馬禕文 綜 述 徐 輝 審 校
通過抑制HIF-1α途徑減輕急性肺損傷的研究進展
馬禕文 綜 述 徐 輝 審 校
急性肺損傷在臨床上相當(dāng)常見,可以由各種因素造成,死亡率高。實驗研究發(fā)現(xiàn),在不同類型的急性肺損傷模型中,急性肺損傷與HIF-1α途徑都有關(guān)聯(lián),并且許多藥物對肺損傷的減輕作用也是通過抑制HIF-1α途徑來實現(xiàn)的。本文就通過抑制HIF-1α途徑減輕急性肺損傷的研究進展進行綜述。
急性肺損傷低氧誘導(dǎo)因子-1α抑制
肺損傷是由物理、化學(xué),或生物因素特征性地引起炎癥反應(yīng),從而導(dǎo)致對肺組織的損傷。這些炎癥反應(yīng)可以是由中性粒細胞引起的急性炎癥反應(yīng),也可以是由淋巴細胞和巨噬細胞引起的慢性炎癥反應(yīng)。盡管臨床上對于肺損傷的治療有了很大的進展,但其死亡率依然居高不下。急性肺損傷(A-cute lung injury,ALI)的醫(yī)院內(nèi)死亡率為38.5%,一旦發(fā)展為急性呼吸窘迫綜合征(Acute respiratory distress syndrome,ARDS)時,死亡率更高,達41.1%[1]。肺損傷的常見原因有:胃內(nèi)容物誤吸,肺部感染,創(chuàng)傷(包括直接的肺挫傷和肺以外的多發(fā)性創(chuàng)傷),毒性氣體吸入,淹溺,脂肪栓塞,膿毒血癥,休克,輸血,體外循環(huán),呼吸機長時間使用,放射線照射肺部,肺慢性疾?。ò宰枞苑渭膊 ⑾头蝿用}高壓等)。實驗研究發(fā)現(xiàn),急性肺損傷與HIF-1α途徑關(guān)系密切,無論是通過直接途徑還是間接途徑,無論是肺損傷的急性期還是慢性期,HIF-1α在肺損傷中都起了非常重要的作用。因此,很多研究聚焦于抑制HIF-1α途徑從而減輕肺損傷。現(xiàn)就通過抑制HIF-1α途徑減輕急性肺損傷的研究進展進行綜述。
低氧誘導(dǎo)因子(HIF),就是在低氧情況下誘導(dǎo)出的一種轉(zhuǎn)錄因子。HIF-1是一種高度保守的轉(zhuǎn)錄因子,存在于幾乎所有類型的細胞中。它是以異二聚體形式存在的,有兩個亞基構(gòu)成,一個是對氧敏感的α亞基,另一個是穩(wěn)定持續(xù)表達的β亞基。最初HIF被發(fā)現(xiàn)時是和促紅細胞生成素(EPO)基因綁在一起的,用來編碼EPO,從而促進紅細胞生成[2]。常氧狀態(tài)下,人HIF-1α經(jīng)脯氨酸羥化酶(PHD)作用,以氧分子(O2)作底物,HIF-1α的Pro-402和Pro-564兩個脯氨酸殘基被羥化,然后通過Von Hipple-Lindau(VHL)和泛素(Ubiquitin,Ub)結(jié)合,即泛素化后迅速被蛋白酶體系降解。因此,在常氧狀態(tài)下,胞漿中幾乎檢測不到HIF-1α。而在低氧或缺氧狀態(tài)下,PHD活性被抑制,HIF-1α降解減少而穩(wěn)定表達,從胞漿進入細胞核內(nèi),在核內(nèi)聚積并和與HIF-1β亞基結(jié)合,并通過與轉(zhuǎn)錄共同活化因子CBP和p300的結(jié)合[3],識別低氧反應(yīng)目標基因啟動子內(nèi)的HIF反應(yīng)應(yīng)答元件(HRE),促進HIF-1的各種靶基因,包括血管內(nèi)皮生長因子(VEGF)、血紅素加氧酶-1(HO-1)等的轉(zhuǎn)錄及表達,經(jīng)翻譯后途徑實現(xiàn)HIF-1α介導(dǎo)的低氧反應(yīng)的激活。研究證實,在炎癥環(huán)境下的炎癥相關(guān)因子,例如TNFα/IL-4[4]及其它細胞因子、轉(zhuǎn)化生長因子β1、血管緊張素II,也可誘導(dǎo)HIF-1α的活化[5-6]。HIF-2α[7-8]是在發(fā)現(xiàn)HIF-1α后被確定的一種和HIF-1α有類似序列的轉(zhuǎn)錄因子,存在于所有的有核細胞中,也是通過PHD依賴的途徑降解,但它的表達模式受到更多限制。
