• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GRADE-LIFE PROGNOSTIC MODEL OF AIRCRAFT ENGINE BEARING

    2012-10-08 12:10:36MiaoXuewenNiuCongYangYunHanLeiHongJie

    Miao Xuewen,Niu Cong,Yang Yun,Han Lei,Hong Jie

    (1.Air Force Equipment Academy,Beijing,100076,P.R.China;2.School of Information and Electronics,Beijing Institute of Technology,Beijing,100081,P.R.China;3.School of Jet Propulsion,Beijing University of Aeronautics and Astronautics,Beijing,100083,P.R.China)

    INTRODUCTION

    Prognostics and health management(PHM)technology for potential applications on aircrafts is increasingly improved because of its support for safety,equipment reliability,and cost reduction.

    Current state-of-the-art in aircraft preventive maintenance includes health and usage monitoring systems(HUMS)for AH-64,UH260 and CH247 helicopter,integrated vehicle health management(IVHM)for B22 Bomber, F-35 joint strike fighter (JSF) program, Boeing company′s airplane health management(AHM)for B777,B7472400, A320, A330 and A340 aircraft,aircraft condition analysis and management system (ACAMS) for B757 aircraft, and integrated systems health management(ISHM)for space shuttle,which incorporates PHM into its design,using sensors,advanced processing and reasoning,and a fully integrated system of information and supplies management[1-6].

    The service life prediction of aircraft engines is vital for PHM technology.Currently,aircraft engine bearings highly rely on conservative life estimation to ensure that bearings can be replaced before failure.Due to the stochastic nature of a failure propagation process,the uncertain mission profile of aircrafts and uncertain factors in a bearing operating process,this method has two obvious deficiencies.First,the procedure reduces aircraft availability and leads to a significant labor cost to replace a bearing which is still quite useful. Second, although it has achieved extremely low failure rates,highly-conservative life estimation cannot avoid accidents due to those bearing failures outside scheduled maintenance hours under extreme and/or unpredictable circumstances. Therefore,the development of practical and verifiable prognostic models for the

    service life of bearings plays a critical role in improving the reliability and safety of aircraft engines.

    A new concept, grade-life(GL), is introduced to describe the service life of bearings.The entire service life is divided into four stages:good bearing condition(GBC),initial defect condition (IDC),damaged bearing condition(DBC)and failure coming condition(FCC).

    In prognostic issues,mathematical models have a limited predictive capability.Mathematical models can not provide accurate GL prediction because of the highly variable fatigue-propagating process of bearings,the difference of mission profile and the various environmental effects.Therefore, a diagnostic estimation model is developed based on vibration theory and damage mechanics.

    Finally,a GL prediction model of aircraft engine bearings is presented with the combination of the mathematical model and the diagnostic estimation model based on support vector machine(SVM)for the calculation of the physics-based GL (PGL)and the empirical GL (EGL).Experiments show that the methodology is scientific and reliable for predicting the lifetime of aircraft engine bearings.

    1 GRADE-LIFE PROGNOSTIC MODEL

    1.1 Mathematical model

    The mathematical model is for rolling contact fatigue.In order to obtain the PGL value,the model utilizes life-limited parameters,including load, rotate speed, etc. to calculate the cumulative damage which the bearing suffers.The parameters are derived from the load spectrum of the bearing based on the statistic analysis of sensors data.

    The PGL of bearings is defined as

    where L is the cumulative damage of bearings,which can be acquired by Eq.(2),L 0 the minimum life,L 1 the life with 99% survival probability,L10 the rated life of bearings and L50 the life with 50% survival probability.

    where LXis the bearing life at the load level X according to the dynamic capacity theory[7-8],tX the time under the load level X,which can be acquired by analyzing the sensors data[7].

    Based on Tallian′s research[9],the minimum life parameter can be estimated by

    According to ISO281/1.1977(E)[10],the life with 99% survival probability is

    Assume m=1.5,which is the shape parameter of the Weibull probability distribution,and according to Tallian′s method,L 50 can be represented as

    The relative consumption of lifeis defined as

    Therefore,according to the survival probability,the entire service life is divided into four stages as shown in Fig.1.

    Fig.1 PGL of bearing

    1.2 Diagnostic estimation model

    The diagnostic estimation model is an intelligent health-signal prognostic one,in which time-domain statistical parameters of vibration acceleration signature are selected as the input of SVM to obtain the EGL value.

