• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    簡諧勢阱中含時散射調(diào)制造成有(無)阻尼玻色愛因斯坦凝聚體的共振現(xiàn)象

    2013-02-25 06:21:53劉超飛萬文娟張贛源
    江西理工大學(xué)學(xué)報 2013年3期
    關(guān)鍵詞:玻色勢阱理工大學(xué)

    劉超飛,萬文娟,張贛源

    (江西理工大學(xué),a.理學(xué)院;b.應(yīng)用科學(xué)學(xué)院,江西贛州341000)

    簡諧勢阱中含時散射調(diào)制造成有(無)阻尼玻色愛因斯坦凝聚體的共振現(xiàn)象

    劉超飛a,萬文娟b,張贛源b

    (江西理工大學(xué),a.理學(xué)院;b.應(yīng)用科學(xué)學(xué)院,江西贛州341000)

    通過周期性調(diào)節(jié)原子間的散射長度,數(shù)值模擬了有阻尼與無阻尼兩種情況下玻色愛因斯坦凝聚體中的共振效應(yīng).研究發(fā)現(xiàn)阻尼效應(yīng)導(dǎo)致共振驅(qū)動頻率下降和共振區(qū)間變窄.能量的相互轉(zhuǎn)化在數(shù)值上形成的交差現(xiàn)象可以顯示凝聚體是否處于共振狀態(tài),以及阻尼效應(yīng)帶來的區(qū)別.阻尼效應(yīng)致使凝聚體出現(xiàn)共振時的動能受到抑制,從而導(dǎo)致兩種情況下共振現(xiàn)象的差異.

    玻色愛因斯坦凝聚;共振;阻尼

    1 Introduction

    The experimental observation of dilute atomic Bose-Einstein condensate(BEC)has stimulated extensive studies of the nonlinear matter waves.One of the great interests is how the interatomic interaction affects the properties of BECs.It is well known that the interatomic interactions can be changed by modulating the s-wave scattering length using the Feshbach resonance[1-8].This offers a good opportunity for manipulation of atomic matter waves and nonlinear excitationsinBECs.Especiallyforaperiodic modulation,it has been applied to control the soliton interaction in BECs[9],the collapse[10]and stabilization[11]of the solitons.Furthermore,the periodic modulationwould induce the resonance of the condensate itself[12-15].

    Resonance is an interesting feature of any oscillation under the action of an external periodic field.In physics,resonance is the tendency of a system to oscillate at larger amplitude at some frequencies than at others.When damping is very small,the resonant frequency is approximately equal to the natural frequency of the system,which is the frequency of free vibrations.Recently,the generation of resonances via a periodic variation of the atomic scattering length has been demonstrated in some investigations about BEC[12-15].Scientist often considers the nonlinear problems without damping,starting from the pure Gross-Pitaevskii(GP)equation,and examines the BEC width[12-15]to illustrate the properties of resonance phenomenon.The growth of the BEC width under resonance has been indicated.However, in the realistic system,the BEC is prone to damping due to a small thermal cloud[16-22].This would disturb the resonance.Until now,few investigations have aimed at the resonance of BEC under damping.

    In this study,a systematical comparison of the resonance of BEC without damping and that with dampingrevealstheirproperties.Following customary manipulation,we induce the resonance by varying the scattering length periodically.Our results show that the damping mechanism can cause a remarkable change in the resonance.The following is the main difference between the undamped resonant BEC and the damped one:①the damping leads to the narrowing of resonance and the decreasing of the driving frequency,②the BEC width does not increase dramatically under damping when resonance arises,③when the modulation frequency is not far off the most important resonance frequency,the BEC withoutdampingcanabsorbandemitenergy repeatedly,whiletheBECunderdampingis dynamically equilibrated at a lower energy state,④the most remarkable difference comes from the interconversion of energy.In the absence of damping, the energy interconversion under resonance mainly contains the contribution of kinetic energy and potential energy.While in the presence of damping, the resonance arises with the energy interconversion mainly between potential energy and interaction energy.

    2 Model and equations

    At zero temperature,the dynamics of the BECs is governed by the GP equation:

    ψ(x,t)denotes the macroscopic order parameter of the system,VExt(x)the confining potential,m the atomic mass,and g(t)=4πh2a(t)/m the scattering amplitude,where a(t)is the s-wave scattering length. Here,we consider the BEC in a harmonic potential VExt(x)=mω2x2/2,where ω is the frequency of the trap.

    As indicated above,we assume the scattering lengthtobetemporallymodulatedsothatthe nonlinear coefficient takes the form:

    where h is the amplitude of ac parts,and Ω(Ω=cω)is the ac-modulation frequency.The modulation can be obtained by temporally varying magnetic field near the Feshbach resonance[9-11,23,24].So the atomic scattering length can be expressed as:

    where a∞is the far-off-resonant scattering length,t is the time,B0and Δ are the resonance positionandwidth,respectively.Regarding experimental values of the parameters B0and Δ, Feshbach resonances have been observed in23Na at 853 G and 907 G[4],in7Li at 725 G[25]and in85Rb at 164 G with Δ=11 G[26].