急性肺損傷/急性呼吸窘迫綜合征,是常見的一種由心源性因素以外的各種肺內(nèi)外致病因素引起的急性、進行性、缺氧性呼吸衰竭,臨床表現(xiàn)為進行性呼吸困難和難以糾正的低氧血癥,ARDS是ALI的嚴重階段。急性肺損傷的早期損傷,包括肺泡襯里層的損傷,肺泡上皮細胞的凋亡,血管通透性增加導(dǎo)致的肺水腫,而后階段主要是肺泡Ⅱ型的反應(yīng)性增生[9]。研究表明,許多類型的急性肺損傷都與HIF-1α有關(guān),包括低氧致急性肺損傷[10-11],內(nèi)毒素敗血癥致急性肺損傷[12],創(chuàng)傷/失血性休克致急性肺損傷[13-14],肺移植急性肺損傷[15],淹溺致急性肺損傷[16],高氧濃度致急性肺損傷[17],放射致急性肺損傷[18]等。此外,急性肺損傷后期的肺纖維化也與HIF-1α有關(guān)[19]。
白藜蘆醇(Resveratrol)是一種植物提取物,主要存在于中藥虎杖、葡萄及堅果等植物中,有順式和反式兩種異構(gòu)體。植物中白藜蘆醇主要以反式形式存在,而反式異構(gòu)體的生理活性要強于順式異構(gòu)體。研究表明,白藜蘆醇具有抗腫瘤、抗心血管疾病、抗炎、抗氧化[20-21]、神經(jīng)系統(tǒng)保護等多種藥理學(xué)作用,具有很大的藥用價值和市場前景。3,5,4’-3-O-乙酰白藜蘆醇是白藜蘆醇的前體,它克服了白藜蘆醇的缺點,包括較弱的藥代動力學(xué)和較低的生物利用度及短暫的生物半衰期[22]。在一項海水淹溺導(dǎo)致的大鼠急性肺損傷模型的研究中,通過組織學(xué)檢測,肺濕/干比重檢測,MDA、T-SOD、TNF-α、IL-1β、組織和細胞的HIF-1α的Western blot檢測證實,利用3,5,4’-3-O-乙酰白藜蘆醇預(yù)處理,可抑制HIF-1α途徑,從而減輕肺損傷,并且效應(yīng)呈明顯的劑量依賴性[16]。
血管緊張素-1(Ang-1)是一種Tie2的分泌蛋白受體[23],在很多些方面有潛在的治療價值,包括減少血管生成、提高內(nèi)皮細胞的生存、防止血管滲漏、對多種炎癥疾病有效等;并且,Ang-1還可減少細胞因子所致的ICAM-1、E-selectin和組織因子的表達。COMP-Ang1是Ang-1的變異體,比天然的Ang-1在磷酸化Tie2受體和Akt方面的作用更強,是天然Ang-1的更有效替代品?;钚匝酰≧eactive oxygen species,ROS)在各種肺疾病中具有關(guān)鍵作用,這些疾病包括哮喘、慢性阻塞性肺疾病、特發(fā)性肺纖維化、急性肺損傷、急性呼吸窘迫綜合征。當(dāng)肺組織暴露于氧化應(yīng)激時,ROS的高水平可以導(dǎo)致很多有害效應(yīng)及其病理生理的改變。ROS可使內(nèi)皮屏障功能紊亂,隨后對液體、大分子和炎癥細胞的滲透性增加[24]。過氧化氫(H2O2)所致小鼠急性肺損傷模型的研究證實,可通過COMP-Ang1抑制HIF-1α途徑,從而顯著減輕肺損傷[25]。
異丙酚是一種全麻藥,在全身麻醉和重癥監(jiān)護室的鎮(zhèn)靜中廣泛使用。研究證實,異丙酚可通過抑制巨噬細胞的遷移、吞噬和抗氧化作用,產(chǎn)生抗炎和抗氧化效應(yīng)[26],同時抑制巨噬細胞內(nèi)脂多糖(Lipopolysaccharide,LPS)誘導(dǎo)的NO及炎性細胞因子(IL-1β、TNF-α、IL-6)[27]。異丙酚也可以減少H2O2刺激的人內(nèi)皮細胞的凋亡和內(nèi)皮型eNOS的表達[28-29]。許多研究表明,異丙酚可以減輕內(nèi)毒素導(dǎo)致的小鼠急性肺損傷[30-32]。另有研究證實,在內(nèi)毒素休克的小鼠模型中,異丙酚可下調(diào)肺上皮細胞中的HIF-1α、IL-6、IL-8及TNF-α的表達;體外實驗顯示,異丙酚減少了內(nèi)毒素處理的肺上皮細胞的凋亡及HIF-1α和其下游的促凋亡基因BNIP3的表達[33]。說明異丙酚可通過抑制HIF-1α途徑,減輕脂多糖所致急性肺損傷,至少部分是通過此途徑。此外,也有研究認為,過異丙酚可抑制低氧誘導(dǎo)A549細胞的HIF-1α的表達[34]。