    The service life of an aircraft engine bearing is based on the measured or calculated condition variables of the bearing and the limits of these variables. The condition variables include the measured vibration amplitude and frequency,the bearing temperature,acoustic emission,etc.

    These variables are GL feature vectors.After normalized,the vector can be defined as

    where xi is the value of the i th normalized condition variable.

    The limits of these variables are bearing condition limits,which are represented as

    The condition of a bearing depends on the GL feature vector rather than the service time.The bearing condition functionψcan be defined as

    When a condition variable of the GL feature vector exceeds its bearing condition limits of the corresponding stage,the bearing EGL can be described as follows:

    (1)0<j<1.5,if xi<h1i for all condition variables,EGL=1.

    (2)1.5<j<2.5,if xi> h1ifor one condition variable,EGL=2.

    (3)2.5<j< 3.5,if xi> h2i for one condition variable,EGL=3.

    (4)j(t)> 3.5,if xi> h3i for one condition variable,EGL=4.

    Fig.2 shows the process of the service life of a bearing, which represents the relationship between the GL of the bearing and the service time of the condition variable. The condition limits H j are difficult to be acquired practically,so the method to determine the thresholds of each condition limit is proposed as follows:

    Fig.2 Illustration of GL of bearing

    (1)The bearing health condition is good and EGL=1.

    (2) The bearing appears defect characteristics,EGL=2.

    (3)As shown in Fig.2,the phenomenon that the value of a condition variable increases drastically over a short time interval indicates that the bearing comes into damaged bearing condition,and EGL=3.

    (4)That the value of the condition variable increases sharply indicates the failure of the bearing,and EGL=4.

    EGL is the defect severity estimation of the bearing. The diagnostic estimation model,in essence,is to assess the condition function j with the GL feature vector.

    1.2.1 Feature selection

    Many challenges stand in the way of predicting the GL of a bearing efficiently,including how to choose the features vector to evaluate the condition degradation of the bearing.

    In current researches,time features,such as RMS,Kurtosis,or Crest Factor,were often chosen.Ref.[11]adopted the RMS value and the Kurtosis Factor of the vibration.Ref.[12]used the average of the amplitudes of the defective frequency and its first six harmonics as the degradation index of thrush ball bearings.However,even though a large variety of features can be extracted to describe the characteristics of vibration signal from different aspects, the previous researches demonstrated that each feature could only affect a certain defect at a certain condition because of the highly stochastic nature of defect growth[13-14]. For instance,spikiness of the vibration signals denoted by Crest Factor and Kurtosis indicates incipient defects,the high energy level denoted by RMSindicates severe defects.Therefore,a good performance assessment method should take advantage of mutual information of multiple features for system degradation assessment.

    According to Ref. [15], the selection criterion of the condition variables should include diagnostic ability,sensitivity,consistency and amount of calculation. Finally, Kurtosis,Skewness,Shape Factor and RMSare selected as the condition variables in this paper.

    1.2.2 SVM model

    SVM model is adopted to realize the mapping between the GL feature vector and the GL of rolling bearings.For the identification model,the run-to-failure data acquired from accelerated life tests of an aircraft bearing are used as learning samples.

    A linearly separable binary classification problem can be represented as

    where x i is a n-dimensional feature vector belonging to either of the two classes w1,w2,and yithe corresponding class indicator(+ 1 for w1,-1 for w2).

    In order to achieve linear separation in classification,it is necessary to map the inputs x into a feature space H(x)by a mapping H(?).Therefore,with the maximum margin,SVM separates the points by an optimal hyper-plane where x is an input vector,w an adaptive weight vector and b a bias. The SVM searches the parameters w and b to maximize the geometric marginby solving the following optimization problem[16].

    In general case,the two classes are not separable. Hence, the slack variables a i is introduced.The objective function is given as

    where C is the penalty factor of training errors.

    By using Eq.(11),Lagrangian optimization function can be obtained, where Lagrangian multiplier is represented as T=[T1,T2,…,T n]T.The function is differentiated with respect to w,T,a to obtain the Karush-Kuhn-Tucker condition.Substituting the condition for the above equation,and holding k(x,y)= <H(x),H(y)> ,the dual optimi-sation function is given as

    The solution T*is guaranteed to be the global minima.These inputs x i at this T*ι≠0 are called the support vector(SV).Based on SVs,the SVM classification can be carried out as

    The typical kernel functions are polynomials,radial basic and hyperbolic tangent ones.In the study,the radial basic function is adopted.

