張 寧, 史小藝, 張 娣
(1.中國礦業(yè)大學(xué) 理學(xué)院,江蘇 徐州 221116;2.中國礦業(yè)大學(xué) 管理學(xué)院,江蘇 徐州 221116)
具有p-Laplacian算子的分?jǐn)?shù)階微分方程邊值問題
張 寧1, 史小藝1, 張 娣2
(1.中國礦業(yè)大學(xué) 理學(xué)院,江蘇 徐州 221116;2.中國礦業(yè)大學(xué) 管理學(xué)院,江蘇 徐州 221116)
在一定條件下,利用Banach壓縮映射原理討論了具有p-Laplacian算子的分?jǐn)?shù)階微分方程邊值問題解的存在性和唯一性,得到了解存在和唯一的充分條件,并舉例說明了結(jié)論的適用性。
分?jǐn)?shù)階微分方程;p-Laplacian算子;Banach壓縮映射原理
近年來,分?jǐn)?shù)階微分方程在科學(xué)、工程和數(shù)學(xué)等領(lǐng)域得到了廣泛應(yīng)用,其邊值問題的理論研究,獲得了不少成果[1-9],值得注意的是,具有p-Laplacian算子的分?jǐn)?shù)階微分方程邊值問題作為分?jǐn)?shù)階邊值問題的一種情況,得到了研究者的重視,相關(guān)的研究文獻(xiàn)很多[4-9],如文獻(xiàn)[5]利用Banach壓縮映射原理研究了具有p-Laplacian算子的分?jǐn)?shù)階微分方程邊值問題
受上述文獻(xiàn)啟發(fā),文中研究具有p-Laplacian算子的分?jǐn)?shù)階微分方程邊值問題
先回顧一些基本定義。
定義1[6]函數(shù)u:(0,+∞)→ 的α階Riemann-Liouville分?jǐn)?shù)階積分為
[1]AHMAD B,NIETO J J.Anti-periodic fractional boundary value problems[J].Computers & Mathematics with Applications,2011,62(3):1150-1156.
[2]BAI ZHANBING,LU HAISHEN.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,2005,311(2):495 -505.
[3]WANG GANG,LIU WENBIN,ZHU SINIAN,et al.Existence results for a coupled system of nonlinear fractional 2m-point boundary value problems at resonance[J].Advances in Difference Equations,2011(1):44.
[4]CHEN TAIYONG,LIU WENBIN,HU ZHIGANG.A boundary value problem for fractional differential equation with p-Laplacian operator at resonance[J].Nonlinear Analysis:Theory,Methods & Applications,2012,75(2):3210 -3217.
[5]LIU XIPING,JIA MEI,XIANG XIUFEN.On the solvability of a fractional differential equation model involving the p-Laplacian operator[J/OL].Computers & Mathematics with Applications,2012,62[2012 -03 -29].http://dx.doi.org/10.1016/j.camwa.2012.03.001.
[6]CHEN TAIYONG,LIU WENBIN.An anti-periodic boundary value problem for the fractional differential equation with p-Laplacian operator[J].Applied Mathematics Letters,2012[2012 -03 -29].http://dx.doi.org/10.1016/j.aml.2012.03.035.
[7]DU Z J,LIN X,TISDELL C C.A multiplicity result for p-Laplacian boundary value problems via critical points theorem[J].Applied Mathematics Computation,2008,205(1):231-237.
[8]HE ZHIMIN,LI LIAN.Multiple positive solutions for the one-dimensional p-Laplacian dynamic equations on time scales[J].Mathematical and Computer Modelling,2007,45(1/2):68-79.
[9]SUN BO,GE WEIGAO.Existence and iteration of positive solutions for some p-Laplacian boundary value problem[J].Nonlinear Analysis:Theory,Methods& Applications,2007,67(6):1820-1830.
Boundary value problems for fractional differential equation with p-Laplacian operator
ZHANG Ning1, SHI Xiaoyi1, ZHANG Di2
(1.College of Sciences,China University of Mining & Technology,Xuzhou 221116,China;2.School of Management,China University of Mining & Technology,Xuzhou 221116,China)
This paper introduces the study on the existence and uniqueness of solutions for fractional boundary value problems for a fractional differential equations of p-Laplacian operator by applying Banach contraction principle,given certain conditions,offers the sufficient conditions for the existence and uniqueness of solutions,and ends with several examples given to illustrate the results.
fractional differential equations;p-Laplacian operator;Banach contraction principle
O175.8
A
1671-0118(2012)05-0537-08
2012-04-17
國家自然科學(xué)基金項(xiàng)目(10771212)
張 寧(1985-),女,山西省晉城人,碩士,研究方向:微分方程邊值問題,E-mail:ninging-love@163.com。
(編輯 王 冬)