• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    負(fù)載于HZSM-5上的CuO-ZnO-Al2O3納米粒子:尿素-硝酸鹽燃燒合成和理化表征

    2012-11-13 05:51:08RezaKhoshbinMohammadHaghighi
    無機(jī)化學(xué)學(xué)報 2012年9期
    關(guān)鍵詞:硝酸鹽反應(yīng)器尿素

    Reza Khoshbin Mohammad Haghighi*,

    (1Chemical Engineering Department(化學(xué)工程系),Sahand University of Technology(薩罕德工業(yè)大學(xué)), P.O.Box 51335-1996,Sahand New Town,Tabriz,Iran(伊朗) (2Reactor and Catalysis Research Center(RCRC)(反應(yīng)器和催化研究中心),Sahand University of Technology(薩罕德工業(yè)大學(xué)),P.O.Box 51335-1996,Sahand New Town,Tabriz,Iran(伊朗))

    負(fù)載于HZSM-5上的CuO-ZnO-Al2O3納米粒子:尿素-硝酸鹽燃燒合成和理化表征

    Reza Khoshbin1,2Mohammad Haghighi*,1,2

    (1Chemical Engineering Department(化學(xué)工程系),Sahand University of Technology(薩罕德工業(yè)大學(xué)), P.O.Box 51335-1996,Sahand New Town,Tabriz,Iran(伊朗) (2Reactor and Catalysis Research Center(RCRC)(反應(yīng)器和催化研究中心),Sahand University of Technology(薩罕德工業(yè)大學(xué)),P.O.Box 51335-1996,Sahand New Town,Tabriz,Iran(伊朗))

    用尿素-硝酸鹽燃燒法制備了一系列的負(fù)載于HZSM-5上的CuO-ZnO-Al2O3納米復(fù)合材料(CZA/HZSM-5)。研究了燃料與氧化物的比率對所合成的復(fù)合材料的理化性質(zhì)的影響。用TGA/DTG,F(xiàn)TIR和XRD等研究了尿素-硝酸鹽凝膠的熱分解和煅燒粉體的相演變過程。FESEM結(jié)果表明在燃燒過程中燃料的用量對CZA/HZSM-5的性質(zhì)有重大影響。CuO和ZnO的晶粒首先隨尿素量的增加而增大,然后隨尿素量的增加而減小。CuO和ZnO的相對結(jié)晶度隨燃料量的增加表現(xiàn)為非單調(diào)趨勢。隨著燃料與硝酸鹽的比率的增加,CZA/HZSM-5不僅形貌變得超細(xì)和均一,而且表面孔隙率也顯著增加。FTIR結(jié)果表明HZSM-5的結(jié)構(gòu)甚至在負(fù)載了CuO-ZnO-Al2O3納米粒子后也未被破壞,而且在CuO和ZnO與HZSM-5之間還有表面的鍵合。TGA/DTG結(jié)果指出燃燒合成法是一種由若干過程組合起來的方法,例如前驅(qū)體的熱分解和前驅(qū)體間的放熱反應(yīng)等。另外,提出了CuO-ZnO-Al2O3負(fù)載在HZSM-5上的生成機(jī)理。

    ZnO-CuO-Al2O3;HZSM-5;納米復(fù)合材料;尿素-硝酸鹽燃燒合成法

    0 Introduction

    Recently,nanomaterials have been prepared and received great attention because of their potential role in basic scientific research and fabricating nanodevices with novel optical, electrical and chemical properties[1-2].Various preparation methods toward diverse nanomaterials,including precipitation, sol-gel, impregnation, sonochemical, templating direction,solution-based solvothermal or hydrothermal treatment and combustion synthesismethod have been extensively developed[3-4].Among these,combustion method is an easy and convenient method for preparation of a variety of advanced ceramics, catalysts and nanomaterials.

    In recent years,the CuO-ZnO-Al2O3(CZA) nanocomposites are gaining a great importance.It has been doped over variety of supports and widely employed as catalyst in direct conversion of syngas to dimethyl ether reaction[5],steam reforming of dimethyl ether in fuel cells[6]and other industrial potential applications[7-9].Among various substrates,zeolites(for example HZSM-5)have high surface area,high thermal stability and eco-friendly nature.Moreover, zeolites possess amphoteric properties,Lewis-acidity to denote electron-accepting ability and Lewis basicity to describe electron-donating property[10].Various routes have been employed for CZA production such as co-precipitation[11], sol-gel preparation[12], impregnation[13]and physically mixing[14].Although the precipitation method improves reactivity of the components,the incomplete precipitation leads to alternation of stoichiometry and the chemical homogeneity cannot be readily obtained due to differences in the solubility or complex formation between various chemical species[15].The sol-gel technique requires expensive precursors[16],while in impregnation and physically mixing methods, dispersion of CZA over HZSM-5 is low.On the other hand,most of these methods cannot be applied to a large scale and economical production because they require expensive and often toxic reagents,high reaction temperature as well as long reaction time. One of the nanostructure synthesis methods is the combustion reaction which stands out as an alternative and highly promising method for the synthesis of nanostructured materials[17,18].The resulted product is usually in a crystalline form.It is dry agglomerated into highly fluffy foam with high chemical homogeneity and purity.

    The combustion route is composed of gelling and subsequent combustion of the solution.It contains nitrates salts and some organic fuels,such as urea[19], citric acid[20],glycine[21],ethylene glycol[22],etc.The mixture starts boiling,then it ignites and an exothermal,selfsustaining and very fast chemical reaction occurs,resulting in a dry,usually crystalline, fine oxide powder.In thismethod rapid evolution of a large volume of gases during the process immediately cools the product and limits the occurrence of agglomeration[16].Since urea is commercially available, cheap and generates the highest temperature during combustion,it seems to be as one of the best suitable organic fuel[23].

    Most of the previous investigations reported in the literature focus on the properties of final products and effect of composition of the reactant mixture on both phase composition and microstructure of the products.However,very little literature is available in which the effect of non-nitrate precursors such as zeolites on the structural properties of final products has been investigated[24-26].

    Since heat induced from the reactions strongly depends on fuel to nitrate ratio,the finding of a suitable ratio of oxidant to fuel is very important.A non-suitable ratio of fuel to nitrate makes some unwanted intermediate phases or unreacted raw materials[27].Therefore,in this paper the applicability of the urea-nitrate combustion method for synthesis of powders in the presence of non-nitrate precursor (HZSM-5)is studied.Furthermore,the role of the fuel to metal nitrates ratio on physicochemical properties of the nano composite has been investigated by XRD, BET,FESEM,FTIR and TGA/DTA techniques and the combustion behaviors described aswell.

