,25 μL of PCR mixture contained 20 pmol primers,30 ng of genomic DNA or 5 μg of cDNA,1 × buffer,1 × Q-solution and 1.25 U of Qiagen HotStar HiFidelity Polymerase (Cat.No.202605,Qiagen Inc.,Mississauga,ON,Canada).Reverse transcription(RT)-PCR was performed using total RNA as the template with Superscript III Reverse Transcriptase (Cat.No.18080-093,Invitrogen,Burlington,ON,Canada).Primer sequences and PCR conditions are listed in Table 1.

    2.4.Cloning and sequence analysis

    Amplified isoamylase DNA fragments were cloned into the PCR4-TOPO vector (Cat.No.K4575-02,Invitrogen,Burlington,ON,Canada) and at least three independent clones for each fragment were sequenced in both directions by the DNA Sequencing Service Centre,University of Calgary (Calgary,Canada).Rye isoamylase sequences and the corresponding protein were blasted with the NCBI BLASTN tool (http://blast.ncbi.nlm.nih.gov) and aligned with previously reported isoamylase sequences using DNAMAN software v5.0 (Lynnon Biosoft,U.S.A.).The putative encoding regions of transit peptides and mature proteins of isoamylase genes from different plant genomes were predicted using the ChloroP 1.1 server(http://www.cbs.dtu.dk/services/ChloroP/).

    2.5.qRT-PCR and gene expression

    Total RNAs were isolated from rye leaves,stems,roots and rye seeds at different developmental stages (9,15,24 and 33 DPA)with an RNA Extraction Kit (Cat No.74904,Qiagen Inc.,Mississauga,ON,Canada).For RT-PCR,1 μg of total RNA was transcribed to cDNA in a 20 μL PCR by using the oligo (dT) 18 primer and the SuperScript III Reverse Transcriptase (Cat No.18080-044,Invitrogen,Burlington,ON,Canada).The cDNA mixture was diluted 20 times in RNA-free water and 2.5 μL of cDNA was used as template in a 10 μL real-time PCR consisting of 1 μL primer pair(final concentrate 500 nmol L-1each),1.5 μL RNA-free water and 5 μL SYBR Green (Cat.No.204145,Qiagen,Mississauga,ON,Canada).The primer pair (5′-AAGGAGTGCG AGGGTCTTGG-3′ and 5′-GGTAAGTGGCTGGTGTTGAAGG-3′)was designed by using the Beacon Designer software (v7.0) to detect the transcription level of the rye isoamylase gene identified in this study (GenBank accession no.FJ491379).The real-time PCR was performed on a 7900H qRT-PCR system(Applied Biosystem Canada,Ontario,Canada)and temperature cycling parameters were as follows: 95 °C for 15 min,then 40 cycles of 95 °C for 30 s,60 °C for 30 s and 72 °C for 30 s.Relative expression of rye isoamylase was analyzed by REST software [30].The ADP-ribosylation factor (Ta 2291,GenBank accession no.AB050957),shown to exhibit a constant transcript level at different plant developmental stages under various environmental conductions[31],was used as a reference gene to normalize the rye isoamylase expression.Expression values were subjected to a random variance Mel t-test (P <0.05) and twofold or greater differences were considered as differentially expressed.

    Table 1-Primer sequences and PCR conditions for the rye isoamylase gene with amplification parameters and product amplicon sizes.

    2.6.Construction of a phylogenetic tree

    A phylogenetic tree of isoamylase genes was obtained by analyzing the deduced amino acid(aa)sequence from rye(this study),wheat[23],Ae.tauschii[22],barley[14],maize[5],rice[24],pea (GenBank accession no.DQ092413-415),potato [25],sweet potato[26]and Arabidopsis(GenBank accession no.AF002109).A dendrogram was constructed using the Neighbor-Joining method in MEGA 4.1 software and[27].

    3.Results and Discussion

    3.1.Isolation of a rye isoamylase gene

    We amplified PCR and RT-PCR fragments from rye genomic DNA and cDNA using 13 PCR primer pairs designed from conserved domain sequences of plant isoamylase genes(Fig.1).More than one band was amplified with primers Rye-ISA-F14/R14,Rye-ISA-F31/R31,Rye-ISA-F12/R12 and Rye-ISA-F21/R21.In each case,the largest fragment corresponding to the theoretical fragment size (Table 1) was selected for further cloning and sequencing.Ten different overlapping genomic DNA fragments covering the whole rye isoamylase gene and three overlapping cDNA fragments for full-length contigs were isolated and independently cloned into the TOPO-vector and sequenced.Whole genomic DNA and cDNA sequences of the rye isoamylase gene were obtained by the assembly of these overlapping PCR fragments.We determined that the full-length of the rye isoamylase gene was 7351 bp for genomic DNA (GenBank accession no.FJ491378) and 2364 bp for cDNA (GenBank accession no.FJ491379).The overlapping sequences of the genomic DNA and cDNA were identical(data not shown).

