• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion of Some Important Parameters in Fatigue Loading Calculation for Ship Structural Design

    2012-12-13 02:56:46YANGPengGUXuekang
    船舶力學(xué) 2012年6期

    YANG Peng,GU Xue-kang

    (China Ship Scientific Research Center,Wuxi 214082,China)

    1 Introduction

    After developing and investigating for many years,IACS has formulated CSR-OT[1]rules for oil tankers and CSR-BC[2]rules for bulk carriers,respectively.However,there are many differences between them and it is confused and inconvenient for users to apply them in ship research and design practice.Recently,IACS has been developing a general rule called harmonized common structural rules(HCSR)for bulk carriers and oil tankers.Many classification societies and institutes have been involved in this project to make effort to give more rational solutions in the new rules.A vast number of theoretical and numerical analysis,comparative study and empirical estimation have been made to eliminate differences between CSR-OT and CSRBC.And some new processes,including fatigue damage assessment approach which is claimed more reasonable,are presented in the first version of HCSR.

    For example,both CSR-OT and CSR-BC assume that long-term characteristics of stress range abided by Weibull distribution and representative value of the stress is corresponding to exceeding probability of 10-4.The Weibull shape parameter given in CSR-OT depends on location of structural component and ship length,whereas the shape parameter in CSR-BC is constantly equal to 1.0.But in HCSR,based on primary investigation of some members,the representative stress range has been set as the value corresponding to exceeding probability of 10-2and the shape parameter is equal to 1.0.To investigate the rationality of the new parameters given in fatigue loading assessment of HCSR,theoretical analysis and numerical simulation for fatigue life estimation are carried out.The exceeding probability of the stress range that has maximum contribution to fatigue damage in long term extent,the Weibull shape parameter that has minimum influence on the exceeding probability and their sensitivities to reverse slope of S-N curve,have been deeply discussed.Some different conclusions to HCSR have been made.

    2 Stress range for maximum fatigue damage contribution

    2.1 Long-term stress distribution

    In general,a two-parameter Weibull distribution[3]is used to describe the long-term stress response range in marine structures.This distribution reads

    where k and ξ are scale and shape parameters.Its corresponding probability density function(pdf)is:

    Nolte and Hansford[4]derived a closed-form expression for the fatigue damage under the assumption of two-parameter Weibull distribution long-term stress ranges and S-N data given by Ns=AS-m:

    where S represents the long-term stress range with pdf f(s),Nsis the number of cycles corresponding to stress range S,A and m are the material parameters,N is the total number of cycles.Fdif(s)is defined fatigue damage intensity factor as a function of stress range s by

    From expression(3),it shows that the peak of Fdif(s)is corresponding to stress range s which has the maximum contribution to structural fatigue damage.

    Fig.1 shows the distribution of fatigue damage intensity factor for semi-submersible in different exceeding probability levels.In Fig.1(a)and(b),S-N inverse slope m are 3 and 5 respectively,and the scale parameter k is 50.Fig.1 reveals that the exceeding probability of stress range corresponding to maximum distribution of structural fatigue damage does not lie in 10-2(but,HCSR recognizes as 10-2);meanwhile,maximum contribution has relation to Weibull shape parameter.

    Fig.1 Contribution of stress range corresponding to various exceeding probabilities

    Mathematically,when setting the derivate of Fdif(s)equal to zero,the stress range corresponding to the maximum contribution to fatigue damage can be determined.The solution is

    Substituting Eq.(5)into expression of exceeding probability,which becomes

    When m=3,Eq.(6)could become into

    Fig.2 shows the relationship between stress range smaxcorresponding to maximum contribution to structural fatigue damage and Weibull shape parameter ξ.While ξ=1.0,the exceeding probability corresponding to maximum contribution to fatigue damage is 10-1.3.If Weibull shape parameter varies from 0.5 to 2.0,then exceeding probability varies from 10-2.17to 10-0.89.Especially,the exceeding probability is 10-2corresponding to shape parameter 0.55.In addition,Moan et al[5]calculated this kind of exceeding probability for FPSO assuming m equals to 3 under stress range distribution in gamma distribution,which revealed exceeding probability was 0.02.