    The SVM model input is the GL feature vector which is constructed by the four condition variables (Kurtosis,Skewness,Shape Factor and RMS).The model output is the value of condition function j. The EGL is acquired by discriminating the condition functions.

    The implementation process of diagnostic estimate model based on SVM is as follows.

    (1)Determinate the GL set,that is,status={GBC,IDC,DBC,FCC},whose corresponding value is f s={1,2,3,4}.Obtain the run-to-failure test data from the experiment.

    (2)Preprocess the run-to-failure test data and compute the GL feature vector x,which consists of Kurtosis, Skewness,Shape Factor and RMSof the signal.

    (3)Train SVM with the input parameter as the GL feature vector and the output as the corresponding value f s.

    (4)Obtain the EGL of the bearing when the feature vector x of the vibration signals of a bearing is input to the SVM model.

    2 GL FUZZY INFERENCE FUSION PROGNOSTIC MODEL

    ″GL″itself is fuzzy in nature.The fuzzy logic inference method[17]is adopted to fuse the mathematical model and diagnostic estimation model.The final GL of bearings is the fusion result of PGL and EGL. It can reduce uncertainties of the mathematical model. The architecture is shown in Fig.3.

    Fig.3 Architecture of prognostic model

    2.1 Fuzzy rule generation

    The designed rules are based on the expert knowledge.The process consists of two parts:

    (1) Knowledge acquisition and rule formation.

    (2)Combination of rules.

    Rule 1:If EGL is 1 and PGL is 1,GL is 1

    Rule 2:If EGL is 1 and PGL is 2,GL is 1

    Rule 3:If EGL is 2 and PGL is 1,GL is 2

    Rule 4:If EGL is 2 and PGL is 2,GL is 2

    Rule 5:If EGL is 2 and PGL is 3,GL is 2

    Rule 6:If EGL is 1 and PGL is 3,GL is 2

    Rule 7:If EGL is 2 and PGL is 4,GL is 3

    Rule 8:If EGL is 1 and PGL is 4,GL is 3

    Rule 9:If EGL is 3 and PGL is 1,GL is 3

    Rule 10:If EGL is 3 and PGL is 2,GL is 3

    Rule 11:If EGL is 3 and PGL is 3,GL is 3

    Rule 12:If EGL is 3 and PGL is 4,GL is 4

    Rule 13:If EGL is 4 and PGL is 1,GL is 4

    Rule 14:If EGL is 4 and PGL is 2,GL is 4

    Rule 15:If EGL is 4 and PGL is 3,GL is 4

    Rule 16:If EGL is 4 and PGL is 4,GL is 4

    2.2 Fuzzy inference parameter selection

    2.2.1 Selection of quantization factor and fuzzy subset

    The fuzzifica tion of fuzzy variables consists of two processes: (1) Quantization factor selection in which the basic range is transformed into fuzzy range effectively,(2)Fuzzy variables fuzzifica tion based on fuzzy subset and membership function.

    The selection of quantization factor and fuzzy subset of PGL,EGL and GL is shown in Table 1-3 respectively.

    Table 1 Quantization f actor and fuzzy subset of PGL

    Table 2 Fuzzy subset of EGL

    Table 3 Fuzzy subset of GL

    2.2.2 Membership function

    A membership function(M F)is a curve that defines how each point in the input or output space is mapped to membership value(or degree of membership)between 0 and 1.

    The PGL,EGL and GL of bearings have four possible outcomes from a fuzzy set:GBC,IDC,DBC and FCC,which are defined and shown in Fig.4.

    Fig.4 Membership functions of variables

    Trapezoidal, bell and gaussi an curve membership functions are used.To some extent,the selection of this membership function is arbitrary.Other membership functions may yield better results.This problem needs to be further studied in future.

    2.3 Fuzzy inference engine

    After defining membership functions and generating the″if-then″rules,the fuzzy inference engine is built.Each rule is taken at a time,and the rules are employed using membership functions and fuzzy operators. For instance,when rules are applied or fired,the membership function outputs are shown in Fig.5. The numbers on the left hand of the figure refer to the Rule 1 to Rule 16 listed in Section 2.1.The input values and membership functions for PGL and EGL are listed in the first two columns(from the left to the right).Based on the inputs for each feature,the fired rules are shaded. The last column shows the output membership functions(GL)and the fired rules are shaded. For example,if EGL is 2.56 and PGL is 3.14,GL is 2.98.It shows the final GL of the bearing is 3.