    Our results demonstrated that the rye isoamylase gene was isolated and cloned with the help of sequence homologies of the same genes from the Ae.tauschii,wheat,and barley genomes,as cereal crops share similar genotypes with highly conserved gene sequences.We found that PCR amplification of the isoamylase gene from the wheat genome was relatively less productive,with no or weak amplicons in comparison with rye(Fig.1).Plausible explanations for such low efficiency may be due to the large hexaploid wheat genome,that is triple the size of rye;PCR efficiency in wheat might be limited by interference of multiple gene loci or by relatively less DNA templates provided by the target genes.Further improvements on PCR conditions and primer designs will be necessary if new isoamylase genes are to be isolated from the wheat genome.

    Fig.1-DNA banding patterns of wheat and rye isoamylase genes amplified by different PCR primer sets.Lanes 1 and 2:Rye-ISA-F1/R1; Lanes 3 and 4: Rye-ISA-F14/R14; Lanes 5 and 6: Rye-ISA-F3/R3; Lanes 7 and 8: Rye-ISA-F4/R4; Lanes 9 and 10: Rye-ISA-F25/R25;Lanes 11 and 12:Rye-ISA-F31/R31;Lanes 13 and 14:Rye-ISA-F29/R29;Lanes 15 and 16:Rye-ISA-F30/R30;Lanes 17 and 18:Rye-ISA-F12/R12;Lanes 19 and 20:Rye-ISA-F13R13;Lane 21:Rye-ISA-F1/R20;Lane 22:Rye-ISA-F21/R21;and Lane 23:Rye-ISA-F13/R13.The templates of Chinese Spring genomic DNA were used to amplify the products in lanes 1,3,5,7,9,11,13,15,17 and 19;whereas Rogo genomic DNA templates were used to amplify the products in lanes 2,4,6,8,10,12,14,16,18 and 20 and Rogo cDNA was used in lanes 21,22 and 23.M is the GeneRuler DNA Ladder(Fermentas,Thermo Fisher Scientific).

    3.2.Characterization of the rye isoamylase gene

    We aligned the genomic and cDNA sequences of the rye isoamylase gene and found that the rye isoamylase gene has 18 exons interrupted by 17 introns.Such intron and exon patterns are nearly identical between the rye and Ae.tauschii genes.The exon lengths of the rye isoamylase gene vary from 72 bp to 363 bp; whereas the intron lengths vary from 73 to 1052 bp.In rice,maize and Arabidopsis,18 exons were identified,but the intron lengths are variable(Fig.2).A comparison of exon sizes among rye,rice,maize,Ae.tauschii and Arabidopsis revealed that these isoamylase genes have identical exon sizes apart from a few differences(Table 2).The first and last exon sizes of the isoamylase genes vary among different plant genomes;exon 2 of the isoamylase gene in rye is 3 bp shorter than that in maize,but exon 16 in rye is 3 bp larger than that in rice and Ae.tauschii.Dinucleotide sequences at the 5′ and 3′ ends in each of the 17 introns were found to follow the universal GT-AG rule[28].

    A transit peptide in addition to mature protein regions is normally encoded by plant nuclear isoamylase genes.The cDNA lengths for the transit peptide and the mature protein of rye isoamylase gene are 144 bp and 2220 bp,respectively,and exhibit similarity to other plant isoamylase genes available in public databases.Comparative studies of isoamylase genes among rye and other plant species indicated that mature proteins have higher homology than transit peptides among plant isoamylase genes and the identity of aa sequences between rye,Ae.tauschii,wheat and barley is more than 95%(Table 3).We found that sequence differences in the exon regions of plant isoamylase genes are mainly due to nucleotide substitutions,deletions or insertions.Similarly,differences in the intron regions of plant isoamylase genes are due to more frequent substitution,insertion or deletion events.We determined that DNA homologies range from 40% to 71% in intron regions of isoamylase genes between rye and Ae.tauschii,rice and maize (Table 3),considerably lower than in exon regions.Our results indicated that DNA sequences are highly conserved in the exons of plant isoamylase genes and that evolution rates in the introns of plant isoamylase genes are faster than in the exons.

    Fig.2-Schematic diagram for the exon-intron arrangement of isoamylase genes from cereals and Arabidopsis.The sequences used in this analysis were as follows: rye ISA (GenBank accession no.FJ491378),rice OsISA(GenBank accession no.AB093426),Ae.tauschii wDBEI-D1 (GenBank accession no.AF548379),maize SU1 (GenBank accession no.AF030882)and Arabidopsis ISA(GenBank accession no.AF002109).The filled rectangles indicate the exon locations in isoamylase genes.Scale bar,1 kb.