    The aim of this study is to demonstrate the influence of damping in BEC when the dynamical resonance arises by varying the scattering length periodically.Generally speaking,the GP model relies on the mean-field description of a boson gas at extremely low temperatures and becomes exact at T= 0.When the temperature is finite,but still much below the critical temperature Tcfor BEC formation, there exists a fraction of atoms that is not condensed, the so-called thermal cloud.This thermal cloud is in fact coupled to the condensed gas and its presence produces effects that are not accounted for by the GPequation.Phenomenologically,oneofthemost noticeableeffectsofthepresenceofasizable thermal cloud is the introduction of damping to the condensed gas.

    Theapproachofaddingphenomenological damping to emulate thermal effects was originally proposed by Pitaevskii.Following the custom,we add a damping term h γ ψ/t to the left-hand side of equation(1)[16-22].Then,we get:

    Undoubtedly,thedampingwillcausea dissipation of energy from the system.But,the periodical modulation of the scattering length will induce excitations.So,the two mechanisms will compete with each other until a new equilibrium state formed.

    3 Initial conditions for the model

    In numerical simulation,we take the density profile approximated by the Thomas-Fermi(TF) solution as initial condition, μ is the chemical potential of the atom.For the sake of simplicity,we set h =1,the chemical potential μ=1, the atomic mass m=1,and the scattering amplitude g0=1.Thus the spatial extent of the system is characterized by the healing lengthand the time unit is ξ/c.Meanwhile,we havec/ξ for the external potential.The ac-modulation amplitude h is 0.1g0.

    We now estimate the parameters for a realistic experiment.For a23Na condensate with m=38.18× 10-27kg and a∞=2.8 nm[27],we assume the tight transverse confining frequency ω┴=500×2π Hz and the onedimensional peak condensate density n1D=5×107m-1. Thus the longitudinal confining frequency is 66.2× 2π Hz.Our space and time units correspond to 0.56 μm 1.1×10-4s and respectively.The system has the number of atoms N0≈11000.

    4 Results

    Usually,even small periodic driving forces can produce large amplitude vibrations at the resonant frequencies,because the system stores vibrational energy.Hence,thetemporalmodulationofthe scatteringlengthcanbeviewedasadriving manipulation,which leads to the energy transfer into BEC.The initial condition of the system uses the TF solution which approaches the ground state,so our experiments start from a low energy condensate. Here,the initial energy of the BEC is 24.12μ.The energy of the system is calculated by the function,

    Fig.1 The maximum energy of condensate versus the coefficient c.Note the drive frequency Ω=cω.(a)γ=0(squares);(b)γ=0(circles)and γ=0(squares).The amplitude of the driving is h=0.1g0.The energy is in units of μ,and the corresponding unit in the following pictures are the same as in this picture.

    We firstly test various drive frequencies to find themostimportantresonancefrequencies.Our investigation is based on the numerical simulation. Fig.1 plots the values of the maximum energy obtained by the periodical modulation.Without damping,we find the maximum energy of the BEC reaches the peak value when the frequency approaches 1.83 ω [see Fig.1(a)].In Ref.[15],Abdullaev and Garnierhaveexploredthefrequencybymeasuringthe oscillation amplitude of the BEC.In Fig.1(b),we obtain the greatest value at the frequency of 1.75ω when the damping rate is 0.01.Note the damping rate in real system is related to some factors such as the temperature.In lots of investigations,this rate ranges from 0 to 0.03.Here,we choose the value γ=0.01. Comparing the two cases,the damping leads to a narrowing and a decreasing shift of the resonance in the drive frequency.

    What does the damping affect the resonance?In above,we have only shown the change of the drive frequency and the maximum energy.It seems to be a quantitativedifferencebetweenthetwocases. Furthermore,we find the most important resonance frequencies:1.75ω and 1.83ω corresponding to the two cases respectively.In the following,we will mainly take the two frequencies to explore the properties of resonance.

    In order to further study the resonance of BEC, we calculate the root mean square distance,=which is defined as:

    Fig.2 plots the BEC width obtained from the root mean square distance as a function of time. Without damping,Fig.2(a)shows the BEC width is prone to steadily increase at the most resonant response.When the drive frequency is 1.75ω,the oscillation amplitude of the BEC width periodically increases to a maximum and then decay to the original value[see Fig.2(c)].Such a growth and decay cycle of the amplitude keeps on repeating.In the presence of damping,the oscillation amplitude of the BEC width completely degenerates.In Figs.2(b)and 2(d),the BEC width eventually evolves to a periodic cycle,which differs from that in Figs.2(a)and 2(b).In fact,the evolution of the BEC width follows the modulation of the scattering length. Furthermore,in Figs.2(b)and 2(d),we can not determine whether the resonance takes place due to the unremarkable BEC width.This is why we do not specially stress the BEC width in this paper.In the next text,we will essentially confirm that the four instances are in resonance.

    Fig.2BECwidthversustimeforthenonlinear management.(a)Ω=1.83ω,γ=0;(b)Ω=1.83ω,γ=0.01;(c)Ω= 1.75ω,γ=0;(d)Ω=1.75ω,γ=0.01;The length unit is ξ=h/,and the time unit is ξ/c.The corresponding units in the following pictures are the same as in this picture.

