馬坤銳
在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維是時代的要求。要培養(yǎng)學(xué)生的創(chuàng)造性思維,就應(yīng)該有與之相適應(yīng)的,能促進(jìn)創(chuàng)造性思維培養(yǎng)的教學(xué)方式。當(dāng)前,數(shù)學(xué)創(chuàng)新教學(xué)方式主要有以下幾種形式:開放式教學(xué)、活動式教學(xué)和探索式教學(xué)。采用“發(fā)現(xiàn)式”,引導(dǎo)學(xué)生主動參與,探索知識的形成、規(guī)律的發(fā)現(xiàn)、問題的解決等過程。
要培養(yǎng)學(xué)生的創(chuàng)造思維能力,應(yīng)當(dāng)在數(shù)學(xué)教學(xué)中充分有效地結(jié)合上述三種形式(但不限于這三種形式),通過逐步培養(yǎng)學(xué)生的以下各種能力來實(shí)現(xiàn)教學(xué)目標(biāo):
一 、培養(yǎng)學(xué)生的觀察力。
敏銳的觀察力是創(chuàng)造思維的起步器。那么,在課堂中,怎樣培養(yǎng)學(xué)生的觀察力呢?第一,在觀察之前,要給學(xué)生提出明確而又具體的目的、任務(wù)和要求。第二,要在觀察中及時指導(dǎo)。比如要指導(dǎo)學(xué)生根據(jù)觀察的對象有順序地進(jìn)行觀察,要指導(dǎo)學(xué)生選擇適當(dāng)?shù)挠^察方法,要指導(dǎo)學(xué)生及時地對觀察的結(jié)果進(jìn)行分析總結(jié)等。第三,要科學(xué)地運(yùn)用直觀教具及現(xiàn)代教學(xué)技術(shù),以支持學(xué)生對研究的問題做仔細(xì)、深入地觀察。第四,要努力培養(yǎng)學(xué)生濃厚的觀察興趣。
二、培養(yǎng)領(lǐng)悟力。
數(shù)學(xué)領(lǐng)悟力是可以在學(xué)習(xí)數(shù)學(xué)的過程中逐步成長起來的。在平時的數(shù)學(xué)教學(xué)中應(yīng)該善于啟發(fā)學(xué)生認(rèn)識和理解所學(xué)的知識,并能熟練的掌握數(shù)學(xué)的基本方法和基本技能,通過培養(yǎng)學(xué)生的領(lǐng)悟能力,優(yōu)化學(xué)生的數(shù)學(xué)思維品質(zhì),讓學(xué)生達(dá)到“真懂”的地步。例如:上圓錐曲線復(fù)習(xí)課時,當(dāng)復(fù)習(xí)完橢圓、雙曲線、拋物線的各自定義及統(tǒng)一定義后,突然有一學(xué)生提問:平面內(nèi)到兩定點(diǎn)F1,、F2的距離的積等于常數(shù)的點(diǎn)的軌跡是什么?這一意料外的問題使思路豁然開朗,我們也可以順勢提出以下問題引導(dǎo)學(xué)生,讓學(xué)生探索:問題1 平面內(nèi)到兩定點(diǎn)F1,、F2的距離的積、商等于常數(shù)的點(diǎn)的軌跡是什么?問題2 平面內(nèi)到定點(diǎn)F的距離與到定直線L的距離的和等于常數(shù)的點(diǎn)的軌跡是什么?若聯(lián)想到課本第61頁第6題(兩個定點(diǎn)的距離為6,點(diǎn)M到這兩個定點(diǎn)的距離的平方和為26,求點(diǎn)的軌跡方程),還可以提出下列問題:問題3 平面內(nèi)到兩定點(diǎn)F1,、F2的距離的平方積、商分別等于常數(shù)的點(diǎn)的軌跡是什么?問題4 平面內(nèi)到定點(diǎn)F距離的平方與到定直線L的距離的平方和等于常數(shù)的點(diǎn)的軌跡是什么?