    Table 2-Exon lengths (bp) of isoamylase genes from cereals and Arabidopsis.a

    Fig.3-Expression profiles of the rye isoamylase gene among(A)various tissues(stem,leaf,root and seed)and(B)different seed development stages (9,15,24 and 33 DPA).Relative expression of rye isoamylase was analyzed by REST software and real-time RT-PCR quantifications were normalized by the ADP-ribosylation factor (Ta 2291,GenBank accession no.AB050957).Expression values were subjected to a random variance Mel t-test(P <0.05)and twofold or greater differences were considered as differentially expressed.Error bars represent the SE for three independent replicates.

    3.3.Analysis of rye isoamylase proteins

    From the full-lengths of genomic DNA and cDNA sequences,we deduced that the rye isoamylase mature protein consists of 787 aa residues with an additional 48 aa for its transit peptide.The calculated molecular weights for the transit peptide and mature protein of rye isoamylase are 5.21 kD and 83.56 kD,respectively.The predicted pI for the mature isoamylase is 5.46.

    Table 3-Sequence homologies and similarities of cereal isoamylase genesa (%).

    The aa sequences of mature isoamylases exhibited more than 83% homology among rye and other plant genomes,but especially more than 95%homology between rye and Ae.tauschii,wheat and barley.However,sequence homologies for the transit peptides of isoamylases between rye and rice or maize are 31.75% or 27.59%,respectively,significantly less than similar comparisons for the mature proteins (83.31% or 87.18%,respectively) (Table 3).Our results indicate that the structural conservation of the transit peptides for this enzyme is generally lower than that of the mature proteins.Since the transit peptides are the N-terminal aa presequences that direct proteins to an organelle (e.g.,chloroplast,mitochondria) and are required for their transport across membranes from their synthesis sites in the cytoplasm [29],significant diversities in transit peptides of isoamylase between rye and rice or maize may be related to their different cellular structures and metabolic functions,although the mature isoamylases share similar catalytic domains and elements.

    3.4.Expression of the rye isoamylase gene

    We used quantitative real-time PCR to analyze the expression of the rye isoamylase gene in various tissues and at different seed developmental stages.Our results showed that the isoamylase gene is expressed in all rye tissues tested in this study,with seeds having significantly higher levels of isoamylase transcript than leaves,stems and roots(Fig.3-A).A recent study showed that the ISA1 transcript level is relatively abundant in maize tissues where starch is synthesized [32].As the leaf and other green tissues are temporary storage places for starch accumulation during photosynthesis,the expression of the isoamylase gene in rye leaves and stems demonstrated that amylase may have an important role for either starch synthesis or starch degradation.Isoamylase is termed as the debranching enzyme,essential for formation of crystalline amylopectin [6].We analyzed the expression profiles of the rye isoamylase gene during endosperm development and found that its expression in rye endosperm reached a maximum level at the mid-development stage(15 DPA) and then dropped through 24 and 33 DPA (Fig.3-B).Consistent with previous reports on wheat and maize[23,32],our results confirmed that the isoforms of isoamylase-type DBE genes are maximally expressed during endosperm development and then gradually decline during grain maturation.Studies on barley mutants and transgenic rice suggested that isoamylases play a crucial role in synthesis of phytoglycogen and starch granule structure and initiation [14,19].It will be informative to further investigate the function of isoamylase in granule initiation and degradation in rye and triticale.

    To explore evolutionary relationships we constructed a phylogenetic tree on the basis of the aa sequences of mature plant isoamylases.All monocots gathered in a single cluster(Fig.4).There is 98% sequence homology between Ae.tauschii wDBE1 and wheat iso1.On the phylogenetic tree of the deduced mature protein sequences,rye ISA shares 96% sequence homologies with Ae.tauschii wDBE1 and wheat iso1,and 92%homology with barley ISA1,indicating that rye isoamylase is more closely related to Ae.tauschii wDBE1 and wheat iso1.

    Fig.4-Phylogenetic tree for isoamylase mature proteins from monocot and dicot plants.The aa sequence of rye isoamylase protein was determined in this study and other plant sequences were obtained from the NCBI GenBank databases.The sequences used for analysis were:rye ISA(FJ491378/FJ491379),Ae.tauschii wDBE1(AF548379),wheat iso1(AJ301647),barley ISA1(AF490375),rice OsISA(AB093426),maize SU1(AF030882),Arabidopsis ISA(AF002109),sweet potato iso(DQ074643),potato iso1(AY132996),potato iso2(AY132997),potato iso3(AY132998),pea iso1(DQ092413),pea iso2(DQ092414)and pea iso3(DQ092415).All sequences were analyzed by the Neighbor-Joining method in MEGA 4.1 software[27].