    Fig.2 Exceeding probability corresponding to stress range of maximum contribution(m=3)

    Fig.3 Exceeding probability corresponding to stress range of maximum contribution(m=5)

    When m=5,Eq.(6)could become into

    Fig.3 shows the relationship between stress range smaxcorresponding to maximum contribution to structural fatigue damage and Weibull shape parameter ξ.While ξ=1.0,the exceeding probability corresponding to maximum contribution to fatigue damage is 10-2.17.If Weibull shape parameter varies from 0.5 to 2.0,then exceeding probability varies from 10-3.91to 10-1.30.Especially,the exceeding possibility is 10-2corresponding to shape parameter 1.11.

    Above all,when Weibull shape parameter is 1.0,if m=3,then exceeding probability is 10-1.3corresponding to stress range which has maximum contribution to structural fatigue damage.If m=5,the exceeding probability is 10-2.17.Thus,conclusion given by HCSR that exceeding probability is 10-2corresponding to stress range which has maximum contribution to structural fatigue damage does not have universal meaning.

    Alternating stress ranges are composed of low stress range and high stress range during ship service life,which depend on ship style,length of ship,loading status,routine,wind and wave,component location,nodal style,etc.It has comparative difference about stress range level and in actual ship structure,E.g.CSR-OT supposes the Weibull shape parameter range is 0.6~1.1 when length of ship varies from 150 m to 500 m.

    Furthermore,the stress range level given by HCSR corresponding to exceeding probability 10-2is equal to the maximum wave load encountering in every fifteen minutes during shipping.That is to say,this characteristic wave loads which in low sea states make maximum contribution to fatigue damage.However,lots of study show wave loads in moderate sea states make maximum contribution to fatigue damage,so standpoint of HCSR does not have proper physical meaning.

    3 Weibull shape parameter influence to fatigue life

    3.1 Theoretical analysis

    Fatigue stress cycle characteristicwhich is exceeded with probabilityduring ship service life is defined as

    From Eqs.(1)and(9),expression of scale parameter k can be obtained as follows:

    Structural fatigue life using S-N curve method in Weibull distribution model is

    Substituting expression N=fL·T into Eq.(11),the equation of structural fatigue life is

    where fLand Δ are mean frequence of stress cycles and design fatigue cumulative damage.Non-dimensional fatigue lifecan be obtained by dividing T by fatigue life T0which is the value when shape parameter equals to ξ0.It reads

    Eq.(13)shows effects of shape parameter to fatigue life only depending on NLand m,in other words,only depending on stress range exceeding probability,reverse slope of S-N curve and actual shape parameter.

    3.2 Shape parameter effect

    Munse et al[6]compared practical stress range distribution with Weibull distribution,and,found Weibull shape parameter was between 0.7 and 1.3.Soares and Moan[7]calculated wave bending moment for lots of ships with linear theory using North Atlantic sea state statistical data,they had obtained shape parameters after fitting Weibull distribution.Soares and Moan gave the expression of shape parameter as follows:

    where L is ship length.The expression given by DNV[8]is

    The expression given by Cui[9]is

    If m=3.0,and Weibull shape parameters of stress range long-term distribution are 0.6,0.8,1.0,1.2,respectively.Fig.4 shows the relationship betweenand ξ,which can be calculated by Eq.(13).When ξ equals tois 1.0 from Eq.(13),which means different curves of various exceeding probabilities have intersection.Fig.4(a~d)and Tab.1 show various exceeding probabilities when Weibull shape parameter takes minimum influence to fatigue life,respectively.At the same time,exceeding probability varies larger synchronously following shape parameter,but rate will turn down.