    Fig.5 Test results for bearing GL

    3 EXPERIMENTAL VERIFICATION

    3.1 Setup

    The experimental equipment is constructed to perform the accelerated life test on bearings for the model verification.Test rig layout is shown in Fig.6.

    Fig.6 Test rig layout

    The setup has three sub-systems: a test housing system,an oil circulation system and a data acquisition sub-system.

    The test housing system consists of a test housing,a hydraulic loading mechanism and a drive mechanism. The test housing loads and spins four bearings,in which,two roller bearings NU1010 are used as auxiliary load bearings.During the experiment,continuous lubrication of the testing bearings is provided by the oil circulation system.The type of the test bearing used in this research is a 6008 bearing,which is a single-row deep-groove ball bearing of the Conrad type assembly.The dynamic load is 17.0 k N.

    Some undamaged 6008 test bearings run at a constant rotational speed(3 310 r/min)with an equivalent dynamical load of 8 kN to failure.The degradation databases are divided into two parts,a training set and a validation set.

    An accelerometer is attached to the housing of the bearings. The vibration signals are acquired by the DASP and then input into a computer.RMS,Kurtosis,Skewness and Shape Factor can be captured as the condition variables by analyzing the vibration signals, and the samples are divided into four categories.

    3.2 Result

    The accelerated life test of the massive 6008 bearing is carried on the test platform. Three bearings are used.They are the number 1#,2#and 3#.Bearing 1# and 2# are designated as validation bearings.Bearing 3# has a ″seeded″damage.According to the load level,PGL of the test bearings can be calculated by mathematical model,shown in Table 4.

    Table 4 PGL of test bearings

    The analysis results of the 1#,2# and 3#bearings are shown in Figs.7-9 respectively.In these figures,once the load level is confirmed,the PGL curve is a deterministic curve.The EGL curve represents the results acquired by diagnostic estimation model. It indicates that bearing 1# comes into stageⅡ(EGL=2)in 2 420 min,stageⅢ (EGL=3)in 3 450 min and stageⅣ(EGL=4)in 3 782 min,and that bearing 2#comes into stageⅡ(EGL=2)in 2 722 min,stageⅢ (EGL=3)in 4 885 min and stageⅣ (EGL=4)in 10 250 min.The GL curve is generated by fuzzy logic inference.It reduces the affection of the uncertainty of the mathematical model.In Figs.(7-9),points A,B and C are the″critical point″of the GL stages.

    Fig.7 PGL,EGL and GL of test bearing 1#

    Fig.8 PGL,EGL and GL of test bearing 2#

    Fig.9 PGL,EGL and GL of test bearing 3#

    It should be noted that bearing 3# with a″seeded″damage does not experience the GL stage 1,which illustrates that the assessment based on vibration features reduces the uncertainty′s affection towards prediction results.

    4 CONCLUSIONS

    (1)GL model is better than traditional life model when describing the service life.Since the service life of bearings is vastly different,the traditional life definition based on time,obviously,is not suitable for prediction of an individual bearing life.

    (2)GL model fuses the mathematical model and diagnostic estimation model to provide reliable lifetime prediction of bearings.

    [1] Hess A,Fila L.Prognostics,from the need to reality from the fleet users and PHM system designer/developers perspectives[C]∥Proceedings of the IEEE Aerospace Conference.Montana,USA:IEEE,2002(6):2791-2797.

    [2] Belcastro CM,Allen C L.Aviation safety program integrated vehicle health management[EB/OL].http://www.eng.morgan.edu/~ cibac/events/Day1/7-IV HM%20Overview%20(Srivastava).pdf,2007-11-10/2012-5-10.

    [3] McCollom N.F-35 joint strike fighter autonomic logistics and prognostics and health management[EB/OL]. http://www.sae. org/events/dod/presentations /2006-nealmc collom.pdf,2006-10-14/2011-5-10.

    [4] Brother ton T.Prognosis of faults in gas turbine engines[C]//Aerospace Conference Proceedings.San Diego,USA:IEEE,2000(6):163-171.

    [5] Byingt on C S,Roemer M J,Galie T.Prognostic enhancements to diagnostic systems for improved condition-based maintenance[C]∥Proceedings of the IEEE Aerospace Conference.Montana,USA:IEEE,2002(6):2815-2824.

    [6] Ryan M, David I. Integrated system health management(ISHM) technology demonstration project final report[R].NASA/TM-2006-213482,2006.