    4.Conclusions

    In this study,we isolated and characterized genomic DNA and cDNA and also predicted the corresponding protein sequence of the rye isoamylase gene.By comparing isoamylase genes and their proteins among rye and other plant species,we found that plant isoamylase genes are highly homologous in the exon regions and rye isoamylase is most closely homologous in aa sequence to wheat and Ae.tauschii than to barley in terms of phylogenetic relationship.Our real-time PCR results indicated that the rye isoamylase gene is mainly expressed in seed endosperms with a maximum level at the mid-development stage (15 DPA).Starch synthesis is a complicated metabolic system in plants and characterization of starch synthesis genes is essential for establishing a basis to explore starch structure,function,and accumulation.Isoamylase genes have been isolated and characterized from different plant species,but their precise roles in starch synthesis and granule initiation are not yet clear.The rye isoamylase isolated and characterized in this study has provided new and essential information to explore its function in amylopectin accumulation in rye and triticale grains and also its effects on subsequent development of new triticale genotypes for novel starch granule types leading to higher or lower amylopectin contents.

    This study was supported by the MOE-AAFC PhD Research Program and partial A-Base funding from Agriculture and Agri-Food Canada.

    [1] W.Bushuk,Rye:Production,Chemistry and Technology.The 2nd Edition,American Association of Cereal Chemists International Press,St.Paul,Minnesota,USA,2001.289.

    [2] S.V.Rabinovich,Importance of wheat–rye translations for breeding modern cultivars of Triticum aestivum L.Euphytica 100 (1998) 323–340.

    [3] K.Briggs,The growth potential of triticale in western Canada,Review Report Commissioned by Alberta Agriculture,Food,and Rural Development,Edmonton,Alberta,Canada,2001,p.114.

    [4] T.Thorbjornsen,P.Villand,K.Denyer,O.A.Olsen,A.M.Smith,Distinct forms of ADP glucose pyrophosphorylase occur inside and outside the amylopasts in barley endosperm,Plant J.10(1996) 243–250.

    [5] M.G.James,D.S.Robertson,A.M.Myers,Characterization of the maize gene sugary-1,a determinant of starch composition in kernels,Plant Cell 7(1995)417–429.

    [6] I.J.Tetlow,Understanding storage starch biosynthesis in plants:a means to quality improvement,Can.J.Bot.84(2006)1167–1185.

    [7] C.Martin,A.M.Smith,Starch biosynthesis,Plant Cell 7(1995)971–985.

    [8] I.J.Tetlow,M.K.Morell,M.J.James,Recent developments in understanding the regulation of starch metabolism in higher plants,J.Exp.Bot.55 (2004) 2131–2145.

    [9] Y.Nakamura,Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue,Plant Cell Physiol.43(2002)718–725.

    [10] S.G.Ball,M.K.Morell,From bacterial glycogen to starch:understanding the biogenesis of the plant starch granule,Annu.Rev.Plant Biol.54(2003) 207–233.

    [11] D.C.Doehlert,C.A.Knutson,Two classes of starch debranching enzymes from developing maize kernels,J.Plant Physiol.138(1991)566–572.

    [12] O.Pan,O.E.Nelson,A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize,Plant Physiol.74 (1984) 324–328.

    [13] A.Kubo,N.Fujita,K.Harada,H.Satoh,Y.Nakamura,The starch debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm,Plant Physiol.121(1999)399–409.

    [14] R.A.Burton,H.Jenner,L.Carrangis,B.Fahy,G.B.Fincher,C.M.Hylton,D.A.Laurie,M.Parker,D.Waite,S.van Wegen,T.Verhoeven,K.Denyer,Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity,Plant J.31(2002) 97–112.

    [15] S.C.Zeeman,T.Umemoto,W.L.Lue,A.Y.Pui,C.Martin,A.M.Smith,J.C.Chen,A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen,Plant Cell 10(1998)1699–1711.

    [16] F.Wattebled,Y.Dong,S.Dumez,D.Delvalle,V.Planchot,P.Berbezy,D.Vyas,P.Colonna,M.Chatterjee,S.Ball,C.D'Hulst,Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin,Plant Physiol.138(2005)184–195.

    [17] S.Ball,H.P.Guan,M.James,A.Myers,P.Keeling,G.Mouille,A.Buleon,P.Colonna,J.Preiss,From glycogen to amylopectin:a model for the biogenesis of the plant starch granule,Cell 86(1996) 349–352.

    [18] R.Bustos,B.Fahy,C.M.Hylton,R.Seale,N.M.Nebane,A.Edwards,C.Martin,A.M.Smith,Starch granule initiation is controlled by a hetermultimeric isoamylase in potato tubers,Proc.Natl.Acad.Sci.U.S.A.101 (2004) 2215–2220.

    [19] Y.Kawagoe,A.Kubo,H.Satoh,F.Takaiwa,Y.Nakamura,Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm,Plant J.42(2005)164–174.

    [20] D.R.Tottman,R.J.Makepeace,An explanation of the decimal code for the growth stages of cereals with illustrations,Ann.Appl.Biol.93(1979) 221–234.

    [21] R.D.Palmiter,Magnesium precipitation of ribonucleo-protein complexes: expedient techniques for the isolation of undegraded polysomes and messenger RNA,Biochemistry 13(1974) 3606–3615.