    Fig.4 Effects of Weibull shape parameter on fatigue life(m=3)

    Tab.1 Exceeding probabilities with various shape parameters(m=3)

    3.3 Influence of S-N curve reverse slope

    While assessing structural fatigue life with S-N curve method,m equals to 5.0 under low stress range level,m equals to 3.0 under high stress range level.Thus,it is necessary to study effect of Weibull shape parameter on fatigue life with different value of m.Assuming m=5.0,and Weibull shape parameters of stress range long-term distribution are 0.6,0.8,1.0 and 1.2,respectively.Fig.5 shows the relationship betweenand ξ,which can be calculated by Eq.(13).Fig.5(a~d)and Tab.2 show various exceeding probabilities when Weibull shape parameter has minimum influence to fatigue life,respectively.Comparing the results of m equals to 3.0 and m equals to 5.0,it indicates the exceeding probability is smaller when m becomes larger.

    Tab.2 Exceeding probabilities with various shape parameters(m=5)

    Fig.5 Effects of Weibull shape parameter on fatigue life(m=5)

    3.4 Influence of dual linear format of S-N curve

    Assuming Q is the point of intersection of the two lines with corresponding stress range SQand fatigue life NQ,the expression of dual linear of S-N curve is

    where,m and m′are reverse slopes,Nsis cycle number of stress range,A and A′are constants.The formula of fatigue cumulative damage with this S-N curve reads

    where fLand Δ are mean frequence of stress cycles and design fatigue cumulative damage.Non-dimensional fatigue lifecan be obtained by dividing T by fatigue lifewhich is the value when shape parameter equals to ξ0.It reads

    Eq.(20)shows the effects of shape parameter on fatigue life depending on SL,NL,m,m′,SQand actual shape parameter.

    Since value of stress range SLrepresents the long-term characteristic of the stress range distribution and the parameters of S-N curve are different at high or low stress range level,it is necessary to investigate the effect of shape parameter on fatigue life under various distributions of stress range.If ξ0=1.0,and the parameters of S-N curve are chosen from the D curve of DNV(2005)[10](SQ=52.63 MPa,m=3,m′=5),Fig.6 shows the effects of shape parameter on fatigue life with various exceeding probabilities and long-term distributions of stress range.Tab.3 shows the exceeding probability corresponding to minimum effect is decreasing when SLbecomes smaller.The results coincide with the results in single line format of S-N curve.Eq.(13)shows the effects of shape parameter are independent of SL.Meanwhile,with the single line format of S-N curve,when m equals to 3,the exceeding probability is 10-1.5;m equals to 5,the exceeding probability is 10-2.2.When SLis comparatively large the long-term stress range mainly lies on high stress zone,the exceeding probability corresponding to minimum effect of shape parameter on fatigue life approaches the results with m=3.When SLis comparatively small the long-term stress range mainly lies on low stress zone,the exceeding probability corresponding to minimum effect of shape parameter on fatigue life approaches the results with m=5.

    Tab.3 Exceeding probabilities with various SL

    Above all,exceeding probability level corresponding to minimum effect of shape parameter on fatigue life mainly depends on reverse slope of S-N curve,shape parameter and the long-term distribution of stress range in practice.Meanwhile,the commendation given by HCSR,i.e.while exceeding probability level is 10-2the variance of shape parameter variant has a minimum effect on fatigue life,does not have general meanings.

    Fig.6 Effects of shape parameter on fatigue life with different SL

    4 Conclusions

    Based on theoretical and numerical investigations of parameters in fatigue loading estimation process carried above,some conclusions can be achieved:

    (1)When Weibull shape parameter and reverse slope of S-N curve are 1.0 and 3,respectively,the exceeding probability corresponding to stress range which has maximum contribution to structural fatigue damage is 10-1.3,whereas for reverse slope of 5,the corresponding exceeding probability is 10-2.17.The exceeding probability is related to the stress level experienced by the structure concerned.

    (2)When Exceeding probability and reverse slope of S-N curve are 10-1.5and 3,respectively,fatigue life estimated is not sensitive to Weibull shape parameter,whereas for reverse slope of 5,the corresponding exceeding probability changes to 10-2.2.The choice of the Weibull shape parameter is also related to the stress level experienced by the structure concerned.

    [1]IACS.Common structure rules for double hull oil tankers[S].2008.

    [2]IACS.Common structure rules for bulk carriers[S].2008.