    [7] Wan Changsen. Rolling bearing analysis[M].Beijing:Mechanism Industry Publishing Company,1987:20-40.(in Chinese)

    [8] Ioannides E,Harris T A.A new fatigue life model for rolling bearing[J].ASM E Journal of Tribology,1985,107:367-378.

    [9] Tallian T E.Weibull distribution of rolling contact fatigue life and deviations the ref rom[J]. ASLE Trans,1962,5(1):103-113.

    [10]International Standards Organization. International Standard ISO281/I—1991,Rolling bearings dynamic load ratings and rating life[S].Switzerland:ISO Copyright Office,1991.

    [11]Williams T, Ribadeneira X,Billing to S. Rolling element bearing diagnostics in run-to-failurelife time testing [J]. Mechanical Systems and Signal Processing,2001,115(5):979-993.

    [12]Lawley M,Liu R,Parmeshwaran V.Residual life predictions from vibration-based degradation signals:A neural network approach[J].IEEE Transactions on Industrial Electronics,2004,51(3):694-699.

    [13]Huang Runqing, Xia Lifeng, Li Xinglin, et al.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods [J]. Mechanical Systems and Signal Processing,2007(21):193-207.

    [14]Qiu Hai,Lee J,Lin Jing,et al.Robust performance degradation assessment methods for enhanced rolling element bearing prognostics [J]. Advanced Engineering Informatics,2003(17):127-140.

    [15]Shao Y,Nezu K.Prognosis of remaining bearing life using neural networks[J].Proc Instn Mech Engrs,2000,214(I):217-231.

    [16]Cherkassky V,Yunqian M A.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.

    [17]Zadeh L A.Fuzzy sets[J].Inform and Control,1965(8):338-353.