    [22] S.Rahman,Y.Nakamura,Z.Li,B.Clarke,N.Fujita,Y.Mukai,M.Yamamoto,A.Regina,Z.Tan,S.Kawasaki,M.Morell,The sugary-type isoamylase gene from rice and Aegilops tauschii:characterization and comparison with maize and Arabidopsis,Genome 46 (2003) 496–506.

    [23] U.Genschel,G.Abel,H.Lorz,S.Lutticke,The sugary-type isoamylase in wheat: tissue distribution and subcellular localisation,Planta 214 (2002) 813–820.

    [24] N.Fujita,A.Kubo,P.B.Francisco,M.Nakakita,K.Harada,N.Minaka,Y.Nakamura,Purification,characterization,and cDNA structure of isoamylase from developing endosperm of rice,Planta 208 (1999) 283–293.

    [25] H.Hussain,A.Mant,R.Seale,S.Zeeman,E.Hinchliffe,A.Edwards,C.Hylton,S.Bornemann,A.M.Smith,C.Martin,R.Bustos,Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans,Plant Cell 15(2003) 133–149.

    [26] S.H.Kim,T.Hamada,M.Otani,T.Shimada,Cloning and characterization of sweet potato isoamylase gene (IbIsa1)isolated from tuberous root,Breed.Sci.55(2005) 453–458.

    [27] S.Kumar,J.Dudley,M.Nei,K.Tamura,MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences,Brief.Bioinform.9(2008) 299–306.

    [28] R.Breathnach,P.Chambon,Organization and expression of eukaryotic spilt genes coding for proteins,Annu.Rev.Biochem.50 (1981) 349–383.

    [29] N.J.Patron,R.F.Waller,Transit peptide diversity and divergence:a global analysis of plastid targeting signals,Bioessays 29(2007)1048–1058.

    [30] M.W.Pfaffl,G.W.Horgan,L.Dempfle,Relative expression software tool(REST)for group wise comparison and statistical analysis of relative expression results in real-time PCR,Nucleic Acids Res.30(2002)e36.

    [31] A.R.Paolacci,O.A.Tanzarella,E.Porceddu,M.Ciaffi,Identification and validation of reference genes for quantitative RT-PCR normalization in wheat,BMC Mol.Biol.10(2009)11.

    [32] A.Kubo,C.Colleoni,J.R.Dinges,Q.Lin,R.R.Lappe,J.G.Rivenbark,A.J.Meyer,S.G.Ball,M.G.James,T.A.Hennen-Bierwagen,Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm,Plant Physiol.153(2010)956–969.