    Fig.3 detailedly show the energy evolution.At themostimportantresonancefrequencywithout damping,energy can be steadily pumped into BEC until the system is equilibrated by the external potential[see Fig.3(a)].In Fig.3(c),the energy evolution is also periodic,and it just likes the evolution of the oscillation amplitude in Fig.2(c). Theenergypumpsinandoutofthesystem. Consequently,the resonance of the system has a peculiar nature:the oscillation amplitude gradually passes through pronounced maxima and minima[seeFig.2(c)].In Ref.[14],Adhikari shows a possible explanation.After the amplitude attains a certain value,the external force and the oscillation become out of phase,and the system loses energy in each cycle.Thus,the amplitude of oscillation passes through a maximum and minimum.And the growth and decay cycle of the amplitude keeps on repeating. With damping rate r=0.01,energy evolves fast to a periodic modulation and does not change as that in Fig.3(c).This indicates the system evolves into a dynamic equilibrium state,which results from the damping and the ac driving and oscillates as the modulation of the scattering length.

    Fig.3 Energy evolution of condensate under the nonlinear management.(a)Ω=1.83ω,γ=0;(b)Ω=1.83ω,γ= 0.01;(c)Ω=1.75ω,γ=0;(d)Ω=1.75ω,γ=0.01.

    For the usual resonance,such as an oscillator, when it is at maximum displacement,its potential energy is at a maximum as well.From there,it beginsmovingtowardthepositionofstable equilibrium,and as it does so,it loses potential energy and gains kinetic energy.Once it reaches the stable equilibrium position,kinetic energy is at a maximumandpotentialenergyataminimum. WhetherdoesthenonlinearresonanceofBEC display this feature?In above text,even we can obtain some evidence of resonance according to the BEC width and the maximum energy,it is not easy to obtain this feature because the BEC does not behave like the oscillator.

    Fig.4(color online)The temporal evolution of kinetic energy(black line),potential energy(red line)and interaction energy(green line).(a)Ω=1.83ω,γ=0;(b)Ω= 1.83ω,γ=0.01;(c)Ω=1.75ω,γ=0;(d)Ω=1.75ω,γ=0.01.

    Now we aim at the energy interconversion of the resonant BEC.In Fig.4(a),we can see the oscillation amplitude of kinetic energy and potentialenergyisapproximatelyequal.Meanwhile,the oscillation frequency of kinetic energy and potential energy is almost equal.Consequently,kinetic energy and potential energy convert each other in the resonance process.On value,they form crossovers. Fig.4(c)shows a coupling among kinetic,potential andinteractionenergy.Thisinterconversion corresponds to the energy evolution in Fig.3(c).In Fig.4(b)and 4(d),we can see the interconversion mainlyconcentratesonpotentialenergyand interaction energy.On value,they cross each other obviously.In a word,the energy interconversion of BEC in nonlinear resonance is different from that of the oscillator.But the essential interconversion of energy to construct resonance is similar.It is easy to understandthesephenomena.TheBECisa nonlinear system,and its energy comes from not only kineticenergyandpotentialenergy,butalso interaction energy.Hence,energy interconversion in nonlinear resonance of BEC displays various modes.

    We now compare Fig.4(a)with(b)and Fig. 4(c)with 4(d).Although the modulation frequency is the same,the damping compels the interconversion to focus on interaction energy and potential energy. Under damping,the oscillation amplitude of kinetic energy is much smaller than that of potential energy(interaction energy).And the oscillation frequency of kinetic energy mismatches with that of potential energ(interaction energy)too.Specially,interaction energy and potential energy can form the crossover on value in Fig.4(b)and 4(d).This indicates that the damping weakens the excitation of kinetic energy in resonance.It has the resonance with different energy interconversion degenerate to a fixed mode.

    Finally,wementionthefar-off-resonant frequencies.Fig.1 has shown that these frequencies donotinduceahigh-energycondensate. Importantly,the value of potential energy,kinetic energyandinteractionenergydoesnotform crossovers at all when the driving frequencies are far from the most important frequencies(see Fig.5). Furthermore,the oscillation frequencies of potential energy,kinetic energy and interaction energy tend to be disordered.These properties indicate that the BEC indeed does not undergo resonance.In reverse, Fig.4 completely indicates that the BEC is in resonance.

    Fig.5(color online)The temporal evolution of kinetic energy(black line),potential energy(red line)and interaction energy(green line)as the drive frequency is faroff-resonant frequency.(a)Ω=1.2ω,γ=0;(b)Ω=1.2ω,γ=0.01.

    The resonance of BEC under damping is firstly considered.Due to the interatomic interaction,the resonance of BEC can arise with various modes of the energy interconversion.Our investigation mainly showsthedifferencebetweenresonancewithout damping and that with damping.In fact,resonance is also dependent on other factors such as the trapping potential,thestrengthofinteractionandthe amplitudeoftheacmodulation.Differingfrom previous works[12-15],we concentrate on the energy of thesystem.Althoughthisworkpreliminarily illustrates the formation of the resonance of BEC,it has clearly demonstrated the properties.Furthermore, the damping rate can also control resonance.If the damp rate is very small(approaches zero),resonance with damping will act as that without damping. Certainly,if the damping rate is very big,the BEC would not form resonance at all.