丹參是一種中草藥,來源于唇形科鼠尾草屬植物的根莖,廣泛用于預(yù)防和治療冠心病。丹參酮ⅡA是從丹參中提取的具有抑菌作用的脂溶性菲醌化合物,具有抗炎和抗氧化作用。研究顯示,丹參酮ⅡA預(yù)處理可以改善脂多糖導(dǎo)致的生化和細胞的改變,能減少炎癥因子的產(chǎn)生。在體內(nèi)和體外實驗中,經(jīng)丹參酮ⅡA預(yù)處理可以減少脂多糖誘導(dǎo)的HIF-1α的表達,雖然丹參酮ⅡA沒有影響脂多糖誘導(dǎo)的HIF-1α的mRNA水平,但抑制了PI3K/AKT和MAPK途徑以及相關(guān)的蛋白翻譯調(diào)節(jié)者,比如p70S6K1、S6核糖體蛋白、4E-BP1和eIF4E等。該研究顯示,脂多糖誘導(dǎo)的巨噬細胞經(jīng)過蛋白酶體途徑促進了HIF-1α蛋白的降解[35]。
紅景天(Roseroot)是生長在海拔800~2 500米高寒地帶的野生植物,具有很強的生命力和特殊的適應(yīng)性,被用于治療高山癥,以及抗抑郁、抗疲勞和增加工作效率。在小鼠低氧模型中,紅景天被證實可顯著延長小鼠生存時間[36]。還有研究表明,紅景天表現(xiàn)出抗炎[37]、抗氧化和清除ROS的特性[38]。暴露于低壓低氧的大鼠肺水腫病理指標增長明顯,包括肺水含量、肺泡毛細血管屏障的破壞及肺內(nèi)富含蛋白的液體。另外,低壓低氧也增加了氧化應(yīng)激指標,包括ROS產(chǎn)物、MDA水平、MPO活性,此外還發(fā)現(xiàn)血漿內(nèi)皮素-1(ET-1)、支氣管肺泡灌洗液中血管內(nèi)皮生長因子(VEGF)和肺組織HIF-1α的過度表達。經(jīng)過大花紅景天萃取物預(yù)處理后,可減輕低氧誘導(dǎo)的肺損傷參數(shù)來減輕HAPE。大花紅景天萃取物通過減輕ET-1和VEGF水平,保持了肺泡-毛細血管屏障的完整性,而ET-1和VEGF都是HIF-1α的靶基因。由此可見,大花紅景天萃取物可通過抑制HIF-1α途徑減輕HAPE[39]。
目前對各類肺損傷的研究認為,HIF-1α在其中起了重要的作用。減輕肺損傷的關(guān)鍵就是要抑制HIF-1α途徑。越來越多的研究已著眼于通過抑制HIF-1α途徑來減輕肺損傷。傳統(tǒng)中草藥丹參、紅景天、白藜蘆醇,以及麻醉藥異丙酚等,都通過此途徑減輕肺損傷,為肺損傷治療提供了新思路。
[1]von Dossow-Hanfstingl V.Advances in therapy for acute lung injury[J].Anesthesiol Clin,2012,30(4):629-639.
[2]Semenza GL,Wang GL.A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol 1992;12(12):5447-5454.
[3]Mahon PC,Hirota K,Semenza GL.FIH-1:a novel protein that interacts with HIF-1a and VHL tomediate repression of HIF-1 transcriptional activity[J].Genes Dev 2001;15(20):2675-2686.