    国产熟女欧美一区二区| 十八禁网站网址无遮挡| 视频中文字幕在线观看| 极品人妻少妇av视频| 国产黄频视频在线观看| 亚洲av二区三区四区| 国产av一区二区精品久久| 乱人伦中国视频| 亚洲欧美中文字幕日韩二区| 丝袜美足系列| 啦啦啦中文免费视频观看日本| 亚洲精品久久午夜乱码| 91精品伊人久久大香线蕉| 韩国高清视频一区二区三区| 午夜福利,免费看| 伊人久久精品亚洲午夜| 亚洲色图 男人天堂 中文字幕 | 久久久久久伊人网av| 91在线精品国自产拍蜜月| 久久国内精品自在自线图片| 久久久久久久久久久丰满| 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 91在线精品国自产拍蜜月| 免费看av在线观看网站| 99re6热这里在线精品视频| 日韩人妻高清精品专区| 国产视频首页在线观看| 精品一区二区三区视频在线| 久久狼人影院| 人成视频在线观看免费观看| 97在线视频观看| 精品一区二区三区视频在线| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 26uuu在线亚洲综合色| 一级二级三级毛片免费看| 日韩 亚洲 欧美在线| 精品一区二区三卡| 午夜日本视频在线| 成人18禁高潮啪啪吃奶动态图 | 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 老司机影院成人| tube8黄色片| 黑丝袜美女国产一区| 最新中文字幕久久久久| 大片免费播放器 马上看| 久久久久久久国产电影| 久久精品人人爽人人爽视色| 美女国产视频在线观看| 高清不卡的av网站| 亚洲美女搞黄在线观看| 插逼视频在线观看| 日韩中文字幕视频在线看片| 国产精品久久久久久精品电影小说| 亚洲av成人精品一区久久| 在线天堂最新版资源| 亚洲伊人久久精品综合| 精品久久久精品久久久| 精品久久久噜噜| 中文字幕人妻丝袜制服| 精品久久国产蜜桃| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院 | 美女主播在线视频| 大片免费播放器 马上看| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 99热国产这里只有精品6| 国产av国产精品国产| 香蕉精品网在线| 精品人妻熟女毛片av久久网站| 亚洲精品,欧美精品| 久久影院123| 人妻系列 视频| 熟女av电影| 亚洲精品,欧美精品| 综合色丁香网| 97在线人人人人妻| 纵有疾风起免费观看全集完整版| 久久久精品94久久精品| 欧美亚洲日本最大视频资源| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| 亚洲精品国产av成人精品| 精品亚洲成国产av| 22中文网久久字幕| 免费观看性生交大片5| 热re99久久精品国产66热6| 亚洲性久久影院| 观看av在线不卡| 国产高清有码在线观看视频| av在线app专区| 高清午夜精品一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 91国产中文字幕| 午夜免费鲁丝| 国产乱人偷精品视频| 欧美日韩综合久久久久久| 美女主播在线视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品蜜桃在线观看| 在线观看人妻少妇| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 多毛熟女@视频| 国产精品欧美亚洲77777| 人人澡人人妻人| 国产免费视频播放在线视频| 精品少妇内射三级| 一区二区三区乱码不卡18| 热99国产精品久久久久久7| 成年人午夜在线观看视频| 久久久久国产精品人妻一区二区| 亚洲国产欧美日韩在线播放| 自线自在国产av| 午夜影院在线不卡| 十八禁网站网址无遮挡| 视频区图区小说| 性色avwww在线观看| 欧美精品高潮呻吟av久久| 我的老师免费观看完整版| 国产亚洲午夜精品一区二区久久| 婷婷成人精品国产| 国产熟女欧美一区二区| av一本久久久久| 久久精品久久久久久久性| 不卡视频在线观看欧美| 亚洲av.av天堂| 老司机亚洲免费影院| 考比视频在线观看| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 亚洲精品视频女| 天堂8中文在线网| 中文字幕免费在线视频6| 国产免费现黄频在线看| 国产成人精品婷婷| 国产一级毛片在线| 亚洲av日韩在线播放| 欧美另类一区| 久热久热在线精品观看| 在线天堂最新版资源| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看| 久久99蜜桃精品久久| 亚洲国产欧美在线一区| 一级a做视频免费观看| 午夜福利视频精品| 国产精品久久久久久精品古装| 亚洲国产日韩一区二区| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 精品熟女少妇av免费看| 欧美性感艳星| 在线观看人妻少妇| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 又大又黄又爽视频免费| 精品人妻熟女av久视频| 欧美激情 高清一区二区三区| av有码第一页| 成年人午夜在线观看视频| 久久精品国产亚洲网站| 亚洲人成网站在线播| 99久久人妻综合| 国产精品国产av在线观看| 熟女av电影| 国产伦理片在线播放av一区| 国产在线视频一区二区| 亚洲精品亚洲一区二区| 搡女人真爽免费视频火全软件| 五月玫瑰六月丁香| 国产高清有码在线观看视频| 热99国产精品久久久久久7| 国产亚洲一区二区精品| 黄色欧美视频在线观看| 国产熟女欧美一区二区| 草草在线视频免费看| 啦啦啦视频在线资源免费观看| 韩国av在线不卡| av有码第一页| 18禁在线播放成人免费| 男女无遮挡免费网站观看| 91国产中文字幕| 午夜福利影视在线免费观看| 亚洲无线观看免费| 国产男女内射视频| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 一本久久精品| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 在线精品无人区一区二区三| 中文精品一卡2卡3卡4更新| 久久精品久久久久久久性| 在线天堂最新版资源| 成人漫画全彩无遮挡| 蜜桃久久精品国产亚洲av| 男的添女的下面高潮视频| 日本爱情动作片www.