    [3]Moan T,Gao Z,Ayala-Uraga E.Uncertainty of wave-induced response of marine structures due to long-term variation of extratropical wave conditions[J].Marine Structures,2005,18:359-382.

    [4]Nordenstrom N.Methods for predicting long term distributions of wave loads and probability of failure for ships.Part 1,Environmental conditions and short term response[R].DNV Report No.71-2-S,1973.

    [5]Nolte K G.Statistical methods for determining extreme sea states[C]//POAC Conference.Reykjavik,Iceland,1973.

    [6]Munes W H,et al.Fatigue characterization of fabricated ship details for design[C].SSC-318.U.S.Coast Guard,Washington DC,1982.

    [7]Guedes C,Moan T.Model uncertainty in the long-term distribution of wave-induced bending moments for fatigue design of ship structures[J].Marine Structures,1991,4(4):295-315.

    [8]DNV.Fatigue assessment of ship structures[R].Tech.Rep.DNV93-0432,1994.

    [9]Cui W.Deterministic fatigue strength assessment models for ship structures[J].Supplement of Shipbuilding of China,1996(10):81-90.

    [10]DNV.Fatigue Design of Offshore Steel Structures[S].2005.

    久久久久久大精品| 在线播放无遮挡| kizo精华| 日韩欧美精品免费久久| 大型黄色视频在线免费观看| 亚洲av免费在线观看| 久久久欧美国产精品| 爱豆传媒免费全集在线观看| 一个人看的www免费观看视频| 欧美成人免费av一区二区三区| 欧美性猛交╳xxx乱大交人| 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 自拍偷自拍亚洲精品老妇| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 免费av观看视频| 在线观看午夜福利视频| 亚洲电影在线观看av| 桃色一区二区三区在线观看| 欧美一区二区精品小视频在线| 亚洲av电影不卡..在线观看| 成人欧美大片| 亚洲欧美日韩卡通动漫| 日韩欧美 国产精品| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 欧美日韩综合久久久久久| 人妻系列 视频| 欧美一区二区国产精品久久精品| 国产精品一区二区性色av| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 麻豆av噜噜一区二区三区| 亚洲最大成人av| 97超碰精品成人国产| 男插女下体视频免费在线播放| 91aial.com中文字幕在线观看| 亚洲丝袜综合中文字幕| 嫩草影院新地址| 中文精品一卡2卡3卡4更新| 少妇高潮的动态图| 韩国av在线不卡| 有码 亚洲区| 国产精品综合久久久久久久免费| 国产成人a区在线观看| 男人和女人高潮做爰伦理| 日产精品乱码卡一卡2卡三| 可以在线观看毛片的网站| 国产老妇伦熟女老妇高清| 亚洲精品色激情综合| 亚洲中文字幕一区二区三区有码在线看| 