[4]Jiang H,Zhu YS,Xu H,et al.Inflammatory stimulation and hypoxia cooperatively activateHIF-1{alpha}in bronchialepithelial cells:involvement of PI3K and NF-{kappa}B[J].Am JPhysiol Lung Cell Mol Physiol,2010,298(5):L660-L669.
[5]McMahon S,Charbonneau M,Grandmont S,et al.Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression[J].JBiol Chem, 2006,281(34):24171-24181.
[6]Page EL,Chan DA,Giaccia AJ,et al.Hypoxiainducible factor-1alpha stabilization in nonhypoxic conditions:role of oxidation and intracellularascorbate depletion[J].Mol Biol,2008,19(1):86-94.
[7]EmaM,Taya S,YokotaniN,etal.A novel bHLH-PAS factorwith close sequence similarity to hypoxiainducible factor 1a regulates the VEGF expression and is potentially involved in lung and vascular development[J].Proc Natl Acad Sci USA,1997,94(9):4273-4278.
[8]Tian H,McKnight SL,Russell DW.Endothelial pasdomain protein 1(EPAS1),a transcription factor selectively expressed in endothelial cells[J].Genes Dev,1997,11(1):72-82.
[9]Shimoda LA,Semenza GL.HIF and the lung:role of hypoxia-inducible factors in pulmonary development and disease[J].Am J Respir Crit Care Med,2011,183(2):152-156.
[10]Zhou G,Dada LA,WuM,etal.Hypoxia-induced alveolarepithelialmesenchymal transition requiresmitochondrial ROSand hypoxiainducible factor 1[J].Am JPhysiol Lung Cell Mol Physiol,2009, 297(6):L1120-L1130.
[11]Saini Y,Greenwood KK,Merrill C,et al.Acute cobalt-induced lung injury and the role of hypoxia-inducible factor 1alpha in modulating inflammation[J].Toxicol Sci,2010,116(2):673-681.
[12]Koury J,Deitch EA,Homma H,et al.Persistent HIF-1alpha activation in gut ischemia/reperfusion injury:potential role of bacteria and lipopolysaccharide[J].Shock,2004,22(3):270-277.
[13]Feinman R,Deitch EA,Watkins AC,et al.HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury[J].Am J Physiol Gastrointest Liver Physiol,2010,299(4): G833-G843.
[14]Jiang H,Huang Y,Xu H,et al.Inhibition of hypoxia inducible factor-1αameliorates lung injury induced by trauma and hemorrhagic shock in rats[J].Acta Pharmacol Sin,2012,33(5):635-643.
[15]Paulus P,Ockelmann P,Tacke S,et al.Deguelin attenuates reperfusion injury and improves outcome after orthotopic lung transplantation in the rat[J].PLoSOne,2012,7(6):e39265.
[16]Ma L,Zhao Y,LiB,etal.3,5,4'-Tri-O-acetylresveratrol attenuates seawater aspiration-induced lung injury by inhibiting activation of nuclear factor-kappa B and hypoxia-inducible factor-1α[J]. Respir Physiol Neurobiol,2013,185(3):608-614.
[17]Kallet RH,Matthay MA.Hyperoxic acute lung injury[J].Respir Care,2013,58(1):123-141.
[18]Gauter-Fleckenstein B,Fleckenstein K,Owzar K,et al.Early and late administration of MnTE-2-PyP5+in mitigation and treatment of radiation-induced lung damage[J].Free Radic BiolMed,2010, 48(8):1034-1043.
[19]Krick S,Eul BG,Hanze J,etal.Role of hypoxia-inducible factor-1a in hypoxia-induced apoptosis of primary alveolar epithelial type IIcells[J].Am JRespir CellMol Biol,2005,32:395-403.
[20]Szewczuk LM,Forti L,Stivala LA,et al.Resveratrol is a peroxidasemediated inactivator of COX-1 but notCOX-2:amechanistic approach to the design of COX-1 selective agents[J].JBio Chem, 2004,279(21):22727-22737.
[21]UngvariZ,Orosz Z,Rivera A,etal.Resveratrol increases vascular oxidative stress resistance[J].Am J Physiol Heart Circ Physiol, 2007,292(5):H2417-H2424.
[22]Walle T,Hsieh F,DeLegge MH,et al.High absorption but very low bioavailability of oral resveratrol in humans[J].Drug Metab Dispos,2004,32(12):1377-1382.
[23]Yancopoulos GD,Davis S,Gale NW,et al.Vascular-specific growth factors and blood vessel formation[J].Nature,2000,407 (6801):242-248.