    5Conclusion

    By numerically solving the corresponding GP equation,wehavesystematicallystudiedtheresonance of BEC both with and without damping. Our results have shown some difference between the twocases,includingthemostimportantdrive frequencies,the BEC width,the transfer of energy and the energy interconversion.The crossover of kinetic energy,potential energy or interaction energy on value can indicate the BEC is in resonance.In the absence of damping,kinetic energy can be intensively excited as resonance occurs,whereas in the present of damping,a driven system with lower energy state appears,and the energy interconversion mainly focuses on potential energy and interaction energy.Therefore,dampingnotonlycausesa quantitative difference in the resonant frequency and amplitude,but also completely changes the energy interconversion in resonance.

    [1]Moerdijk A J,Verhaar B J,Axelsson A.Resonances in ultracold collisions of6Li,7Li,and23Na[J].Phys.Rev.A,1995,51(6):4852-4861.

    [2]Roberts J L,Claussen N R,James P Burke,et al.Resonant magnetic field control of elastic scattering in cold85Rb[J].Phys.Rev. Lett.,1998,81(23):5109-5112.

    [3]Stenger J,Inouye S,Andrews M R,et al.Strongly enhanced inelastic collisions in a Bose-Einstein condensate near feshbach resonances[J].Phys.Rev.Lett.,1999,82(12):2422-2425.

    [4]Inouye S,Andrews M R,Stenger J,et al.Observation of Feshbach resonances in a Bose–Einstein condensate[J].Nature,1998,392 (6672):151-154.

    [5]Cornish S L,Claussen N R,Roberts J L,et al.Stable85Rb Bose-Einstein condensates with widely tunable interactions[J].Phys.Rev. Lett.,2000,85(9):1795-1798.

    [6]Donley E A,Claussen N R,Cornish S L,et al.Dynamics of collapsing and exploding Bose-Einstein condensates[J].Nature,2001, 412(6844):295-299.

    [7]Regal C A,Jin D S.Measurement of positive and negative scattering lengths in a Fermi gas of atoms[J].Phys.Rev.Lett., 2003,90(23):230404.

    [8]Volz T,Dürr S,Ernst S,et al.Characterization of elastic scattering near a Feshbach resonance in87Rb[J].Phys.Rev.A,2003,68(1): 010702.

    [9]Zhang X F,Yang Q,Zhang J F,et al.Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap[J].Phys.Rev.A,2008,77 (2):023613.

    [10]Abdullaev F K,Caputo J G,Kraenkel R A,et al.Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length[J].Phys.Rev.A,2003,67(1):013605.

    [11]Adhikari S K.Stabilization of bright solitons and vortex solitons in a trapless t hree-dimensional Bose-Einstein condensate by temporal modulation of the scattering length[J].Phys.Rev.A,2004, 69(6):063613.

    [12]Rajendran S,Muruganandam P,Lakshmanan M.Nonstationary excitations in Bose–Einstein condensates under the action of periodicallyvaryingscatteringlengthwithtimedependent frequencies[J].Physica D,2007,227(1):1-7.

    [13]Abdullaev F Kh,Galimzyanov R M,Brtka M,et al.Resonances in a trapped 3D Bose–Einstein condensate under periodically varying atomic scattering length[J].J.Phys.B:At.Mol.Opt. Phys.,2004,37(17):3535-3350.

    [14]Adhikari S K.Resonance in Bose–Einstein condensate oscillation from a periodic variation in scattering length[J].J. Phys.B:At.Mol.Opt.Phys.2003,36(6):1109-1120.

    [15]Abdullaev F K,Garnier J.Collective oscillations of onedimensional Bose-Einstein gas in a time-varying trap potential and atomic scattering length[J].Phys.Rev.A,2004,70(5):053604.

    [16]Choi S,Morgan S A,Burnett K.Phenomenological damping in trapped atomic Bose-Einstein condensates[J].Phys.Rev.A, 1998,57(5):4057-4060.

    [17]Jin D S,Matthews M R,Ensher J R,et al.Temperaturedependent damping and frequency shifts in collective excitations of a dilute Bose-Einstein condensate[J].Phys.Rev.Lett.,1997, 78(5):764-767.

    [18]MertesKM,MerrillJW,Carretero-GonzálezR,etal.Nonequilibrium dynamics and superfluid ring excitations in binary Bose-Einstein condensates[J].Phys.Rev.Lett.,2007,99(19):190402.

    [19]Liu C F,Tang Y.Metastable state and macroscopic quantum tunneling of binary mixtures[J].Eur.Phys.J.B,2009,70(2):193-199.

    [20]Liu C F,Fan H,Zhang Y C,et al.Circular-hyperbolic skyrmion in rotating pseudo-spin-1/2 Bose-Einstein condensates with spin-orbit coupling[J].Phys.Rev.A,2012,86(5):053616.

    [21]Liu C F,Liu W M.Spin-orbit-coupling-induced half-Skyrmion excitations in rotating and rapidly quenched spin-1 Bose-Einstein condensates[J].Phys.Rev.A,2012,86(3):033602.