    女人十人毛片免费观看3o分钟| 精品久久久精品久久久| av福利片在线观看| 欧美日韩国产mv在线观看视频 | 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 亚洲精品中文字幕在线视频 | 免费av不卡在线播放| 丝袜喷水一区| 两个人的视频大全免费| 国产免费又黄又爽又色| 国产爱豆传媒在线观看| 久久久久九九精品影院| 精品国产一区二区三区久久久樱花 | 久久久精品94久久精品| 国产熟女欧美一区二区| 水蜜桃什么品种好| 床上黄色一级片| 97人妻精品一区二区三区麻豆| 日韩电影二区| 日韩伦理黄色片| av国产久精品久网站免费入址| 国产精品一区二区性色av| 免费观看无遮挡的男女| 啦啦啦韩国在线观看视频| 欧美xxⅹ黑人| 99久久中文字幕三级久久日本| 草草在线视频免费看| 天美传媒精品一区二区| 51国产日韩欧美| 日本免费在线观看一区| 搡女人真爽免费视频火全软件| 亚洲伊人久久精品综合| 麻豆乱淫一区二区| 中文在线观看免费www的网站| 欧美不卡视频在线免费观看| 亚洲人成网站在线播| 深爱激情五月婷婷| 精品人妻熟女av久视频| 国产成人a∨麻豆精品| 国产伦理片在线播放av一区| 18+在线观看网站| 看十八女毛片水多多多| 又爽又黄a免费视频| 精品人妻视频免费看| 舔av片在线| 18禁动态无遮挡网站| 久久99热6这里只有精品| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 免费av不卡在线播放| 免费观看a级毛片全部| 国产老妇女一区| 国产中年淑女户外野战色| 纵有疾风起免费观看全集完整版 | 我的老师免费观看完整版| 亚洲成人av在线免费| 人妻夜夜爽99麻豆av| 日韩制服骚丝袜av| 美女xxoo啪啪120秒动态图| 久久久精品免费免费高清| 亚洲成色77777| 十八禁网站网址无遮挡 | 久久久久国产网址| 我的女老师完整版在线观看| 三级毛片av免费| 国产伦精品一区二区三区四那| 七月丁香在线播放| 一级黄片播放器| 国产免费又黄又爽又色| 亚洲怡红院男人天堂| 日韩强制内射视频| 国产视频内射| 免费观看av网站的网址| 黄片wwwwww| 久久精品夜色国产| 成年版毛片免费区| 日韩制服骚丝袜av| 日日干狠狠操夜夜爽| 亚洲最大成人手机在线| 国产 一区 欧美 日韩| 少妇被粗大猛烈的视频| 高清av免费在线| 床上黄色一级片| 国产视频内射| 精品熟女少妇av免费看| 亚洲国产最新在线播放| 伊人久久国产一区二区| freevideosex欧美| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 免费黄频网站在线观看国产| 中文字幕av成人在线电影| 丰满乱子伦码专区| 久久这里有精品视频免费| 自拍偷自拍亚洲精品老妇| 国产片特级美女逼逼视频| 色吧在线观看| 久99久视频精品免费| 日日啪夜夜撸| 久久久精品94久久精品| 我要看日韩黄色一级片| 国产麻豆成人av免费视频| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 国产成人免费观看mmmm| 国产单亲对白刺激| 国产成人精品一,二区| 日韩一本色道免费dvd| 国产视频首页在线观看| 国产伦一二天堂av在线观看| 国产欧美另类精品又又久久亚洲欧美| 大片免费播放器 马上看| 久久综合国产亚洲精品| 成人一区二区视频在线观看| 91av网一区二区| 国产精品人妻久久久影院| 深爱激情五月婷婷| 女人久久www免费人成看片| 亚洲最大成人av| 成年人午夜在线观看视频 | 少妇丰满av| 永久网站在线| av又黄又爽大尺度在线免费看| 大香蕉97超碰在线| 国产一区二区三区综合在线观看 | 国产高清三级在线| 国产精品麻豆人妻色哟哟久久 | 国产免费一级a男人的天堂| 亚洲精品影视一区二区三区av| 久久久久久久国产电影| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 国产 一区 欧美 日韩| 人妻一区二区av| 久久久久久久午夜电影| av女优亚洲男人天堂| 国产欧美另类精品又又久久亚洲欧美| 欧美另类一区| 日韩精品有码人妻一区| 国产成人精品婷婷| 男人和女人高潮做爰伦理| 婷婷六月久久综合丁香| 有码 亚洲区| 国产毛片a区久久久久| 亚洲熟妇中文字幕五十中出| 美女大奶头视频| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜爱| 老女人水多毛片| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 十八禁国产超污无遮挡网站| 欧美日韩在线观看h| 韩国av在线不卡| 老师上课跳d突然被开到最大视频| 国产精品无大码| 黄色日韩在线| 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 亚洲精品亚洲一区二区| 午夜福利视频精品| 久久精品熟女亚洲av麻豆精品 | 亚州av有码| 可以在线观看毛片的网站| 日韩中字成人| 欧美xxxx性猛交bbbb| 亚洲av免费在线观看| 久久精品综合一区二区三区| 亚洲精品日本国产第一区| 天堂网av新在线| 中文字幕久久专区| 国产精品综合久久久久久久免费| 久久99蜜桃精品久久| 26uuu在线亚洲综合色| 又大又黄又爽视频免费| 