    1 Experimental

    1.1 M aterials

    Analytic grade chemicals of copper nitrate (Cu(NO3)2·3H2O),zinc nitrate(Zn(NO3)2·3H2O),aluminium nitrate (Al(NO3)3·9H2O), ammonium nitrate(NH4NO3),ammonia(NH3(33%))and urea(CO (NH2)2)were supplied by Merck,while NaZSM-5 with Si/Al=21 obtained from SPAG.All of them used as received without any further purification.

    1.2 Preparation and procedures

    The experimental procedure for preparation of CZA/HZSM-5 nanocomposite is schematically shown in Fig.1.As illustrated in the flow diagram,the preparation of the nanocompositeis divided into 3 stages.In stage (a),HZSM-5 sample was prepared from an original NaZSM-5 powder by repeated ion exchange with NH4NO3solutions followed by drying overnight and calcinations in air at 550℃ for 5 h.In stage(b),appropriate amount of Cu(NO3)2·3H2O and Zn(NO3)2·3H2O and Al(NO3)3·9H2O,in amolar ratio of Cu∶Zn∶Al 6∶3∶1,were dissolved in aminimum amount of deionized water.Aftermagnetic stirring for 15 min, a transparent solution was formed.In last stage(c), urea was added into the solution.The mixed solution was neutralized to pH=7 by adding liquor ammonia. Then the neutralized solution was evaporated to dryness by heating at 100℃ on a hot plate with continuous stirring.As water evaporated,the solution became viscous and finally formed a very viscous deep blue gel.The resultant gel was transferred into ceramic crucible and subjected to combustion reaction in a preheated electric furnace maintained at 350℃. The gel started boiling and in a couple of minutes ignited spontaneously with rapid evolution of large quantity of gases,yielding a foamy,voluminous powder.In order to burn-off carbon residues,the powders were further heated at 350℃ for 5 h.For addressing of the effect of urea content,four samples were prepared with differentmolar ratios of 0.5,1,2 and 4(urea to nitrates).

    1.3 Characterizations

    Powder X-ray diffraction (XRD)measurements were performed using a Siemens diffractometer D5000 with a Cu-Kαradiation source(λ=0.154 06 nm) operating at 40 kV and 30 mA in a scanning range of 5°~70°(2θ).The diffraction peaks of the crystalline phase were compared with those of standard compounds reported in the Joint Committee of Powder Diffraction Standards data base(PDF).The crystallite size of CuO,ZnO,and HZSM-5 of the calcined nanocomposites were evaluated from full width at half maximum of the XRD peaks using Scherrer algorithm.The microstructure and morphology was studied by field emission scanning electron microscopy (HITACHI S-4160).Specific surface area analyses were carried out using BET (Brunauer,Emmett,and Teller) technique by Quantachorom CHEMBET apparatus.Furthermore,thermo gravimetric analyzer (Perkin Elmer TGA/DTG)was used to determine the mass loss of the nanocomposite as a function of increasing of temperature.The samples were heated up to 500℃ at 10℃·min-1in an aluminum crucible under air flow.The DTG profiles were obtained by differentiating the TGA profiles.Finally, for addressing surface functional groups, the nanocomposite mixed with KBr and characterized withUNICAM 4600 Fourier Spectrometer in a range of 400~4 000 cm-1.

    2 Results and discussion

    2.1 Nanocomposite characterizations

    2.1.1 Crystallographic analysis

    XRD patterns of the ZSM-5 and synthesized nanocomposites with different urea/nitrates ratio are shown in Fig.2.One can see that with increasing of urea content in the reaction mixture,the diffraction peaks become narrower,while the intensity of peaks initially increases and then decreases.

    In the XRD patterns,there are rather strong peaks at 2θ=35.6°and 38.8°that can be assigned to CuO and indexed to the monoclinic phase of CuO (PDF No.01-080-1268)with Miller indexes of(111) and (111),respectively.Furthermore,it can be seen, with increasing of urea content,the CuO peaks at 48.7°and 68.2°appear.The peaks at 2θ=31.96°and 36.25°are ascribed to hexagonal phase of ZnO(PDF No.01-076-0704)with Miller indexes of (100)and (101),respectively.It is observed that some of the CuO and ZnO peaks have overlap.For example,the peak of ZnO at 2θ=36.25°is severely covered by the peak of CuO at 2θ=35.6°.As shown in Fig.2(a),the substrate ZSM-5 exhibits representative reflections at both low-angle(2θ<10°)and high-angle(20°<2θ<60°) ranges.Due to high degree of HZSM-5 coating with oxides nanocomposite,it is observed that some of the low angle diffraction peaks of HZSM-5 decrease and have notcertain trend with increasing ofurea content.

    There is no shift for the position of HZSM-5 diffraction peaks in the CZA/HZSM-5 nanocomposite. This shows that the addition of CuO-ZnO-Al2O3has no effect on the crystalline lattice of HZSM-5.The XRD patterns show that HZSM-5,CuO and ZnO are the main components of the nanocomposite.It is worth pointing out that,there are no peaks that can be assigned to Al2O3.This observation suggests that Al2O3is highly dispersed and/or is amorphous which is in line with the previous observation in the literature[28].

    The crystallite sizes of CuO and ZnO particles aremeasured using the Scherrer algorithm and plotted in Fig.3.As can be seen,the calculated crystallite sizes of CuO are 31.6,31.4,39.4 and 39.5 nm,for urea/nitrates ratio of 0.5,1,2 and 4,respectively.The results indicate that with increasing of urea content from 0.5 to 4,the crystallite size of ZnO increases from 30.4 nm to 40.5 nm,respectively.The thermal energy due to organic material decomposition leads to the increase in the crystal size.This increase in the crystallite size is attributed to increase in the reaction temperature and time of combustion process as the fuel ratio increases.

    The relative crystallinity of synthesized CZA/ HZSM-5 nanocomposite at different urea/nitrates molar ratios are plotted in Fig.4.As can be seen,the relative crystallinity of CuO initially increases from 12.5(urea to nitrate ratio=0.5)to 24.7(urea to nitrate ratio=2)and then decreases to 13 (urea to nitrate ratio=4).Moreover,there is the same trend for crystallinity of ZnO.This can be possibly addressed by slow nucleation rate and high growth rate at higher temperature.Singh et al.[29]demonstrated a similar variation in crystallite size with increase in fuel content when they used the citrate-nitrate process for the preparation of YSZ particles.

    2.1.2 Morphological analysis

    Fig.5 shows the FESEM images of the zeolite and CuO-ZnO-Al2O3nanocomposite grown on HZSM-5 substrates at different urea to nitrate ratios.This figure shows a clear change in morphology as the fuel content in the combustion increases from 0.5 to 4 times of stoichiometric ratio.