三、培養(yǎng)想象力。
想象是思維探索的翅膀。數(shù)學(xué)想象一般有以下幾個基本要素。第一,要有扎實(shí)的基礎(chǔ)知識和豐富的經(jīng)驗(yàn)支持。第二,要有能迅速擺脫表象干擾的敏銳的洞察力和豐富的想象力。第三,要有執(zhí)著追求的情感。因此,培養(yǎng)學(xué)生的想象力,首先要使學(xué)生學(xué)好有關(guān)的基礎(chǔ)知識。其次,根據(jù)教材潛在的因素,創(chuàng)設(shè)想象情境,提供想象材料,誘發(fā)學(xué)生的創(chuàng)造性想象。另外,還應(yīng)指導(dǎo)學(xué)生掌握一些想象的方法,像類比、歸納等。例如在一節(jié)高三復(fù)習(xí)課上,我準(zhǔn)備用一題多解的開放視角引導(dǎo)學(xué)生探索如下的問題:在教師的點(diǎn)評幫助下,學(xué)生給出了四種不同的證法:作差比較法、綜合法、分析法、三角換元法。教師對此感到滿意,也潛意識認(rèn)為沒有其他證法了。
用向量來證明不等式,也是方法上的創(chuàng)新,這兩種證法都體現(xiàn)了學(xué)生的大膽想象力、探究精神和解題機(jī)智。一個懂得如何學(xué)習(xí)的學(xué)生在課堂上的想象力是非常豐富的,一個好的教師也應(yīng)該懂得怎樣來培養(yǎng)和保護(hù)學(xué)生的想象力。有時候,學(xué)生的想象力可能是“天馬行空”,甚至是荒唐的,這時候教師還要注意引導(dǎo):解題是否浪費(fèi)了重要的信息?能否開辟新的解題通道?解題多走了哪些思維回路?思維、運(yùn)算能否變得簡潔?是否有方法的創(chuàng)新?能否對問題蘊(yùn)涵的知識進(jìn)行縱向深入地探究,梳理知識的系統(tǒng)性?能否加強(qiáng)知識的橫向聯(lián)系,把問題所蘊(yùn)涵孤立的知識“點(diǎn)”擴(kuò)展到系統(tǒng)的知識“面”?為什么有這樣的問題,它和哪些問題有聯(lián)系?能否受這個問題的啟發(fā),得到一些重要的結(jié)果,有規(guī)律性的發(fā)現(xiàn)?能否形成獨(dú)到的新見解,有自己的小發(fā)明?等等。通過不斷地想象,讓學(xué)生的思維能夠持續(xù)飛翔,從而不斷培養(yǎng)學(xué)生豐富的想象力。
四、培養(yǎng)發(fā)散思維。
在教學(xué)中,培養(yǎng)學(xué)生的發(fā)散思維能力一般可以從以下幾個方面入手。比如訓(xùn)練學(xué)生對同一條件,聯(lián)想多種結(jié)論;改變思維角度,進(jìn)行變式訓(xùn)練;培養(yǎng)學(xué)生個性,鼓勵創(chuàng)優(yōu)創(chuàng)新;加強(qiáng)一題多解、一題多變、一題多思等。特別是近年來,隨著開放性問題的出現(xiàn),不僅彌補(bǔ)了以往習(xí)題發(fā)散訓(xùn)練的不足,同時也為發(fā)散思維注入了新的活力。下面是我在教學(xué)實(shí)踐中遇到的一個例子,事情緣起于一本教輔讀物的一個練習(xí)題:求f(x),使f(x)滿足f[f(x)]=x+2……… (1),書后的答案是 f(x)= x+1。該題本意是在學(xué)生學(xué)習(xí)了函數(shù)的基本概念之后,通過一次函數(shù)復(fù)合的具體例子,讓學(xué)生體會復(fù)合函數(shù)的概念。這樣的設(shè)計(jì)思想是不錯的,但是題目中沒有明確給出“f(x)是一次函數(shù)”的條件,給學(xué)生造成了困惑。不少學(xué)生要求解釋這道題。當(dāng)被告之應(yīng)加上“f(x)是一次函數(shù)”的條件后,許多學(xué)生認(rèn)為“f(x)是一次函數(shù)”的條件可由(1)推出,有些學(xué)生則認(rèn)為根據(jù)不充分。在這樣的情況下,求出函數(shù)方程(1)的一個非線性解的興趣被喚起,我不愿放過這樣一個能讓學(xué)生開闊數(shù)學(xué)眼界,提升思維深度的大好機(jī)會。于是,我開始探究能否構(gòu)造一個滿足(1)的非線性函數(shù)的例子。
五、培養(yǎng)(誘發(fā))學(xué)生的靈感。
在教學(xué)中,教師應(yīng)及時捕捉和誘發(fā)學(xué)生學(xué)習(xí)中出現(xiàn)的靈感,對于學(xué)生別出心裁的想法,違反常規(guī)的解答,標(biāo)新立異的構(gòu)思,哪怕只有一點(diǎn)點(diǎn)的新意,都應(yīng)及時給予肯定。同時,還應(yīng)當(dāng)應(yīng)用數(shù)形結(jié)合、變換角度、類比形式等方法去誘導(dǎo)學(xué)生的數(shù)學(xué)直覺和靈感,促使學(xué)生能直接越過邏輯推理而尋找到解決問題的突破口。
在分析中尋找解題的靈感,在轉(zhuǎn)化中獲取解題的信息,應(yīng)用數(shù)形結(jié)合,于是活的解法也就脫穎而出。
(河北趙縣綜合職業(yè)技術(shù)教育中心)