亚洲av一区综合| 午夜爱爱视频在线播放| 国产黄色免费在线视频| 亚洲av电影在线观看一区二区三区 | 熟女电影av网| 精品久久久久久久人妻蜜臀av| 精品国内亚洲2022精品成人| 亚洲av日韩在线播放| 亚洲精品一二三| 草草在线视频免费看| 男女边吃奶边做爰视频| 免费av观看视频| 我的女老师完整版在线观看| 成人亚洲精品av一区二区| 国产高清不卡午夜福利| 欧美精品国产亚洲| 99热全是精品| 在线播放无遮挡| 精品午夜福利在线看| 国产乱来视频区| 看免费成人av毛片| 精品久久久精品久久久| 伦精品一区二区三区| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 亚洲av不卡在线观看| 久久久精品免费免费高清| 麻豆久久精品国产亚洲av| 嫩草影院新地址| 少妇熟女欧美另类| 亚洲欧洲国产日韩| 日韩伦理黄色片| 大又大粗又爽又黄少妇毛片口| 爱豆传媒免费全集在线观看| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 一级毛片黄色毛片免费观看视频| 欧美另类一区| 青春草国产在线视频| 美女国产视频在线观看| 最近的中文字幕免费完整| 一级毛片黄色毛片免费观看视频| 久久久精品94久久精品| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看 | 性色avwww在线观看| 亚洲精品一二三| 久久久精品94久久精品| 777米奇影视久久| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人 | 91aial.com中文字幕在线观看| 国产免费视频播放在线视频 | 免费在线观看成人毛片| 麻豆精品久久久久久蜜桃| 国产精品美女特级片免费视频播放器| 特大巨黑吊av在线直播| 又大又黄又爽视频免费| 嫩草影院精品99| 免费看不卡的av| 国产午夜精品一二区理论片| 午夜激情欧美在线| 日韩人妻高清精品专区| 干丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 国产精品三级大全| 午夜久久久久精精品| 久99久视频精品免费| 欧美另类一区| 精品酒店卫生间| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 日韩精品有码人妻一区| 亚洲最大成人手机在线| 男的添女的下面高潮视频| 免费av观看视频| 国产亚洲一区二区精品| 日本wwww免费看| 夜夜看夜夜爽夜夜摸| 黄色日韩在线| 看免费成人av毛片| 天天躁日日操中文字幕| 一级毛片aaaaaa免费看小| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 国产一级毛片七仙女欲春2| 欧美成人午夜免费资源| 99久久中文字幕三级久久日本| 全区人妻精品视频| 中文字幕久久专区| 国产单亲对白刺激| 白带黄色成豆腐渣| 婷婷色综合www| 国产男女超爽视频在线观看| 日本爱情动作片www.在线观看| 亚洲伊人久久精品综合| 免费少妇av软件| 搡老乐熟女国产| 国产白丝娇喘喷水9色精品| 亚洲综合精品二区| 精华霜和精华液先用哪个| 中国美白少妇内射xxxbb| 黄色欧美视频在线观看| 一级毛片久久久久久久久女| 亚洲第一区二区三区不卡| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 少妇高潮的动态图| 精品国内亚洲2022精品成人| av又黄又爽大尺度在线免费看| 亚洲怡红院男人天堂| 精品国产露脸久久av麻豆 | 一级毛片 在线播放| 免费看光身美女| 国产精品一二三区在线看| 国产精品久久久久久精品电影小说 | 欧美成人精品欧美一级黄| 日韩欧美 国产精品| 大香蕉97超碰在线| 亚洲av福利一区| 天堂av国产一区二区熟女人妻| 亚洲精品影视一区二区三区av| 国产有黄有色有爽视频| 天天躁日日操中文字幕| 一区二区三区高清视频在线| 国产 一区 欧美 日韩| 国产综合精华液| av.在线天堂| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 国产91av在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 天天一区二区日本电影三级| 久久久国产一区二区| 最近2019中文字幕mv第一页| 久久6这里有精品| 欧美精品国产亚洲| 天堂俺去俺来也www色官网 | 国产色婷婷99| 一区二区三区高清视频在线| 91精品国产九色| 国产在视频线精品| 婷婷色综合www| 亚洲国产最新在线播放| 国产精品日韩av在线免费观看| www.