    As can be seen in Fig.5(a),the morphology of HZSM-5 is cubic;while the sample with urea to nitrate ratio of 0.5,exhibits a flower-like morphology and high degree of aggregation of particles.When stoichiometric amount of urea is used,irregularly shaped agglomerate with a few pores is observed.The sample with urea to nitrate ratio of 2 shows the same morphology when the urea to nitrate ratio is set to 4, porous morphology appears.The last sample is more porous and looser than the others due to more gases released in the combustion process.

    As discussed in XRD patterns,the removal of volatile masses during the combustion plays a significant role on the variation of crystallite sizes and relative crystalinity.The polymeric distribution and its subsequent removal during combustion process are expected to control the particle growth and the final morphology of the particles.Enhancement of urea to nitrate ratio from 0.5 to 4,results in slower decomposition of the salts and incomplete combustion of the urea ions.Therefore,a lot of carbonaceous matter is left in the as-prepared powder.During calcination,the removal of gaseous products from the precursor gives rise to capillary forces on the particles,which bringsmore particles to be exposed to each other.This results inmore particle agglomeration, cluster formation and particle growth during synthesis. Consequently,the crystallite size of nonocomposites increases with increasing the urea content.Further increase in urea content (e.g.4)leads to larger separation between the composite particles.In fact, the presence of excess urea plays the role of a spacefilling template and the CZA particles surrounded in matrix become crystalline.This increase in the diffusion distance seems to be the actual reason for decreasing of particle size upon further increase in urea content.

    The results suggest that high urea content decreases the agglomeration of CuO-ZnO-Al2O3powders,which are beneficial for highly homogeneous powder morphology.Furthermore,since existence of well dispersed and strongly interacting between the ZSM-5 surface and CZA species,one can expect that samples prepared by the urea-nitrates combustion method will have better catalytic performance.

    Fig.6 illustrates the detailed analysis of FESEM images for CZA/HZSM-5 nanocomposite synthesized via urea-nitrate combustion method with urea to nitrate ratio of 4.Asmentioned above,CZA/HZSM-5 nanocomposite can be used as the catalyst in many chemical processes.In addition to the positive effect of nano-size distribution of active phase,the large values of pores are beneficial by facilitating masstransfer of reactants and products beside the additional promotion of high concentration of active site formation.As depicted in this figure,with urea to nitrate ratio of 4,the achievement of nano-size distribution of CZA on HZSM-5 and high porous structure are obtained simultaneously.

    Further analysis has been carried out to address size distribution histogram of combustion pores of the same sample (Fig.7).According to this figure,CZA/ HZSM-5 nanocomposite shows a monomodal pore size distribution with macrospore size around 0.475μm possibly attributed to the releasing of gas during combustion.Further investigation shows that the dimensions of 87.9% of pores are below 1 μm.Moreover,the dimensions of the largest and the smallest pores are 2.65 and 0.155μm,respectively.

    Fig.8 shows the size distribution histogram of the nanocomposite with urea to nitrate ratio of 4.The particles size is distributed between 43.9~177.8 nm with standard deviation of 27.6.The average size of metal oxide phase is 80.79 nm in which 69.5%of the particles are below 100 nm.It can be seen that the powder prepared through urea route has nanometric particles with monomodal distribution as 37.1%of nanocomposite is in the range of 60~80 nm.

    2.1.3 Surface area analysis

    The specific surface area of ZSM-5 and synthesized CZA/ZSM-5 nonocomposites are shown in Fig.9.The specific surface areas of the nanocomposite are smaller than the substrate.With increasing of urea content,the area initially decreases then increases with a maximum of 99 m2·g-1when urea to nitrate ratio is 0.5.

    This result is in good agreement with the results regarding relative crystallinity,as determined from XRD patterns in which relative crystallinity increases with increase in ure acontent until it reaches 2,then decreases at ratio of 4.

    The effect of urea to nitrate ratio on the surface area is in contrast to what is observed in FESEM analysis.When high urea content is employed,larger amount of gases is evolved during combustion and it is expected that specific surface area and porosity of nanocomposite is increased.It should be noted that CZA nanocomposite synthesized by conventional methods has average surface area of 85 m2·g-1[30]. Therefore,the high surface area in these samples could be addressed by high surface area of zeolite. When fuel to nitrate ratio is increased,the relative crystallinity of nanocomposite is increased.Consequently the pores of ZSM-5 are covered.In spite of microspores morphology,this plugging is very strong so that the sample with high urea content has lower surface area.

    2.1.4 FTIR analysis

    The FTIR spectra of ZSM-5 and synthesized CZA/HZSM-5 nanocomposites via different urea contents are shown in Fig.10.As can be seen in Fig. 10(a),the FTIR spectrum of ZSM-5 shows bands at 455,555,800,1095,1 228 and 1 400 cm-1,which are assigned to different vibrations of tetrahedral and framework atoms in HZSM-5 zeolite[31].The ratio of the intensities of bands at 455 and 555 cm-1provides an approximation to estimate of the degree of crystallinity of a given zeolite sample[32].With increasing of the urea content,this ratio is decreased;however,in sample with urea to nitrate ratio of 4 it is increased slightly.Furthermore the band at 555 cm-1indicates the formation of the fivemembered ring of the pentasil zeolite structure by tetrahedral SiO4and AlO4units[33]. The band at 1 228 cm-1is assigned to external asymmetric stretching vibration of four chains of five member rings disposed around a double helix[34].The bands observed at 455 and 555 cm-1are characteristic of Cu-O and Zn-O vibration band,respectively,that some of them have overlap with HZSM-5 frequency band[35-36].The broad band at 3 450 cm-1is attributed to the hydroxyl groups,which are extensively hydrogen bonded.The band at ca.1 645 cm-1is assigned to the bonding vibrational mode of the interlayerwatermolecules[37].

    The strongest peak at 1 095 cm-1is assigned to the framework stretching vibration band of Si(Al)-O in tetrahedral Si(Al)O4in ZSM-5[34].The position of this band remains almost unchanged in all of nanocomposites,indicating that HZSM-5 structure is not destroyed even after it is loaded with CZA nanoparticles.Furthermore,not any characteristic band is observed for other impurities such as Cu(OH)2or Zn(OH)2in FTIR patterns.These results supportand complement the XRD data.

    The obvious bands at 905 cm-1due to Cu-O and Zn-O perturbations of asymmetric internal zeolite stretching vibrations are observed in sample b,c and d.Therefore,with increasing of urea content until 2, there is significant chemical interaction between CuO and ZnO with ZSM-5[38].Furthermore,as can be seen in Fig.10(e),there is no chemical interaction between CuO and ZnO with ZSM-5 but there is asymmetric stretch vibration of the T-O bond at 1 235 cm-1which can be assigned to external linkages between TO4tetrahedral[33].This result indicates that the nature of the band between CuO and ZnO with HZSM-5 changes significantly with increasing of urea content from 2 to 4.