    [22]Liu C F,Hu K,Hu T,et al.Tunneling of a Bose-Einstein condensate under damping[J].Journal of Low Temperature Physics, 2010,160(1-2):32-40.

    [23]Staliunas K,Longhi S,Valcácel G J de.Faraday patterns in Bose-Einstein condensates[J].Phys.Rev.Lett.,2002,89(21):210406.

    [24]Saito H,Ueda M.Dynamically stabilized bright solitons in a twodimensional Bose-Einstein condensate[J].Phys.Rev.Lett.,2003, 90(4):040403.

    [25]Strecker K E,Partridge G B,Truscott A G,et al.Formation and propagation of matter-wave soliton trains[J].Nature,2002,417 (6885):150-153.

    [26]Courteille P,Freeland R S,Heinzen D J,et al.Observation of a Feshbach Resonance in cold atom scattering[J].Phys.Rev.Lett., 1998,81(1):69-72.

    [27]Samuelis C,Tiesinga E,Laue T,et al.Cold atomic collisions studied by molecular spectroscopy[J].Phys.Rev.A,2000,63(1): 012710.

    2012-12-17

    國家自然科學(xué)基金項目(11247206);江西省教育廳基金項目(GJJ13382)

    劉超飛(1981-),男,博士,講師,主要從事玻色愛因斯坦凝聚等方面的研究,E-mail:liuchaofei0809@163.com.