老师上课跳d突然被开到最大视频| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 久久久久久久久久久丰满| 午夜亚洲福利在线播放| av天堂在线播放| 麻豆一二三区av精品| 精品欧美国产一区二区三| 国产精品av视频在线免费观看| 老熟妇乱子伦视频在线观看| 免费看av在线观看网站| 综合色av麻豆| 久久精品国产鲁丝片午夜精品| 免费av毛片视频| 亚洲经典国产精华液单| 精品久久久久久久人妻蜜臀av| 99在线视频只有这里精品首页| 亚洲精品自拍成人| 欧美变态另类bdsm刘玥| 久久6这里有精品| 3wmmmm亚洲av在线观看| 国语自产精品视频在线第100页| 亚洲av不卡在线观看| 日本免费a在线| 久久鲁丝午夜福利片| 一本精品99久久精品77| 国产成人a∨麻豆精品| 免费av毛片视频| 永久网站在线| 一夜夜www| 欧美日韩一区二区视频在线观看视频在线 | 91精品一卡2卡3卡4卡| 人妻少妇偷人精品九色| 噜噜噜噜噜久久久久久91| 日本与韩国留学比较| 日本黄色片子视频| 长腿黑丝高跟| 久久热精品热| 午夜精品一区二区三区免费看| 国产成人精品婷婷| 精品久久久久久久人妻蜜臀av| 午夜激情福利司机影院| 国产一区二区激情短视频| av在线蜜桃| 精品久久久久久久人妻蜜臀av| 中文字幕精品亚洲无线码一区| 国内少妇人妻偷人精品xxx网站| 国产成人a区在线观看| 久久精品综合一区二区三区| 久久久久久久久久久免费av| 老师上课跳d突然被开到最大视频| 午夜激情欧美在线| 色综合亚洲欧美另类图片| 伦精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| 99热6这里只有精品| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 亚洲欧美日韩高清在线视频| 又粗又硬又长又爽又黄的视频 | 一级毛片我不卡| 黑人高潮一二区| 神马国产精品三级电影在线观看| av专区在线播放| 国产精品嫩草影院av在线观看| 在线观看66精品国产| 国产在视频线在精品| 久久九九热精品免费| 91麻豆精品激情在线观看国产| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看| 狠狠狠狠99中文字幕| 色噜噜av男人的天堂激情| 精品久久久噜噜| 男人和女人高潮做爰伦理| 色综合站精品国产| 亚洲中文字幕日韩| 亚洲在线自拍视频| 精品人妻熟女av久视频| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 一个人免费在线观看电影| 亚洲人成网站高清观看| 在线观看午夜福利视频| 亚州av有码| 亚洲精品乱码久久久久久按摩| 大香蕉久久网| 黄片wwwwww| 岛国毛片在线播放| 日韩大尺度精品在线看网址| 简卡轻食公司| 亚洲国产精品成人综合色| 久久久成人免费电影| 欧美精品一区二区大全| 欧美人与善性xxx| 观看免费一级毛片| 欧美色视频一区免费| 国产精品爽爽va在线观看网站| 久久人人精品亚洲av| 少妇高潮的动态图| 老司机影院成人| av天堂在线播放| 国产精品乱码一区二三区的特点| 国产久久久一区二区三区| 久久午夜福利片| 国产精品久久久久久久电影| 国产av麻豆久久久久久久| 欧美精品国产亚洲| 亚洲人与动物交配视频| 嫩草影院精品99| 亚洲精品久久久久久婷婷小说 | av.在线天堂| 毛片一级片免费看久久久久| 精品久久久久久久久亚洲| 一区二区三区高清视频在线| 亚洲av二区三区四区| 国产伦一二天堂av在线观看| 美女 人体艺术 gogo| 久久久精品94久久精品| 哪个播放器可以免费观看大片| av专区在线播放| 99九九线精品视频在线观看视频| 久久久久久久久久黄片| 精品久久久噜噜| 免费看日本二区| 禁无遮挡网站| 久久久久久国产a免费观看| 三级国产精品欧美在线观看| 中文字幕av在线有码专区| 99热这里只有是精品50| 亚洲国产欧美在线一区| 亚洲成人精品中文字幕电影| 看免费成人av毛片| 99久久人妻综合| 深爱激情五月婷婷| 亚洲精品粉嫩美女一区| 色综合亚洲欧美另类图片| av天堂在线播放| 三级国产精品欧美在线观看| 日韩欧美在线乱码| 午夜老司机福利剧场| av又黄又爽大尺度在线免费看 | 国产片特级美女逼逼视频| 日本爱情动作片www.