    IR spectra of the gel before and after calcinations were examined to investigate the chemical and structural changes that take place during the combustion process.As can be seen in Fig.11,after calcinations,many of the bands related to organic materials are eliminated.The IR spectrum of noncalcined sample indicates the presence of carbonate ions.The strong band at 1 400 and 1 500 cm-1originates from the CO32-ion.The IR bands observed below 1 000 cm-1can be attributed to carbonate and themetal hydroxylmodes(M=Cu,Zn and Al)[39-40].

    Furthermore, the calcination reduced the intensities in the region of 3 400~3 700 cm-1for nanocomposite.The disappearance of bands with a wave number larger than 3 625 cm-1is attributed to condensation reactions occurred between different kinds of hydroxyl groups during calcination at 350℃.

    2.1.5 Thermogravimetric analysis

    The TGA/DTG results for the urea-nitrate dried gels prepared with different ratios of nitrates to urea are shown in Fig.12.It can be seen that there is a sharp weight loss in each case that indicates the occurrence of combustion reaction.

    All of the TGA curves demonstrate three weight loss steps except for the gel with urea to nitrate ratio of 4 that has shown four weight loss steps.In all samples,the slight continuous weight loss at lower temperatures up to 150℃ is attributed to the gradual evaporation of absorbed water and dehydration reaction of the gels(Zone I).In Fig.12(a)and(b),the weight loss from 150 to 230 ℃ is due to the decomposition of different nitrates and ammonium nitrate accompanied by significant weight loss(ZoneⅡ).The sharp exothermic peak in DTG curve in a very narrow temperature range of 240~260℃ can be attributed to the reaction of nitrates with urea resulting in a sharp weight loss in TGA plotwith 50% weight loss(ZoneⅢ).With increasing the urea content,the second weight loss zone shifts to 250℃and becomes deeper and the third weight loss zone becomesweaker.

    The small broad peak at about 370℃ is due to the complete oxidation of residual carbon in the sample accompanied by approximatly 10%weight loss.On the other hand,in the sample with urea to metal nitrate ratio of 0.5,there is no weight loss after the combustion reaction.This indicates complete combustion reaction giving a product free of residual reactants and carbonaceousmatter.

    It can be seen that the decomposition process in samples with a high urea ratio is associated with slow rate of weight loss during heating as compared to those in samples with lower ratio of urea,which decomposes rapidly.With increasing the urea to nitrate ratio,the concentration of nitrate ions in the sample decreases.Due to the decrease of oxidant,the rate of redox reaction is decreased,and the ignition temperature is increased.

    Therefore,it could be addressed that the combustion rate is affected by themolar ratio of urea to metal nitrate in which the highest rate is achieved with the urea to nitratemolar ratio of 0.5.

    2.2 Reaction channels for CuO-ZnO-Al2O3 formation over HZSM-5

    Themolar ratio of fuel tometal nitrate has been determined based on the propellant chemistry principal.Hence,reducing valences of nitrogen and carbon have been taken as 0 and 4,respectively.Furthermore,it should be considered that N2and CO2are the gaseous combustion products.Presence of these gaseous states in the evolved combustion product has been reported in the literature[41]. Therefore,the overall reaction between nitrate precursors and urea during the combustion process can be represented as follows:

    Though the amount of nitrate ions in the solution is less,the redox mixture generates sufficient exothermic heat for the evolution of the precursors into metal oxides and produces a large amount of gases in a short period of time that keeps the powder well dispersed in large volume.

    In gel synthesis process,urea is not only employed as a fuel,but partially decomposed to ammonia and water to maintain the constancy of the pH value of the solution during the evaporation process.In this process,the combustion wave propagates from first to the end of the reactant and the combustion reaction is completed within a few minutes.There are somemechanisms to describe what occurs in combustion process.

    For this case,at first,urea decomposes initially to HCNO (reaction 2)and,metal nitrate decomposes to metal hydroxide and nitric acid (reactions 3~5).Ammonia solution is used to adjust pH value to 7. Simultaneously,ammonia solution reacts with the nitric acid to form ammonium nitrate,which could be used as an oxidizer(reactions 6~7).The colored gel is due to the formation of chelate complexes between the biuret (which is a bidentate ligand,coordinates through the terminal nitrogens)and the metal ions.This complex prevents from the precipitation ofmetal hydroxide groups(reaction 8~10).

    Then final gas phase reactions between combustible species (like ammonia and above complex)and oxides of nitrogen occur and lead to the appearance of a flame.This phenomenon can be attributed to strong oxidation-reduction reaction in combustion,which can be proved by the TGA/DTG analysis.Simultaneously,the massive reaction heat results in the reaction of highly reactive CuO-ZnOAl2O3with HZSM-5 to yield CZA/HZSM-5 nanoparticles as observed in reaction (1).For better understanding themechanism of combustion synthesis, a calorimetric study with the simultaneous analysis of gaseous reaction products is recommended for future studies.

    3 Conclusions

    The combustion method is a simple and fast route for the synthesis of ultrafine,nanocrystalline CZA/HZSM-5 composite.The combustion processes and physicochemical properties of composite are greatly influenced by the urea content.The combustion rate is themost vigorous and rapid for the gel with urea to nitrate ratio of 0.5.Results from the TGA/DTG curves show that a drastic combustion reaction occursat around 250℃.It is observed that the products are homogenous and crystalline.XRD patterns show that CuO,ZnO are formed on HZSM-5 substrate.Moreover,the amount of urea plays an important role on the control of particle size.The calcined powders are spherical in shape and their particle sizes in the sample with urea to nitrate ratio of 4 are in range of 20~100 nm.

    Acknow ledgements:The authors gratefully acknowledge Sahand University of Technology for the financial support of the project as well as Iran Nanotechnology Initiative Council for complementary financial support.