    猜你喜歡
    玻色勢阱理工大學(xué)
    含有陡峭勢阱和凹凸非線性項的Kirchhoff型問題的多重正解
    昆明理工大學(xué)
    分數(shù)階量子力學(xué)下的二維無限深方勢阱
    時空分數(shù)階量子力學(xué)下的δ勢阱
    對稱三勢阱玻色—愛因斯坦凝聚體的非線性效應(yīng)
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    玻色-愛因斯坦凝聚的研究
    科技視界(2015年13期)2015-08-15 00:54:11
    諧振子勢阱囚禁玻色氣體的玻色-愛因斯坦凝聚
    国产精品乱码一区二三区的特点| 日本免费a在线| 国产精品久久久久久久久免 | 久久午夜福利片| 麻豆久久精品国产亚洲av| 又爽又黄a免费视频| 色综合站精品国产| 婷婷亚洲欧美| 成人av在线播放网站| 精品午夜福利在线看| 免费看光身美女| 超碰av人人做人人爽久久| 不卡一级毛片| 国产精品一区二区免费欧美| 日本 欧美在线| 男女做爰动态图高潮gif福利片| 99热精品在线国产| 久久欧美精品欧美久久欧美| 国产精品永久免费网站| 国产一区二区在线av高清观看| 亚洲av中文字字幕乱码综合| 午夜老司机福利剧场| 免费av不卡在线播放| 欧美丝袜亚洲另类 | 成年免费大片在线观看| 国产精品精品国产色婷婷| 波野结衣二区三区在线| 精品欧美国产一区二区三| 亚洲,欧美精品.| av在线蜜桃| 国产亚洲精品综合一区在线观看| 国产综合懂色| 国产成人av教育| 国产精品,欧美在线| 久久久久久久久中文| 久久久久久大精品| 白带黄色成豆腐渣| 中出人妻视频一区二区| 欧美性感艳星| 亚洲精品日韩av片在线观看| 久久久久精品国产欧美久久久| 性色avwww在线观看| 国产成年人精品一区二区| 国产精品影院久久| av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 久久久成人免费电影| 亚洲国产精品合色在线| 欧美成狂野欧美在线观看| 久久99热这里只有精品18| av天堂中文字幕网| 高潮久久久久久久久久久不卡| 精品欧美国产一区二区三| 琪琪午夜伦伦电影理论片6080| 国产精品影院久久| 两人在一起打扑克的视频| 少妇被粗大猛烈的视频| 天堂网av新在线| 亚洲精品影视一区二区三区av| 自拍偷自拍亚洲精品老妇| 看黄色毛片网站| aaaaa片日本免费| 嫩草影院精品99| 亚洲精品成人久久久久久| 变态另类成人亚洲欧美熟女| 老司机福利观看| 国产一区二区三区在线臀色熟女| 午夜福利在线观看免费完整高清在 | 久久久久久九九精品二区国产| 亚洲av电影不卡..在线观看| 少妇裸体淫交视频免费看高清| 丰满的人妻完整版| 国产精品亚洲一级av第二区| 亚洲第一欧美日韩一区二区三区| 国产精品女同一区二区软件 | 亚洲av一区综合| 悠悠久久av| 国产探花极品一区二区| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲av嫩草精品影院| 床上黄色一级片| 久久人人精品亚洲av| 国产精品99久久久久久久久| 有码 亚洲区| 日本在线视频免费播放| 亚洲国产精品999在线| 免费在线观看日本一区| 亚洲av第一区精品v没综合| 不卡一级毛片| 国产精品伦人一区二区| 亚洲精品影视一区二区三区av| 亚洲熟妇中文字幕五十中出| 99国产极品粉嫩在线观看| 国产精品乱码一区二三区的特点| 精品人妻熟女av久视频| 美女免费视频网站| 别揉我奶头 嗯啊视频| 婷婷色综合大香蕉| 亚洲在线观看片| 麻豆国产97在线/欧美| ponron亚洲| xxxwww97欧美| 禁无遮挡网站| 国产精品,欧美在线| 精品人妻偷拍中文字幕| 久久久久免费精品人妻一区二区| 日韩有码中文字幕| 两个人视频免费观看高清| 婷婷色综合大香蕉| 成人毛片a级毛片在线播放| 久久久久久久久久成人| 成年版毛片免费区| 亚洲最大成人手机在线| 久久精品国产亚洲av香蕉五月| 欧美最新免费一区二区三区 | 国产三级黄色录像| 在线观看av片永久免费下载| 国内精品美女久久久久久| 久久久久久久久久成人| 99精品在免费线老司机午夜| 国产精品永久免费网站| xxxwww97欧美| 69av精品久久久久久| 婷婷亚洲欧美| www.www免费av| 三级毛片av免费| 久久久久久国产a免费观看| 国产视频一区二区在线看| 国产久久久一区二区三区| 亚洲国产色片| 日韩欧美精品免费久久 | 色噜噜av男人的天堂激情| 在线a可以看的网站| 午夜精品一区二区三区免费看| 超碰av人人做人人爽久久| 波野结衣二区三区在线| 在线国产一区二区在线| 欧美丝袜亚洲另类 | 一个人看的www免费观看视频| 桃色一区二区三区在线观看| 亚洲国产精品成人综合色| 日本精品一区二区三区蜜桃| 成人av一区二区三区在线看| 国产精品不卡视频一区二区 | 亚洲精品久久国产高清桃花| 在线观看一区二区三区| 国产精品99久久久久久久久| 亚洲第一电影网av| 99热这里只有是精品在线观看 | 日日干狠狠操夜夜爽| 亚洲内射少妇av| 身体一侧抽搐| 国产av麻豆久久久久久久| 欧美成狂野欧美在线观看| 欧美一区二区国产精品久久精品| 亚洲国产精品999在线| 一级黄色大片毛片| 午夜激情欧美在线| 男女视频在线观看网站免费| 中文字幕熟女人妻在线| 一区福利在线观看| 国产乱人视频| .国产精品久久| 精品日产1卡2卡| 中文字幕人成人乱码亚洲影| 两性午夜刺激爽爽歪歪视频在线观看| 久久草成人影院| 色精品久久人妻99蜜桃| 一级毛片久久久久久久久女| 日韩欧美一区二区三区在线观看| ponron亚洲| 熟女电影av网| 伦理电影大哥的女人| 日日摸夜夜添夜夜添小说| 亚洲人成网站在线播| 日本精品一区二区三区蜜桃| 在线观看66精品国产| 老司机福利观看| 18美女黄网站色大片免费观看| 九九久久精品国产亚洲av麻豆| 欧美区成人在线视频| 韩国av一区二区三区四区| 97热精品久久久久久| 好男人电影高清在线观看| 日韩国内少妇激情av| 搞女人的毛片| 人妻丰满熟妇av一区二区三区| 中出人妻视频一区二区| 欧美丝袜亚洲另类 | 99久久精品一区二区三区| 国产真实乱freesex| 少妇的逼好多水| avwww免费| 午夜两性在线视频| 欧美+日韩+精品| 成人精品一区二区免费| 高潮久久久久久久久久久不卡| 午夜激情福利司机影院| 美女cb高潮喷水在线观看| 亚洲欧美日韩卡通动漫| 