在线观看| 我的女老师完整版在线观看| 一进一出抽搐gif免费好疼| 精品日产1卡2卡| 久久久久久久久久黄片| 国产女主播在线喷水免费视频网站 | 搡老妇女老女人老熟妇| 亚洲国产欧美在线一区| 日韩欧美一区二区三区在线观看| 在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 观看免费一级毛片| 可以在线观看的亚洲视频| 国产黄片视频在线免费观看| 久久久久久久久久久免费av| 人妻制服诱惑在线中文字幕| 麻豆一二三区av精品| 中出人妻视频一区二区| 国产综合懂色| 久久草成人影院| 欧美性感艳星| 一级毛片电影观看 | 男人和女人高潮做爰伦理| 日本av手机在线免费观看| 亚洲精品粉嫩美女一区| www日本黄色视频网| 日韩av不卡免费在线播放| 亚洲av二区三区四区| 黄色欧美视频在线观看| 日韩欧美国产在线观看| 亚洲美女搞黄在线观看| 成人漫画全彩无遮挡| 精品久久国产蜜桃| 久久99热这里只有精品18| 亚洲国产日韩欧美精品在线观看| 欧美另类亚洲清纯唯美| 又爽又黄无遮挡网站| 国内精品宾馆在线| 丝袜美腿在线中文| av国产免费在线观看| 波多野结衣高清无吗| 看十八女毛片水多多多| 久久这里有精品视频免费| 99久久人妻综合| 极品教师在线视频| 韩国av在线不卡| 久久人人爽人人片av| 99久国产av精品国产电影| 日韩成人av中文字幕在线观看| 国产成年人精品一区二区| 亚洲欧美成人综合另类久久久 | 村上凉子中文字幕在线| 黄色日韩在线| 天天一区二区日本电影三级| 人人妻人人看人人澡| 免费人成视频x8x8入口观看| 日韩强制内射视频| 一边亲一边摸免费视频| 久久人人精品亚洲av| 黄色一级大片看看| 如何舔出高潮| 给我免费播放毛片高清在线观看| 久久韩国三级中文字幕| 狠狠狠狠99中文字幕| 哪个播放器可以免费观看大片| 国产极品精品免费视频能看的| 插逼视频在线观看| 男人舔奶头视频| 最新中文字幕久久久久| 精品久久国产蜜桃| 亚洲七黄色美女视频| 91在线精品国自产拍蜜月| 最近视频中文字幕2019在线8| 久久久久久国产a免费观看| 久久久久久国产a免费观看| 成年女人永久免费观看视频| 高清午夜精品一区二区三区 | 小蜜桃在线观看免费完整版高清| 99久久精品国产国产毛片| 亚洲高清免费不卡视频| 欧美zozozo另类| 国产私拍福利视频在线观看| 最好的美女福利视频网| 男的添女的下面高潮视频| 国产精品久久久久久久电影| 亚洲av二区三区四区| 欧美潮喷喷水| 亚洲无线观看免费| 欧美人与善性xxx| videossex国产| 久久综合国产亚洲精品| 神马国产精品三级电影在线观看| 国内精品久久久久精免费| 国产在线精品亚洲第一网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女搞黄在线观看| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 亚洲精品国产成人久久av| 欧美+亚洲+日韩+国产| 婷婷色综合大香蕉| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| 天天躁日日操中文字幕| 男人和女人高潮做爰伦理| 干丝袜人妻中文字幕| 久久人妻av系列| 久久久久久久久久久免费av| 亚洲精品自拍成人| 亚州av有码| 久久综合国产亚洲精品| 国产黄色视频一区二区在线观看 | 99久久中文字幕三级久久日本| 国产黄a三级三级三级人| 久久99热这里只有精品18| 色哟哟·www| 日韩成人av中文字幕在线观看| 97热精品久久久久久| 欧美3d第一页| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| 草草在线视频免费看| 亚洲高清免费不卡视频| 欧美丝袜亚洲另类| 欧美极品一区二区三区四区| 欧美变态另类bdsm刘玥| 麻豆久久精品国产亚洲av| 日韩一区二区视频免费看| 国内精品一区二区在线观看| av天堂在线播放| 国产视频首页在线观看| 一本一本综合久久| 国产亚洲av片在线观看秒播厂 | 神马国产精品三级电影在线观看| 黄色视频,在线免费观看| 99热全是精品| 18+在线观看网站| 亚洲精品乱码久久久久久按摩| 久久久久久久午夜电影| 