    [1]Burda C,Chen X,Narayanan R etal.Chem.Rev.,2005,105 (4):1025-1102

    [2]Ying Jackie J.Chem.Eng.Sci.,2006,61(5):1540-1548

    [3]Li X,Liu H,Han F,et al.Mater.Sci.Eng.A,2004,379(1/ 2):347-350

    [4]Abbasi A R,Morsali A.Ultrason.Sonochem.,2010,17(4): 704-710

    [5]Zhao Y,Chen J,Zhang J.J.Nat.Gas Chem.,2007,16(4):389-392

    [6]Tanaka Y,KikuchiR,Eguchi K,etal.Appl.Catal.B,2005, 57(3):211-222

    [7]SáS,Sousa JM,Mendes A.Chem.Eng.Sci.,2011,66(20): 4913-4921

    [8]ChangCC,ChangCT,Chen Y,etal.Int.J.Hydrogen Energy, 2010,35(15):7675-7683

    [9]Huang G,Liaw B J,Chen Y Z,et al.Appl.Catal.A,2009, 358(1):7-12

    [10]?kte A N,Ylmaz?.Appl.Catal.A,2009,354(1/2):132-142

    [11]Sun K,Lu W,Xu X,et al.Appl.Catal.A,2003,252(2):243-249

    [12]Moradi G R,Nosrati S,Yaripor F.Catal.Commun.,2007,8 (3):598-606

    [13]Ahn S H,Kim S H,Jung K B,et al.Korean J.Chem. Eng.,2008,25(3):466-470

    [14]Mao D,YangW,Chen Q.J.Catal.,2005,230(1):140-149

    [15]Veith M,Mathur S,Huch V,et al.J.Mater.Chem.,1999,9 (12):3069-3079

    [16]Avgouropoulos G,Ioannides T.Appl.Catal.A,2003,244(1): 155-167

    [17]ZanettiSM,Santiago E I,Longo E,et al.Mater.Lett.,2003, 57(19):2812-2816

    [18]Si Y C,Jiao L F,Yuan H T,et al.J.Alloys Compd.,2009, 486(1/2):400-405

    [19]Naik M A,Mishra BG,Dubey A.Colloids Surf.Physicochem. Eng.Aspects,2008,317(1/2/3):234-238

    [20]Zhu J,Xiao D,Li J,etal.ScriptaMater.,2006,54(1):109-113

    [21]Lenka R K,Mahata T,Sinha P K,et al.J.Alloys Compd., 2008,466(1/2):326-329

    [22]Chen W,Li F,Yu J.MatL,2007,61(2):397-400

    [23]Costa A C FM,MorelliM R,Kiminami R H G A.J.Mater. Synth.Process,2001,9(6):347-352

    [24]Li J,Pan Y,Guo J,etal.Ceram.Int.,2007,33(6):1047-1052

    [25]Mir M,de Paula C C,Mascarenhas Y P,et al.J.Eur. Ceram.Soc.,2007,27(13/14/15):3719-3721

    [26]Amarilla J M,Petrov K,Rojas R M,et al.J.Power Sources,2009,191(2):591-600

    [27]Riahi-Noori N,Sarraf-Mamoory R,Mehdikhani A,et al.J. Ceram.Process.Res.,2008,9(3):246-249

    [28]Zhang X,Zhong L,Xie K,etal.Fuel,2010,89(7):1348-1352

    [29]Singh K A,Pathak L C,Roy S K.Ceram.Int.,2007,33 (8):1463-1468

    [30]FENG Dong-Mei(馮冬梅),ZUO Yi-Zan(左宜贊),WANG Jin-Fu(王金福),et al.Chinese J.Catal.(Cuihua Xuebao), 2009,30(3):223-229

    [31]Othman Ali I.Mater.Sci.Eng.,A,2007,459(1/2):294-302

    [32]AliM A,Brisdon B,ThomasW J.Appl.Catal.A,2003,252 (1):149-162

    [33]Cheng Y,Wang L J,Sun X Y,et al.Mater.Lett.,2005,59 (27):3427-3430

    [34]Barros I C L,Braga V S,Pinto D S,et al.Microporous Mesoporous Mater.,2008,109(1/2/3):485-493

    [35]Matei A,Cernica I,Cadar O,et al.Int.J.Mater.Form., 2008,1(0):767-770

    [36]Ardelean I,Cora S.J.Mater.Sci.Mater.Elec.,2008,19(6): 584-588

    [37]Chen L,LiL,LiG.J.AlloysCompd.,2008,464(1/2):532-536

    [38]Villa A L,Caro C A,Correa C M d.J.Mol.Catal.A:Chem.,2005,228(1/2):233-240

    [39]Zhang LM,Lu W C,Feng Y L,etal.Acta Physico-Chimica Sinica,2008,24(12):2257-2262

    [40]Sun W,Liu W L,Hu Y H.J.Cent.South Univ.Tech., 2008,15(3):373-377

    [41]Mali A,Ataie A.Ceram.Int.,2004,30(7):1979-1983

    Urea-Nitrate Combustion Synthesis and Physicochem ical Characterization of CuO-ZnO-Al2O3Nanoparticles over HZSM-5

    Reza Khoshbin1,2Mohammad Haghighi*,1,2
    (1Chemical Engineering Department,Sahand University of Technology,P.O.Box 51335-1996, Sahand New Town,Tabriz,Iran) (2Reactor and Catalysis Research Center(RCRC),Sahand University of Technology, P.O.Box 51335-1996,Sahand New Town,Tabriz,Iran)

    A series of CuO-ZnO-Al2O3nanocomposites over HZSM-5(CZA/HZSM-5)have been synthesized by urea-nitrate combustion method.The influence of the fuel to oxidant ratio on the physicochemical properties of synthesized nanocomposites has been studied.The thermal decomposition of urea-nitrate gels and the phase evolution of calcined powder were investigated by TGA/DTG,FTIR and XRD techniques.The FESEM results show that the properties of the CZA/HZSM-5 are significantly influenced by fuel content used in the combustion process.The crystalline size of the CuO and ZnO initially increases with the increase in urea content and then decreases with further addition of urea.The relative crystallinity of CuO and ZnO shows non monotonic trend with increasing of fuel content.With increasing of fuel to nitrate ratio,not only the morphology of the CZA/HZSM-5 becomes ultra-fine and homogeneous,but also the surface porosity increases obviously.FTIR results show that HZSM-5 structure is not damaged even after loading with CuO-ZnO-Al2O3nanoparticles and there are external linkages between CuO and ZnO with HZSM-5.TGA/DTG curves indicate that the combustion synthesis method is a combination of several phenomena such as thermal decomposition of precursors and exothermal reactions between them.Furthermore,a formation channel of CuO-ZnO-Al2O3over HZSM-5 was proposed.