在线观看| 在线观看人妻少妇| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产| 国产精品.久久久| 大码成人一级视频| 免费黄网站久久成人精品| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频| 免费看不卡的av| 亚洲国产av新网站| 一边摸一边做爽爽视频免费| 寂寞人妻少妇视频99o| 天堂8中文在线网| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| 国内精品宾馆在线| 免费看光身美女| 五月玫瑰六月丁香| 国产欧美日韩一区二区三区在线 | xxxhd国产人妻xxx| 午夜视频国产福利| 桃花免费在线播放| 亚洲精品乱码久久久v下载方式| 男女边摸边吃奶| 精品卡一卡二卡四卡免费| 欧美变态另类bdsm刘玥| 色吧在线观看| 中文字幕免费在线视频6| 欧美精品一区二区大全| 亚洲精品av麻豆狂野| av又黄又爽大尺度在线免费看| 精品国产国语对白av| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 午夜激情福利司机影院| 久久国产精品大桥未久av| 午夜久久久在线观看| 久久久久久人妻| 日韩av在线免费看完整版不卡| 国产精品久久久久久av不卡| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 国产免费又黄又爽又色| 国产一区二区在线观看av| 性色av一级| 亚洲欧美一区二区三区黑人 | 久久久精品94久久精品| 精品一区二区三卡| 黑人高潮一二区| 晚上一个人看的免费电影| 91久久精品电影网| 99九九在线精品视频| 欧美激情 高清一区二区三区| 大码成人一级视频| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 国产一级毛片在线| 中文欧美无线码| 老司机亚洲免费影院| 成人亚洲精品一区在线观看| 亚洲,一卡二卡三卡| 两个人免费观看高清视频| 亚洲伊人久久精品综合| 高清毛片免费看| 街头女战士在线观看网站| 老司机影院成人| 免费av不卡在线播放| 99九九线精品视频在线观看视频| 美女中出高潮动态图| 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 永久免费av网站大全| 99九九在线精品视频| 国产一区二区三区综合在线观看 | 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 我要看黄色一级片免费的| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 亚洲精品色激情综合| 国产欧美日韩一区二区三区在线 | 亚洲图色成人| 亚洲精品亚洲一区二区| 亚洲人与动物交配视频| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 大陆偷拍与自拍| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| 九色成人免费人妻av| av在线app专区| 26uuu在线亚洲综合色| 国产69精品久久久久777片| 人成视频在线观看免费观看| 成年人午夜在线观看视频| 在线天堂最新版资源| 美女福利国产在线| 在线精品无人区一区二区三| 在线观看美女被高潮喷水网站| 午夜免费观看性视频| 国产精品国产三级国产av玫瑰| 在线亚洲精品国产二区图片欧美 | 蜜桃久久精品国产亚洲av| 午夜av观看不卡| 最近的中文字幕免费完整| 制服丝袜香蕉在线| 久久国内精品自在自线图片| 永久网站在线| 老司机亚洲免费影院| 黑丝袜美女国产一区| 卡戴珊不雅视频在线播放| 亚洲性久久影院| 少妇的逼好多水| 狠狠精品人妻久久久久久综合| 插逼视频在线观看| 久久久精品94久久精品| 三上悠亚av全集在线观看| 亚洲第一区二区三区不卡| 男女高潮啪啪啪动态图| 欧美亚洲日本最大视频资源| 99视频精品全部免费 在线| 又粗又硬又长又爽又黄的视频| 日本欧美国产在线视频| 亚洲第一av免费看| 天天操日日干夜夜撸| 夫妻午夜视频| 韩国av在线不卡| 亚洲国产日韩一区二区| 亚洲综合色惰| 国产精品久久久久成人av| 丁香六月天网| 高清黄色对白视频在线免费看| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 丰满迷人的少妇在线观看| 老熟女久久久| freevideosex欧美| 国产精品一二三区在线看| 久久久午夜欧美精品| 欧美日韩av久久| 人成视频在线观看免费观看| 欧美xxxx性猛交bbbb| 国产成人精品无人区| 老司机影院成人| 亚洲av日韩在线播放| 一本一本综合久久| 久久久久久久久久久久大奶| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 成年人午夜在线观看视频| 满18在线观看网站| 曰老女人黄片| 天天躁夜夜躁狠狠久久av| 亚洲精品日本国产第一区| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 母亲3免费完整高清在线观看 | 久久人人爽人人爽人人片va| 99久久精品一区二区三区| 国产精品三级大全| 亚洲精品一二三| 男女国产视频网站| 麻豆成人av视频| 午夜免费鲁丝| 久久久久久久久久久免费av| 丝袜美足系列| 免费观看av网站的网址| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 一区二区三区精品91| 九色亚洲精品在线播放| 亚洲精品自拍成人| 天堂俺去俺来也www色官网| 亚洲一区二区三区欧美精品| 国产精品嫩草影院av在线观看| videos熟女内射| 久久这里有精品视频免费| 国产成人免费观看mmmm| 中文字幕免费在线视频6| 国产精品成人在线| 午夜激情av网站| 亚洲国产精品一区二区三区在线| 精品卡一卡二卡四卡免费| 久久久久久久久久成人| 国国产精品蜜臀av免费| 午夜影院在线不卡| 亚洲av男天堂| 99热全是精品| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 亚洲精品美女久久av网站| 国产国拍精品亚洲av在线观看| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 一级毛片我不卡| 欧美人与善性xxx| 高清av免费在线| 伊人久久国产一区二区| 欧美一级a爱片免费观看看| 国产国语露脸激情在线看| 