亚洲成人中文字幕在线播放| 日韩大尺度精品在线看网址| 可以在线观看的亚洲视频| 国产精品av视频在线免费观看| 亚洲专区国产一区二区| 精品午夜福利视频在线观看一区| 97超级碰碰碰精品色视频在线观看| 97碰自拍视频| 欧美日韩国产亚洲二区| 午夜日韩欧美国产| 亚洲人成网站高清观看| 麻豆一二三区av精品| 内地一区二区视频在线| 久久午夜福利片| a级毛片免费高清观看在线播放| 神马国产精品三级电影在线观看| 亚洲无线观看免费| 久久伊人香网站| 色精品久久人妻99蜜桃| 久久人人爽人人爽人人片va | 亚洲最大成人中文| 99热这里只有是精品50| 两人在一起打扑克的视频| 一区二区三区免费毛片| 免费高清视频大片| 国产精品一及| 亚洲国产精品sss在线观看| 国产乱人伦免费视频| 午夜免费男女啪啪视频观看 | 久久久国产成人免费| 美女cb高潮喷水在线观看| 欧美一区二区国产精品久久精品| 亚洲成人精品中文字幕电影| 伦理电影大哥的女人| 欧美日本视频| 怎么达到女性高潮| 99久久精品国产亚洲精品| 久久久国产成人免费| 午夜精品在线福利| 国产精华一区二区三区| 久久久久九九精品影院| www.www免费av| 久久性视频一级片| 中国美女看黄片| 欧美在线黄色| 白带黄色成豆腐渣| 欧美潮喷喷水| 精品无人区乱码1区二区| 久久这里只有精品中国| 中文字幕av成人在线电影| 一区二区三区激情视频| 又黄又爽又免费观看的视频| 18+在线观看网站| 直男gayav资源| 成人av在线播放网站| 中亚洲国语对白在线视频| 一本久久中文字幕| 免费人成视频x8x8入口观看| 国产精品,欧美在线| 久久香蕉精品热| 好看av亚洲va欧美ⅴa在| 日本在线视频免费播放| 日本黄色片子视频| 可以在线观看的亚洲视频| 毛片女人毛片| 男插女下体视频免费在线播放| 欧美成狂野欧美在线观看| 一本久久中文字幕| 精品一区二区三区视频在线| www.www免费av| 亚洲欧美清纯卡通| 亚洲av免费高清在线观看| 国产人妻一区二区三区在| 日韩 亚洲 欧美在线| 男女视频在线观看网站免费| 一个人免费在线观看电影| 欧美zozozo另类| 亚洲欧美清纯卡通| 两个人视频免费观看高清| 亚洲七黄色美女视频| 亚洲av第一区精品v没综合| 中国美女看黄片| 99在线人妻在线中文字幕| 久久久久久九九精品二区国产| 我的老师免费观看完整版| 亚洲无线观看免费| 国产欧美日韩精品亚洲av| 波多野结衣高清无吗| 亚洲国产高清在线一区二区三| 国语自产精品视频在线第100页| 特级一级黄色大片| 久久久精品大字幕| 极品教师在线视频| 在线播放国产精品三级| 亚洲,欧美精品.| 欧美bdsm另类| 色在线成人网| 少妇人妻一区二区三区视频| 琪琪午夜伦伦电影理论片6080| 青草久久国产| 久久精品国产亚洲av天美| 国产探花极品一区二区| 亚洲精品亚洲一区二区| 99热只有精品国产| 男插女下体视频免费在线播放| 别揉我奶头 嗯啊视频| 又爽又黄无遮挡网站| 免费看日本二区| 亚洲第一电影网av| 男女那种视频在线观看| 99久久精品一区二区三区| 真人做人爱边吃奶动态| 直男gayav资源| 女人被狂操c到高潮| 久久伊人香网站| 亚洲人成伊人成综合网2020| 亚洲最大成人手机在线| 亚洲最大成人手机在线| 亚洲五月天丁香| 亚洲五月天丁香| 亚洲欧美清纯卡通| 国产中年淑女户外野战色| 午夜福利成人在线免费观看| 欧美成人免费av一区二区三区| 日本三级黄在线观看| 啦啦啦韩国在线观看视频| 国产精品人妻久久久久久| 99久久精品一区二区三区| 黄色丝袜av网址大全| 97超级碰碰碰精品色视频在线观看| 日韩欧美免费精品| 久久精品国产清高在天天线| 色噜噜av男人的天堂激情| 日韩中字成人| 少妇丰满av| 色吧在线观看| 久久99热这里只有精品18| 香蕉av资源在线| 欧美精品啪啪一区二区三区| 又黄又爽又免费观看的视频| 中文字幕高清在线视频| 淫妇啪啪啪对白视频| 日本在线视频免费播放| 老女人水多毛片| 国产在线男女| 成人永久免费在线观看视频| 免费av不卡在线播放| av在线蜜桃| 国产不卡一卡二| 国产精品影院久久| 午夜福利欧美成人| 神马国产精品三级电影在线观看| 1000部很黄的大片| 黄色日韩在线| 日韩中文字幕欧美一区二区| 一区二区三区高清视频在线| 精品人妻视频免费看| 国产精品久久久久久精品电影| 一个人免费在线观看的高清视频| 精品久久久久久久末码| 69人妻影院| 一区二区三区免费毛片| 最新在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 免费av毛片视频| 色在线成人网| 网址你懂的国产日韩在线| 91在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 人妻制服诱惑在线中文字幕| 欧美日韩瑟瑟在线播放| 中文资源天堂在线| 天堂影院成人在线观看| 欧美日本视频| 国产极品精品免费视频能看的| 欧美日本亚洲视频在线播放| 一a级毛片在线观看| 91av网一区二区| 他把我摸到了高潮在线观看| 国产精品98久久久久久宅男小说| 亚洲av中文字字幕乱码综合| a级一级毛片免费在线观看| 欧美最黄视频在线播放免费| av在线老鸭窝| 在线播放无遮挡| 在线观看66精品国产| 精品一区二区免费观看| 亚洲国产欧洲综合997久久,| 一个人免费在线观看电影| 性欧美人与动物交配| 美女cb高潮喷水在线观看| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 又爽又黄无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 深夜精品福利| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 亚洲熟妇熟女久久| 欧美3d第一页| 亚洲电影在线观看av| 亚洲精品粉嫩美女一区| 亚洲人与动物交配视频| 国产亚洲精品av在线| 美女大奶头视频| 午夜福利在线观看吧| 一本精品99久久精品77| 日韩免费av在线播放| 超碰av人人做人人爽久久| 欧美国产日韩亚洲一区| 国产一级毛片七仙女欲春2| 极品教师在线免费播放| 老司机福利观看| 亚洲中文字幕一区二区三区有码在线看| 色综合站精品国产| 特大巨黑吊av在线直播| 在线天堂最新版资源| 亚洲内射少妇av| 蜜桃亚洲精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 