[24]Henricks PA,Nijkamp FP.Reactive oxygen species asmediators in asthma[J].Pulm Pharmacol Ther,2001,14(6):409-420.
[25]Kim SR,Lee KS,Park SJ,et al.Angiopoietin-1 variant,COMPAng1 attenuates hydrogen peroxide-induced acute lung injury[J]. Exp Mol Med,2008,40(3):320-331.
[26]Marik PE.Propofol:an immunomodulating agent[J].Pharmacotherapy,2005,25(5 Pt 2):28S-33S.
[27]Li HH,Lin YC,Chen PJ,et al.Interleukin-19 upregulates keratinocyte growth factor and is associated with psoriasis[J].Br JDermatol,2005,153(3):591-595.
[28]Wang B,Luo T,Chen D,et al.Propofol reduces apoptosis and up-regulates endothelial nitric oxide synthase protein expression in hydrogen peroxide-stimulated human umbilical vein endothelial cells[J].Anesth Analg,2007,105(4):1027-1033.
[29]Wang L,Wu B,Sun Y,et al.Translocation of protein kinase C isoforms is involved in propofol-induced endothelial nitric oxide synthase activation[J].Br JAnaesth,2010,104(5):606-612.
[30]Chu CH,David Liu D,Hsu YH,et al.Propofol exerts protective effects on the acute lung injury induced by endotoxin in rats[J]. Pulm Pharmacol Ther,2007,20(5):503-512.
[31]Takao Y,Mikawa K,Nishina K,et al.Attenuation of acute lung injury with propofol in endotoxemia[J].Anesth Analg,2005,100 (3):810-816.
[32]Gao J,Zeng BX,Zhou LJ,etal.Protective effects of early treatment with propofol on endotoxin-induced acute lung injury in rats[J]. Br JAnaesth,2004,92(2):277-279.
[33]Yeh CH,ChoW,So EC,etal.Propofol inhibits lipopolysaccharideinduced lung epithelial cell injury by reducing hypoxia-inducible factor-1alpha expression[J].Br JAnaesth,2011,106(4):590-599.
[34]Luo F,Liu X,Yan N,etal.Hypoxia-inducible transcription factor-1alpha promotes hypoxia-induced A549 apoptosis via amechanism that involves the glycolysis pathway[J].BMCCancer,2006,6:26.
[35]Xu M,Cao F,Liu L,et al.Tanshinone IIA-induced attenuation of lung injury in endotoxemic mice is associated with reduction of hypoxia-inducible factor 1αexpression[J].Am JRespir Cell Mol Biol,2011,45(5):1028-1035.
[36]Ma HP,Fan PC,Jing LL,et al.Anti-hypoxic activity at simulated high altitude was isolated in petroleum ether extract of Saussurea involucrata[J].JEthnopharmacol,2011,137(3):1510-1515.
[37]Pooja,Bawa AS,Khanum F.Anti-inflammatory activity of Rhodiola rosea—“a second-generation adaptogen”[J].Phytother Res, 2009,23(8):1099-1102.
[38]Schriner SE,Avanesian A,Liu Y,etal.Protection ofhuman cultured cells against oxidative stress by Rhodiola rosea without activation ofantioxidantdefenses[J].Free Radic BiolMed,2009,47(5):577-584.
[39]Lee SY,Li MH,Shi LS,et al.Rhodiola crenulata extract alleviates hypoxic pulmonary edema in rats[J].Evid Based Complement AlternatMed,2013,2013:718739.
Research Progress on Attenuating ALI by the Inhibition of HIF-1αPathway
MA Yiwen,XU Hui.
Department of Anesthesiology,Shanghai Ninth People's Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200011, China.Corresponding author:XU Hui(E-mail:1268dh@163.com).
Acute lung injury;Hypoxia inducible factor-1α;Inhibition
R563.9
B
1673-0364(2013)05-0241-03
2013年6月19日;
2013年7月30日)
10.3969/j.issn.1673-0364.2013.05.017
200011上海市上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院麻醉科。
徐輝(E-mail:1268dh@163.com)。
【Summary】Acute lung injury(ALI)results from various causes is common in clinic with a high mortality.The recent experimental researches show that ALI is associated with HIF-1αpathway in different ALImodels.Furthermore,many drugs have been reported to attenuate ALIby the inhibition of hypoxia inducible factor-1α(HIF-1α)pathway.In this paper,the research progress on attenuating ALI by the inhibition of HIF-1αpathway was reviewed.