国产精品一二三区在线看| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院 | 99视频精品全部免费 在线| 黄色怎么调成土黄色| 久久婷婷青草| 一本—道久久a久久精品蜜桃钙片| 婷婷成人精品国产| 亚洲精品视频女| 国产一区二区三区av在线| 免费日韩欧美在线观看| 国产免费现黄频在线看| 午夜福利视频精品| 九草在线视频观看| 色视频在线一区二区三区| 另类亚洲欧美激情| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 美女主播在线视频| 国产欧美日韩一区二区三区在线 | 最近的中文字幕免费完整| 成年av动漫网址| 国产女主播在线喷水免费视频网站| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久成人| 大片电影免费在线观看免费| 97在线人人人人妻| 草草在线视频免费看| 高清毛片免费看| 免费观看a级毛片全部| 久久久久国产精品人妻一区二区| 精品国产一区二区三区久久久樱花| 亚洲人与动物交配视频| 成年人免费黄色播放视频| 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 亚洲综合色惰| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 国产成人aa在线观看| 久久99一区二区三区| 国产在视频线精品| 看十八女毛片水多多多| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 久久青草综合色| 人妻一区二区av| 搡老乐熟女国产| 99re6热这里在线精品视频| 美女内射精品一级片tv| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 国产黄频视频在线观看| 十八禁高潮呻吟视频| 久久久久久伊人网av| 久久久久久久久久久丰满| 91久久精品电影网| 日本wwww免费看| 国内精品宾馆在线| 免费av不卡在线播放| 亚洲国产精品一区三区| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 伊人久久国产一区二区| 日韩不卡一区二区三区视频在线| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说| 狂野欧美白嫩少妇大欣赏| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 最后的刺客免费高清国语| 精品国产一区二区三区久久久樱花| 美女内射精品一级片tv| 女人久久www免费人成看片| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放| 欧美性感艳星| 国产探花极品一区二区| 国精品久久久久久国模美| 女人久久www免费人成看片| 国精品久久久久久国模美| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 日本av免费视频播放| 国产亚洲精品第一综合不卡 | 国产免费视频播放在线视频| 满18在线观看网站| 亚洲国产欧美日韩在线播放| 日韩三级伦理在线观看| 久久亚洲国产成人精品v| 精品国产国语对白av| 日韩一本色道免费dvd| 中文字幕免费在线视频6| 午夜激情久久久久久久| 看免费成人av毛片| 国产精品久久久久久精品电影小说| 亚洲精品日韩av片在线观看| 又黄又爽又刺激的免费视频.| 99九九线精品视频在线观看视频| 亚洲成人av在线免费| 九色亚洲精品在线播放| 亚洲美女视频黄频| h视频一区二区三区| 国精品久久久久久国模美| 国产免费一级a男人的天堂| 久热久热在线精品观看| 午夜激情久久久久久久| 免费大片黄手机在线观看| av不卡在线播放| 欧美日韩视频精品一区| 男人添女人高潮全过程视频| 观看美女的网站| 全区人妻精品视频| 妹子高潮喷水视频| 亚洲国产欧美在线一区| 久久鲁丝午夜福利片| 成年人午夜在线观看视频| 3wmmmm亚洲av在线观看| 亚洲精品久久成人aⅴ小说 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产欧美日韩综合在线一区二区| 免费人成在线观看视频色| 日本爱情动作片www.在线观看| 男女免费视频国产| 嘟嘟电影网在线观看| 国产一区亚洲一区在线观看| 午夜福利,免费看| 国产精品久久久久成人av| 欧美日韩视频精品一区| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| 男女啪啪激烈高潮av片| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 九九在线视频观看精品| 99热这里只有是精品在线观看| 精品国产一区二区久久| 91精品一卡2卡3卡4卡| 欧美日韩国产mv在线观看视频| 亚洲av国产av综合av卡| 伊人久久国产一区二区| 久久综合国产亚洲精品| 女人久久www免费人成看片| 精品久久久精品久久久| 国产女主播在线喷水免费视频网站| av免费观看日本| 亚洲av综合色区一区| 久久精品久久久久久噜噜老黄| 18禁观看日本| 国产一区亚洲一区在线观看| 80岁老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 99re6热这里在线精品视频| 国产成人免费无遮挡视频| 欧美最新免费一区二区三区| 2021少妇久久久久久久久久久| 满18在线观看网站| 一级黄片播放器| 五月伊人婷婷丁香| 伊人久久国产一区二区| 亚洲内射少妇av| 国产成人一区二区在线| 三上悠亚av全集在线观看| 日韩伦理黄色片| 日本91视频免费播放| a级毛片免费高清观看在线播放| 在线精品无人区一区二区三| 精品少妇内射三级| 亚洲国产精品一区二区三区在线| 亚洲精品第二区| av福利片在线| 极品少妇高潮喷水抽搐| 777米奇影视久久| 国产午夜精品一二区理论片| 精品少妇久久久久久888优播| 人人妻人人澡人人爽人人夜夜| 亚洲四区av| 亚洲精品乱码久久久久久按摩| a级毛色黄片| 日韩精品有码人妻一区| 免费少妇av软件| 99九九线精品视频在线观看视频| 大话2 男鬼变身卡| 久久精品国产亚洲av天美| 国产高清国产精品国产三级| 中文字幕人妻丝袜制服| 精品99又大又爽又粗少妇毛片| 在线观看国产h片| 我的老师免费观看完整版| 久久精品国产a三级三级三级| 在线观看美女被高潮喷水网站| 欧美精品人与动牲交sv欧美| videos熟女内射| 日日摸夜夜添夜夜爱| 亚洲精品,欧美精品| h视频一区二区三区| 最近手机中文字幕大全|