五月玫瑰六月丁香| 成人鲁丝片一二三区免费| 变态另类成人亚洲欧美熟女| 国产精品免费一区二区三区在线| 亚洲av一区综合| 精品99又大又爽又粗少妇毛片 | 国产欧美日韩一区二区精品| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 禁无遮挡网站| 欧美绝顶高潮抽搐喷水| www日本黄色视频网| 国产黄色小视频在线观看| 别揉我奶头 嗯啊视频| 91久久精品电影网| а√天堂www在线а√下载| 乱码一卡2卡4卡精品| 成人国产一区最新在线观看| 制服丝袜大香蕉在线| 久久久久精品国产欧美久久久| 欧美一区二区精品小视频在线| 国产精品三级大全| 成人性生交大片免费视频hd| 免费在线观看日本一区| 国产爱豆传媒在线观看| a级毛片免费高清观看在线播放| 99在线视频只有这里精品首页| 亚洲三级黄色毛片| 又粗又爽又猛毛片免费看| 日本免费a在线| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av在线| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频| 国产男靠女视频免费网站| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 久久香蕉精品热| 国产在线男女| 久久精品久久久久久噜噜老黄 | 国产熟女xx| 亚洲av.av天堂| 99热这里只有是精品在线观看 | 观看美女的网站| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 高清日韩中文字幕在线| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 国产真实伦视频高清在线观看 | 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 国产精品一区二区性色av| 国产黄色小视频在线观看| 国产精品电影一区二区三区| 久久这里只有精品中国| 国内精品久久久久久久电影| 亚洲 欧美 日韩 在线 免费| 嫩草影院新地址| 国产伦精品一区二区三区四那| 美女黄网站色视频| 蜜桃亚洲精品一区二区三区| 久久热精品热| 啪啪无遮挡十八禁网站| 欧美高清成人免费视频www| 3wmmmm亚洲av在线观看| 久久天躁狠狠躁夜夜2o2o| 看黄色毛片网站| 午夜福利欧美成人| 一级作爱视频免费观看| 亚洲专区国产一区二区| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 亚洲成av人片在线播放无| 亚洲av中文字字幕乱码综合| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 99视频精品全部免费 在线| 亚洲狠狠婷婷综合久久图片| 国产综合懂色| 搡老岳熟女国产| 国产成人av教育| 免费av不卡在线播放| 国产一区二区三区在线臀色熟女| 男女那种视频在线观看| 午夜福利欧美成人| 一级黄片播放器| 欧美日韩黄片免| 国产精品嫩草影院av在线观看 | 人妻久久中文字幕网| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 国产熟女xx| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 国产av在哪里看| 精品人妻熟女av久视频| 亚洲 欧美 日韩 在线 免费| 99久久无色码亚洲精品果冻| 国产精品99久久久久久久久| 露出奶头的视频| 免费在线观看日本一区| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区精品| 国产视频一区二区在线看| 亚洲aⅴ乱码一区二区在线播放| 一本综合久久免费| 成人特级av手机在线观看| 精品一区二区三区av网在线观看| 国产私拍福利视频在线观看| 久久久久精品国产欧美久久久| 精华霜和精华液先用哪个| 久久久久性生活片| 国产爱豆传媒在线观看| 久久性视频一级片| 黄色一级大片看看| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 一级黄片播放器| 又粗又爽又猛毛片免费看| 久久久国产成人免费| 精品国产亚洲在线| 男人的好看免费观看在线视频| 欧美激情久久久久久爽电影| 欧美性感艳星| 亚洲午夜理论影院| 欧美日韩中文字幕国产精品一区二区三区| 国产探花在线观看一区二区| 亚洲av美国av| 乱码一卡2卡4卡精品| www.色视频.com| 国产久久久一区二区三区| 国产主播在线观看一区二区| 精品久久久久久久久久久久久| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 日韩欧美 国产精品| 俺也久久电影网| 看十八女毛片水多多多| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 丰满乱子伦码专区| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区| 国产高清三级在线| 丰满的人妻完整版| 亚洲美女搞黄在线观看 | 青草久久国产| 免费av不卡在线播放| 欧美成人性av电影在线观看| 老司机深夜福利视频在线观看| 精品免费久久久久久久清纯| a级一级毛片免费在线观看| 欧美黑人欧美精品刺激| 国产综合懂色| 99热只有精品国产| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 九色国产91popny在线| 日韩欧美三级三区| 亚洲人成网站高清观看| 少妇的逼好多水| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 成人美女网站在线观看视频| 久久这里只有精品中国| 别揉我奶头~嗯~啊~动态视频| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 亚洲人成网站在线播放欧美日韩| 日本一二三区视频观看| 不卡一级毛片| 国产人妻一区二区三区在| 中文字幕av成人在线电影| 一级黄片播放器| 亚洲美女黄片视频| 男人狂女人下面高潮的视频| 精品久久久久久久久亚洲 | 欧美成狂野欧美在线观看| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看| 国语自产精品视频在线第100页|