欧美丝袜亚洲另类| 成人永久免费在线观看视频| 日日撸夜夜添| 国产精品一二三区在线看| 美女脱内裤让男人舔精品视频 | 久久久国产成人免费| 日本一本二区三区精品| 精品熟女少妇av免费看| 美女黄网站色视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品456在线播放app| 亚洲无线观看免费| 亚洲精品日韩在线中文字幕 | 国产91av在线免费观看| av在线亚洲专区| 22中文网久久字幕| 国产精品人妻久久久影院| 亚洲精品影视一区二区三区av| 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕 | 天堂影院成人在线观看| 欧美最新免费一区二区三区| 国产一区二区在线观看日韩| 黄色视频,在线免费观看| 精品无人区乱码1区二区| 联通29元200g的流量卡| 亚洲欧美精品自产自拍| 99精品在免费线老司机午夜| 欧美成人精品欧美一级黄| 欧美高清成人免费视频www| 欧美精品一区二区大全| 又粗又硬又长又爽又黄的视频 | 看片在线看免费视频| 天堂中文最新版在线下载 | 看免费成人av毛片| 我的女老师完整版在线观看| 欧美色视频一区免费| 免费av观看视频| 国产高潮美女av| 国产成人精品婷婷| 国产老妇伦熟女老妇高清| 青春草视频在线免费观看| 精品一区二区三区人妻视频| 国产一级毛片七仙女欲春2| 亚洲国产欧洲综合997久久,| 人妻少妇偷人精品九色| 91精品一卡2卡3卡4卡| 大香蕉久久网| 精品人妻视频免费看| 一区福利在线观看| 欧美又色又爽又黄视频| 免费不卡的大黄色大毛片视频在线观看 | 搞女人的毛片| 麻豆久久精品国产亚洲av| 午夜a级毛片| a级毛片a级免费在线| 欧美xxxx黑人xx丫x性爽| 99热全是精品| 老师上课跳d突然被开到最大视频| 中文资源天堂在线| 可以在线观看毛片的网站| 免费在线观看成人毛片| 女的被弄到高潮叫床怎么办| 又爽又黄a免费视频| 97超碰精品成人国产| 人人妻人人澡人人爽人人夜夜 | 一本一本综合久久| 特大巨黑吊av在线直播| 国产欧美日韩精品一区二区| 亚洲中文字幕日韩| 国产单亲对白刺激| 久久久国产成人免费| 欧美bdsm另类| 九九热线精品视视频播放| 1024手机看黄色片| 校园人妻丝袜中文字幕| 久久久久久久久久黄片| 亚洲内射少妇av| 99久久无色码亚洲精品果冻| 午夜精品在线福利| 日本一二三区视频观看| 久久精品夜色国产| 日本黄色片子视频| 精品国内亚洲2022精品成人| 中文字幕制服av| 99在线人妻在线中文字幕| 变态另类成人亚洲欧美熟女| 久久久久国产网址| 国产精品一二三区在线看| 天堂av国产一区二区熟女人妻| av在线播放精品| 亚洲成人久久爱视频| 国产亚洲av片在线观看秒播厂 | 亚洲一区二区三区色噜噜| 你懂的网址亚洲精品在线观看 | 插阴视频在线观看视频| 免费看美女性在线毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 夜夜夜夜夜久久久久| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 嘟嘟电影网在线观看| 人体艺术视频欧美日本| 美女黄网站色视频| 校园春色视频在线观看| 国产精品.久久久| 波多野结衣高清作品| a级毛色黄片| 欧美+日韩+精品| 欧美bdsm另类| 99在线视频只有这里精品首页| 久久久欧美国产精品| 国产一区二区在线观看日韩| 久久久色成人| www.av在线官网国产| 亚洲精品色激情综合| 久久人人爽人人片av| 99久久九九国产精品国产免费| 国产精品一及| 亚洲国产色片| 麻豆成人av视频| 99久久中文字幕三级久久日本| 99热这里只有是精品在线观看| 国产精品一区二区在线观看99 | 变态另类丝袜制服| 特大巨黑吊av在线直播| 寂寞人妻少妇视频99o| 国产黄片视频在线免费观看| 久久人妻av系列| 久久99精品国语久久久| 高清毛片免费观看视频网站| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 99热6这里只有精品| 日本成人三级电影网站| 免费看美女性在线毛片视频| 国产日韩欧美在线精品| 亚洲欧洲国产日韩| 简卡轻食公司| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 