    ZnO-CuO-Al2O3;HZSM-5;nanocomposite;urea-nitrate combustion

    O643.36;TQ426.6

    A

    1001-4861(2012)09-1967-12

    2011-12-17。收修改稿日期:2012-04-16。

    *通訊聯(lián)系人。E-mail:haghighi@sut.ac.ir,Tel:+98-412-3458097&+98-412-3459152,Fax:+98-412-3444355,web:http://rcrc.sut.ac.ir。

    猜你喜歡
    硝酸鹽反應(yīng)器尿素
    硝酸鹽并不致癌還或有益處
    中老年保健(2022年3期)2022-11-21 09:40:36
    聚丙烯環(huán)管反應(yīng)器升密操作與控制
    云南化工(2021年11期)2022-01-12 06:06:36
    挖掘機(jī)尿素噴嘴散熱改進(jìn)
    尿素漲價坐實(shí)的兩個必要條件
    亂七八糟的“尿素”是該好好治一治了
    EGSB反應(yīng)器處理阿維菌素廢水
    上旋流厭氧反應(yīng)器在造紙廢水處理中的應(yīng)用
    尿素持續(xù)低迷 業(yè)內(nèi)“賭”欲殆盡
    家畜硝酸鹽和亞硝酸鹽中毒的診斷、鑒別和防治
    費(fèi)托合成微反應(yīng)器研究進(jìn)展
    国产精品久久久久久精品电影小说 | 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 精品久久久精品久久久| 插逼视频在线观看| 亚洲人成网站在线播| av在线亚洲专区| 看非洲黑人一级黄片| 街头女战士在线观看网站| 我的老师免费观看完整版| 嫩草影院精品99| 国产爽快片一区二区三区| 干丝袜人妻中文字幕| 99热全是精品| 久久99蜜桃精品久久| 亚洲av一区综合| 久久久久久久国产电影| 欧美一区二区亚洲| 国产乱人视频| 99热这里只有精品一区| 国产视频首页在线观看| 亚洲欧美精品专区久久| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 国产精品人妻久久久影院| 欧美3d第一页| 久久精品人妻少妇| 亚洲av一区综合| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 天美传媒精品一区二区| 不卡视频在线观看欧美| av一本久久久久| videossex国产| 男人爽女人下面视频在线观看| 岛国毛片在线播放| 麻豆成人午夜福利视频| 91久久精品国产一区二区三区| 欧美xxⅹ黑人| 国产精品不卡视频一区二区| 美女视频免费永久观看网站| 午夜免费鲁丝| 人妻系列 视频| 国产毛片在线视频| 国产高清三级在线| 中国国产av一级| 国产成人一区二区在线| 女的被弄到高潮叫床怎么办| 高清欧美精品videossex| 国产一区亚洲一区在线观看| 日日啪夜夜撸| 男人爽女人下面视频在线观看| 精品熟女少妇av免费看| 欧美成人精品欧美一级黄| 美女内射精品一级片tv| 国产淫语在线视频| 国产人妻一区二区三区在| 日韩av免费高清视频| 亚洲色图av天堂| 91狼人影院| 直男gayav资源| 超碰97精品在线观看| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站| 国产精品无大码| 直男gayav资源| 搡老乐熟女国产| 欧美日韩综合久久久久久| 免费在线观看成人毛片| eeuss影院久久| 国产爱豆传媒在线观看| 久久久久九九精品影院| 亚洲av免费在线观看| 免费观看av网站的网址| 男女无遮挡免费网站观看| 国产成人免费无遮挡视频| 精品国产乱码久久久久久小说| 亚洲不卡免费看| 国产av码专区亚洲av| 欧美zozozo另类| 久久久久久久久久久免费av| 秋霞在线观看毛片| 亚洲国产欧美人成| 欧美精品一区二区大全| 80岁老熟妇乱子伦牲交| 成人鲁丝片一二三区免费| 日韩强制内射视频| av在线亚洲专区| 熟女人妻精品中文字幕| 蜜臀久久99精品久久宅男| 亚洲美女搞黄在线观看| 性色avwww在线观看| 一边亲一边摸免费视频| 男女下面进入的视频免费午夜| 久久热精品热| 亚洲aⅴ乱码一区二区在线播放| 在线精品无人区一区二区三 | 日韩,欧美,国产一区二区三区| 丝袜美腿在线中文| 成人国产麻豆网| 久久久欧美国产精品| 国产成人免费观看mmmm| 人妻制服诱惑在线中文字幕| 久久久久久久亚洲中文字幕| 一二三四中文在线观看免费高清| 国内揄拍国产精品人妻在线| 成年女人在线观看亚洲视频 | 久久影院123| 中文字幕av成人在线电影| 国产一级毛片在线| 免费不卡的大黄色大毛片视频在线观看| 国产色爽女视频免费观看| 国产免费一区二区三区四区乱码| 激情五月婷婷亚洲| 亚洲精品久久久久久婷婷小说| 免费看光身美女| 久久精品夜色国产| 最近中文字幕2019免费版| 亚洲内射少妇av| 久久精品夜色国产| 最近最新中文字幕免费大全7| 午夜福利在线在线| 三级国产精品欧美在线观看| 欧美最新免费一区二区三区| 久久久a久久爽久久v久久| 一本一本综合久久| 偷拍熟女少妇极品色| 日韩伦理黄色片| 老司机影院毛片| 美女视频免费永久观看网站| 少妇人妻 视频| 精品亚洲乱码少妇综合久久| 亚洲色图综合在线观看| 男女边吃奶边做爰视频| 边亲边吃奶的免费视频| 天天一区二区日本电影三级| 极品教师在线视频| 男女边摸边吃奶| 女人被狂操c到高潮| 校园人妻丝袜中文字幕| 草草在线视频免费看| 欧美日韩一区二区视频在线观看视频在线 | 春色校园在线视频观看| 大片电影免费在线观看免费| 3wmmmm亚洲av在线观看| av网站免费在线观看视频| 国产精品不卡视频一区二区| av在线app专区| 国产精品久久久久久精品古装| 男女边摸边吃奶| 新久久久久国产一级毛片| 91久久精品国产一区二区三区| 成年女人看的毛片在线观看| 99久久精品一区二区三区| 日韩 亚洲 欧美在线| 国产精品久久久久久av不卡| 身体一侧抽搐| 欧美潮喷喷水| 黄色视频在线播放观看不卡| 欧美zozozo另类| 欧美性感艳星| 成人黄色视频免费在线看| 九草在线视频观看| 97在线人人人人妻| 国产一区二区亚洲精品在线观看| av福利片在线观看| 国产高清有码在线观看视频| 最新中文字幕久久久久| 亚洲第一区二区三区不卡| 亚洲欧美成人精品一区二区| 91精品国产九色| 老司机影院成人| 亚洲av成人精品一二三区| 波野结衣二区三区在线| 日韩视频在线欧美| 久久99热6这里只有精品| 久久人人爽av亚洲精品天堂 | 性色avwww在线观看| 男女下面进入的视频免费午夜| 久久久午夜欧美精品| 80岁老熟妇乱子伦牲交| 麻豆乱淫一区二区| 国产av国产精品国产| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 在线免费观看不下载黄p国产| 久久久精品欧美日韩精品| 日韩不卡一区二区三区视频在线| 日韩欧美 国产精品| 国产一区二区三区综合在线观看 | 一区二区三区乱码不卡18| 欧美日韩视频高清一区二区三区二| 日本免费在线观看一区| 国产精品人妻久久久久久| 最近的中文字幕免费完整| 大码成人一级视频| 男人舔奶头视频| 精品国产露脸久久av麻豆| 国产老妇伦熟女老妇高清| 青青草视频在线视频观看| 亚洲精品成人久久久久久| 国产黄频视频在线观看| 亚洲精品aⅴ在线观看| 亚洲欧美日韩东京热| 欧美日本视频| 精品视频人人做人人爽| videos熟女内射| 国产成人a∨麻豆精品| 亚洲国产高清在线一区二区三| 日本黄色片子视频| 亚洲高清免费不卡视频| 综合色av麻豆| 国产伦精品一区二区三区视频9| 精品国产乱码久久久久久小说| 亚洲美女视频黄频| 国产成年人精品一区二区| 欧美最新免费一区二区三区| 一区二区三区乱码不卡18| 麻豆国产97在线/欧美| 中文天堂在线官网| 日韩欧美一区视频在线观看 | 欧美成人午夜免费资源| 一级av片app| 少妇熟女欧美另类| 亚洲色图综合在线观看| 日本-黄色视频高清免费观看| 赤兔流量卡办理| 婷婷色av中文字幕| av在线天堂中文字幕| 国产极品天堂在线| 日韩欧美 国产精品| 乱码一卡2卡4卡精品| 国产亚洲一区二区精品| 熟女人妻精品中文字幕| 精品久久久久久久末码| 97人妻精品一区二区三区麻豆| 91aial.com中文字幕在线观看| 欧美成人午夜免费资源| 97热精品久久久久久| 亚洲av福利一区| 最新中文字幕久久久久| 永久免费av网站大全| 伦精品一区二区三区| 美女被艹到高潮喷水动态| 国产精品蜜桃在线观看| 99久久精品国产国产毛片| a级毛片免费高清观看在线播放| 日韩av免费高清视频| 街头女战士在线观看网站| 久久久午夜欧美精品| 99热国产这里只有精品6| 内地一区二区视频在线| 91精品伊人久久大香线蕉| 国产男女超爽视频在线观看| 久久久久性生活片| 一二三四中文在线观看免费高清| 国产黄a三级三级三级人| 亚洲精品,欧美精品| 亚洲第一区二区三区不卡| 国产男女超爽视频在线观看| 久久亚洲国产成人精品v| 美女被艹到高潮喷水动态| 人妻 亚洲 视频| 又黄又爽又刺激的免费视频.| 男人爽女人下面视频在线观看| 在线观看美女被高潮喷水网站| 免费电影在线观看免费观看| 国产伦精品一区二区三区视频9| 免费看a级黄色片| 久久久亚洲精品成人影院| 2021天堂中文幕一二区在线观| 欧美最新免费一区二区三区| 国产精品久久久久久久电影| 一级毛片黄色毛片免费观看视频| 久久久欧美国产精品| 亚洲国产精品999| 人人妻人人看人人澡| 亚洲天堂国产精品一区在线| 国产亚洲一区二区精品| 亚洲成人久久爱视频| 一区二区三区四区激情视频| 一级二级三级毛片免费看| 欧美一区二区亚洲| 欧美xxxx黑人xx丫x性爽| 一级毛片我不卡| 在线观看一区二区三区| 欧美日韩在线观看h| 成人黄色视频免费在线看| 精品国产三级普通话版| 大香蕉久久网| 久久久久国产精品人妻一区二区| 国产视频内射| 亚洲欧美清纯卡通| 国产高清有码在线观看视频| 美女内射精品一级片tv| 18禁在线播放成人免费| 69人妻影院| 婷婷色综合大香蕉| 亚洲精品视频女| 少妇人妻久久综合中文| 国产精品三级大全| 91在线精品国自产拍蜜月| 欧美xxxx黑人xx丫x性爽| 日韩欧美精品免费久久| 日本欧美国产在线视频| 在线 av 中文字幕| 最近2019中文字幕mv第一页| 青春草国产在线视频| 亚洲精品国产色婷婷电影| 亚洲国产高清在线一区二区三| 成人毛片60女人毛片免费| 亚洲精品乱码久久久久久按摩| 亚洲av中文av极速乱| 亚洲av欧美aⅴ国产| 熟女电影av网| 亚洲色图av天堂| 伦理电影大哥的女人| 五月开心婷婷网| 人体艺术视频欧美日本| 亚洲性久久影院| 欧美+日韩+精品| 免费av观看视频| 免费看不卡的av| 看黄色毛片网站| 国产成人精品一,二区| 69人妻影院| 国产亚洲91精品色在线| 夫妻午夜视频| 99久久精品热视频| 色哟哟·www| 高清av免费在线| 97在线视频观看| 久久国产乱子免费精品| 精品国产露脸久久av麻豆| 黄色日韩在线| 成人免费观看视频高清| 国产精品一区二区三区四区免费观看| 老师上课跳d突然被开到最大视频| 99热6这里只有精品| 国产精品嫩草影院av在线观看| 麻豆乱淫一区二区| 国产精品伦人一区二区| 九九爱精品视频在线观看| 97在线人人人人妻| 成人一区二区视频在线观看| 久久久久性生活片| 亚洲va在线va天堂va国产| 色视频在线一区二区三区| av天堂中文字幕网| 日韩,欧美,国产一区二区三区| 国产毛片a区久久久久| 黄色配什么色好看| 久久鲁丝午夜福利片| 久久久久国产网址| 亚洲欧美日韩东京热| 五月开心婷婷网| 国产在线男女| 99热这里只有是精品在线观看| 特大巨黑吊av在线直播| 成人美女网站在线观看视频| av在线亚洲专区| 天堂网av新在线| 伦精品一区二区三区| 亚洲国产精品999| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人精品一区二区| 亚洲av中文字字幕乱码综合| 久久这里有精品视频免费| 乱系列少妇在线播放| 日韩 亚洲 欧美在线| 一区二区三区乱码不卡18| 中文乱码字字幕精品一区二区三区| 麻豆乱淫一区二区| 国产精品熟女久久久久浪| 色视频www国产| 极品少妇高潮喷水抽搐| 亚洲欧美中文字幕日韩二区| 一级片'在线观看视频| 亚洲成人精品中文字幕电影| 国产女主播在线喷水免费视频网站| 国产精品一区二区三区四区免费观看| 国产爱豆传媒在线观看| 97在线人人人人妻| 国产成人精品一,二区| 一级二级三级毛片免费看| 亚洲精品乱久久久久久| 日本猛色少妇xxxxx猛交久久| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 免费观看的影片在线观看| 色婷婷久久久亚洲欧美| 少妇熟女欧美另类| 日韩一区二区三区影片| 尤物成人国产欧美一区二区三区| 18+在线观看网站| 一个人看视频在线观看www免费| 成人毛片60女人毛片免费| 两个人的视频大全免费| 日本-黄色视频高清免费观看| 日韩欧美精品v在线| 2018国产大陆天天弄谢| 卡戴珊不雅视频在线播放| 中文乱码字字幕精品一区二区三区| 青青草视频在线视频观看| 国产精品福利在线免费观看| 国产一区亚洲一区在线观看| 色哟哟·www| 久久国产乱子免费精品| 亚洲欧美成人精品一区二区| 婷婷色麻豆天堂久久| 免费播放大片免费观看视频在线观看| 亚洲欧美日韩卡通动漫| 狂野欧美白嫩少妇大欣赏| 国产大屁股一区二区在线视频| 欧美人与善性xxx| www.av在线官网国产| 亚洲精品aⅴ在线观看| www.