老司机福利观看| 男女啪啪激烈高潮av片| 丝袜美腿在线中文| 午夜免费男女啪啪视频观看| 色综合亚洲欧美另类图片| 桃色一区二区三区在线观看| 黄色配什么色好看| 亚洲av成人av| 午夜久久久久精精品| av国产免费在线观看| 亚洲成人久久爱视频| av天堂中文字幕网| 日本免费a在线| 成人欧美大片| 美女黄网站色视频| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 免费观看人在逋| 免费人成在线观看视频色| 精品久久久久久久久亚洲| 午夜福利在线观看吧| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看 | 观看美女的网站| 啦啦啦韩国在线观看视频| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| 亚洲中文字幕日韩| 欧美zozozo另类| 熟妇人妻久久中文字幕3abv| 久久久久久伊人网av| 桃色一区二区三区在线观看| 永久网站在线| 一区二区三区四区激情视频 | 亚洲内射少妇av| 国产又黄又爽又无遮挡在线| 热99在线观看视频| 禁无遮挡网站| 人妻制服诱惑在线中文字幕| 欧美一区二区国产精品久久精品| 国产综合懂色| 国产真实伦视频高清在线观看| 国产精品美女特级片免费视频播放器| 久久久久久久久久久免费av| 国产精品精品国产色婷婷| 99久久精品一区二区三区| 亚洲国产欧洲综合997久久,| 亚洲图色成人| 欧美bdsm另类| 又爽又黄无遮挡网站| 2022亚洲国产成人精品| 国产精品一区www在线观看| 成人特级黄色片久久久久久久| 久久6这里有精品| 日韩欧美在线乱码| 精品久久国产蜜桃| 真实男女啪啪啪动态图| 国产伦精品一区二区三区视频9| 久久久国产成人精品二区| 亚洲成人久久性| 禁无遮挡网站| 小说图片视频综合网站| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 国产视频内射| 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 搞女人的毛片| 中文字幕熟女人妻在线| 亚洲在线自拍视频| 久久这里只有精品中国| 欧美成人免费av一区二区三区| 自拍偷自拍亚洲精品老妇| 国产亚洲av嫩草精品影院| 国产白丝娇喘喷水9色精品| 一区二区三区四区激情视频 | 国产精品三级大全| 成人综合一区亚洲| 高清日韩中文字幕在线| 中文字幕制服av| 18禁黄网站禁片免费观看直播| 女人被狂操c到高潮| 日日啪夜夜撸| 国产黄色视频一区二区在线观看 | 国产高清不卡午夜福利| 嫩草影院新地址| 特级一级黄色大片| 欧美一区二区亚洲| 欧美日本视频| 九九热线精品视视频播放| 国产av麻豆久久久久久久| 亚洲av成人av| 日韩大尺度精品在线看网址| 97超视频在线观看视频| av黄色大香蕉| 99热网站在线观看| av黄色大香蕉| 色吧在线观看| 老女人水多毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品女同一区二区软件| 麻豆一二三区av精品| 有码 亚洲区| 看片在线看免费视频| 最近视频中文字幕2019在线8| 成人欧美大片| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 欧美性感艳星| 国产伦一二天堂av在线观看| 综合色丁香网| 欧美变态另类bdsm刘玥| or卡值多少钱| 97超碰精品成人国产| 午夜亚洲福利在线播放| 麻豆成人av视频| 一区二区三区四区激情视频 | 欧美一区二区国产精品久久精品| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 天堂av国产一区二区熟女人妻| 欧美性猛交黑人性爽| 人人妻人人看人人澡| 黄色视频,在线免费观看| 人妻制服诱惑在线中文字幕| 欧美成人a在线观看| 精品不卡国产一区二区三区| 亚洲最大成人手机在线| 12—13女人毛片做爰片一| 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 亚洲成a人片在线一区二区| 日本色播在线视频| 国产大屁股一区二区在线视频| 亚州av有码|