色视频.com| 亚洲国产av新网站| 国产av国产精品国产| 下体分泌物呈黄色| 国产91av在线免费观看| 黄色一级大片看看| 亚洲激情五月婷婷啪啪| 亚洲av男天堂| 亚洲四区av| 亚洲精品国产av蜜桃| 成年女人在线观看亚洲视频 | 亚洲人成网站在线观看播放| 欧美最新免费一区二区三区| 亚洲av中文av极速乱| 有码 亚洲区| 国模一区二区三区四区视频| 99热这里只有是精品在线观看| 极品教师在线视频| 国产久久久一区二区三区| 欧美变态另类bdsm刘玥| 欧美区成人在线视频| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 久热久热在线精品观看| 国产黄片美女视频| 亚洲精品日韩av片在线观看| 中国国产av一级| 午夜精品国产一区二区电影 | 亚洲精品第二区| 熟妇人妻不卡中文字幕| 午夜视频国产福利| 人妻夜夜爽99麻豆av| 国产亚洲午夜精品一区二区久久 | 69人妻影院| 日本三级黄在线观看| 人人妻人人看人人澡| 天天躁夜夜躁狠狠久久av| 日本爱情动作片www.在线观看| 秋霞在线观看毛片| 成人鲁丝片一二三区免费| 亚洲精华国产精华液的使用体验| 大陆偷拍与自拍| 男女下面进入的视频免费午夜| 一级a做视频免费观看| 亚洲自拍偷在线| 搡老乐熟女国产| 久久久久精品性色| 免费看日本二区| 三级经典国产精品| 黄片无遮挡物在线观看| 国产成人免费无遮挡视频| 国产亚洲一区二区精品| 性色av一级| kizo精华| 日韩av在线免费看完整版不卡| 午夜亚洲福利在线播放| 国产精品一区www在线观看| tube8黄色片| 亚洲成色77777| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 特大巨黑吊av在线直播| 男人添女人高潮全过程视频| 亚洲精品成人久久久久久| 久久6这里有精品| 国产91av在线免费观看| av天堂中文字幕网| 久久久久精品久久久久真实原创| 亚洲高清免费不卡视频| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 毛片女人毛片| 久久女婷五月综合色啪小说 | 国内少妇人妻偷人精品xxx网站| 亚洲av免费在线观看| 韩国av在线不卡| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 亚洲欧美精品自产自拍| 国产成人精品婷婷| 国产片特级美女逼逼视频| 国产91av在线免费观看| 男的添女的下面高潮视频| 亚洲欧洲日产国产| 99热6这里只有精品| 欧美人与善性xxx| 亚洲国产欧美在线一区| 亚洲va在线va天堂va国产| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 水蜜桃什么品种好| 男女那种视频在线观看| 成人黄色视频免费在线看| 欧美成人a在线观看| 美女高潮的动态| 91精品一卡2卡3卡4卡| 亚洲电影在线观看av| 成人国产麻豆网| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆| 亚洲怡红院男人天堂| 精品人妻熟女av久视频| 国产大屁股一区二区在线视频| 免费观看av网站的网址| 国国产精品蜜臀av免费| 国产成人a∨麻豆精品| 麻豆乱淫一区二区| 观看免费一级毛片| 亚洲欧美成人精品一区二区| 成人毛片a级毛片在线播放| 黑人高潮一二区| 久久国内精品自在自线图片| 日本欧美国产在线视频| 亚洲国产精品国产精品| 国产精品人妻久久久久久| 久久久久久久久久久免费av| av国产免费在线观看| 亚洲四区av| 亚洲va在线va天堂va国产| a级毛色黄片| 黄色视频在线播放观看不卡| 亚洲久久久久久中文字幕| 成人一区二区视频在线观看| 亚洲精品视频女| 欧美一区二区亚洲| 久久精品国产亚洲av天美| 老司机影院毛片| 看非洲黑人一级黄片| 精品久久国产蜜桃| 国产综合精华液| 日韩一区二区三区影片| 成年版毛片免费区| 国产探花极品一区二区| 在线天堂最新版资源| 精品久久久久久久久av| 亚洲综合精品二区| 欧美激情久久久久久爽电影| 一本色道久久久久久精品综合| xxx大片免费视频| 免费大片18禁| 国产视频内射| 久久精品熟女亚洲av麻豆精品| 久久久久久伊人网av| 熟女人妻精品中文字幕| 内射极品少妇av片p| 精品国产三级普通话版| 简卡轻食公司| 国产免费一级a男人的天堂| 日本av手机在线免费观看| 蜜桃亚洲精品一区二区三区| 九九在线视频观看精品| 国产高清国产精品国产三级 | 在线观看av片永久免费下载| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 99九九线精品视频在线观看视频| 一级毛片 在线播放| 性插视频无遮挡在线免费观看| 欧美高清成人免费视频www| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| av天堂中文字幕网| 国产精品无大码| 欧美性感艳星| 亚洲人成网站高清观看| 一级毛片 在线播放| 狂野欧美激情性bbbbbb| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 高清av免费在线| 亚洲精品456在线播放app| 国产成人精品久久久久久| 欧美性猛交╳xxx乱大交人| 国产在线一区二区三区精| 91狼人影院| 亚洲av福利一区| 99热6这里只有精品| 免费高清在线观看视频在线观看| 精品久久久久久久久av| 亚洲不卡免费看| 永久免费av网站大全| 男女边吃奶边做爰视频| 99热这里只有精品一区| 色婷婷久久久亚洲欧美| 日韩电影二区| 免费播放大片免费观看视频在线观看| 免费观看的影片在线观看| 亚洲图色成人| 国产高潮美女av| 国产高清有码在线观看视频| av专区在线播放| h日本视频在线播放| 嫩草影院精品99|