色视频.com| 日韩在线高清观看一区二区三区| 亚洲精品国产av成人精品| 亚洲欧美日韩无卡精品| 人妻夜夜爽99麻豆av| 午夜精品一区二区三区免费看| 亚洲人成网站高清观看| 日本wwww免费看| 午夜爱爱视频在线播放| 能在线免费看毛片的网站| 在线观看av片永久免费下载| 午夜激情欧美在线| 99久久人妻综合| 草草在线视频免费看| 真实男女啪啪啪动态图| 欧美一区二区亚洲| 白带黄色成豆腐渣| 成年人午夜在线观看视频 | 日本三级黄在线观看| 2018国产大陆天天弄谢| 国产熟女欧美一区二区| 欧美3d第一页| 97热精品久久久久久| 国产三级在线视频| 亚洲精品中文字幕在线视频 | 欧美高清成人免费视频www| 午夜爱爱视频在线播放| 色播亚洲综合网| 26uuu在线亚洲综合色| 国产色婷婷99| 久久久精品94久久精品| 一区二区三区高清视频在线| 97超碰精品成人国产| 男女视频在线观看网站免费| 白带黄色成豆腐渣| 综合色丁香网| 亚洲久久久久久中文字幕| 麻豆成人av视频| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 日本黄大片高清| 免费人成在线观看视频色| 亚洲欧美清纯卡通| 久久99蜜桃精品久久| 久久精品久久久久久久性| 搡老妇女老女人老熟妇| 街头女战士在线观看网站| 久久精品熟女亚洲av麻豆精品 | 麻豆av噜噜一区二区三区| 亚洲综合精品二区| 日韩三级伦理在线观看| 色5月婷婷丁香| 免费看日本二区| 国产一区亚洲一区在线观看| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 一边亲一边摸免费视频| 国产熟女欧美一区二区| 日韩伦理黄色片| 色哟哟·www| 亚洲精品久久久久久婷婷小说| 欧美xxⅹ黑人| 久久鲁丝午夜福利片| 精品一区二区三卡| 女的被弄到高潮叫床怎么办| 18+在线观看网站| 2018国产大陆天天弄谢| av在线播放精品| 尾随美女入室| 国产男女超爽视频在线观看| 亚洲欧美中文字幕日韩二区| 日韩欧美精品免费久久| 99热这里只有精品一区| 亚洲综合色惰| 免费看a级黄色片| 亚洲精品乱码久久久久久按摩| 永久免费av网站大全| 99久久精品热视频| 久久精品久久精品一区二区三区| 欧美zozozo另类| 欧美日韩视频高清一区二区三区二| 国产精品国产三级专区第一集| 80岁老熟妇乱子伦牲交| 午夜福利在线观看吧| 亚洲精品乱码久久久久久按摩| 永久免费av网站大全| 国产亚洲一区二区精品| 亚洲av福利一区| 欧美区成人在线视频| 亚洲最大成人中文| 亚洲精品一区蜜桃| 国产精品1区2区在线观看.| 两个人的视频大全免费| av又黄又爽大尺度在线免费看| 亚洲av二区三区四区| 日韩中字成人| 最近中文字幕2019免费版| av黄色大香蕉| 亚洲成人中文字幕在线播放| 中国美白少妇内射xxxbb| 国产毛片a区久久久久| 99热这里只有是精品在线观看| 久久精品国产自在天天线| 色视频www国产| 韩国高清视频一区二区三区| 美女高潮的动态| 一级爰片在线观看| 亚洲欧美精品专区久久| 淫秽高清视频在线观看| 久久久久九九精品影院| 免费观看无遮挡的男女| 亚洲人成网站在线播| 国产精品.久久久| 国产一区二区在线观看日韩| 亚洲av电影在线观看一区二区三区 | 麻豆乱淫一区二区| 黄色欧美视频在线观看| 十八禁网站网址无遮挡 | 青春草亚洲视频在线观看| 丰满人妻一区二区三区视频av| 狠狠精品人妻久久久久久综合| 国产精品国产三级国产专区5o| 欧美日韩国产mv在线观看视频 | 久久99蜜桃精品久久| 国产欧美日韩精品一区二区| 日本三级黄在线观看| 男插女下体视频免费在线播放| 精品久久久久久久久亚洲| 国产精品麻豆人妻色哟哟久久 | 日韩制服骚丝袜av| 成人国产麻豆网| 亚洲欧美中文字幕日韩二区| 噜噜噜噜噜久久久久久91| 亚洲伊人久久精品综合| 精品国产露脸久久av麻豆 | 插阴视频在线观看视频| 蜜桃久久精品国产亚洲av| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 99热网站在线观看| 91久久精品国产一区二区成人| 亚洲不卡免费看| 久久国内精品自在自线图片| 老女人水多毛片| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 国产亚洲av嫩草精品影院| 99久久精品国产国产毛片| 超碰97精品在线观看| 一级毛片aaaaaa免费看小| 日韩欧美一区视频在线观看 | 精品久久久久久久久久久久久| 亚洲在线自拍视频| h日本视频在线播放| 全区人妻精品视频| 少妇高潮的动态图| 亚洲精品亚洲一区二区| 男女国产视频网站| 久久精品国产自在天天线| 高清视频免费观看一区二区 | 一级av片app| 亚洲久久久久久中文字幕| 久久久欧美国产精品| 全区人妻精品视频| 国产精品99久久久久久久久| 日本一本二区三区精品| 午夜日本视频在线| 日本午夜av视频| 嫩草影院新地址| 色吧在线观看| 男人舔女人下体高潮全视频| 老司机影院毛片| 国产一区二区三区综合在线观看 | 欧美日韩综合久久久久久| 欧美97在线视频| av黄色大香蕉| 国产中年淑女户外野战色| 啦啦啦啦在线视频资源| 最近的中文字幕免费完整| 国产在视频线在精品| 国产午夜精品一二区理论片| 日韩欧美一区视频在线观看 | 久久久亚洲精品成人影院| 看十八女毛片水多多多| 久久久精品免费免费高清| 十八禁网站网址无遮挡 | 欧美xxⅹ黑人| 精品国内亚洲2022精品成人| 十八禁国产超污无遮挡网站| 男人舔女人下体高潮全视频| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 超碰av人人做人人爽久久| 欧美+日韩+精品| 国产黄色小视频在线观看| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 欧美潮喷喷水| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 亚洲精品乱码久久久v下载方式| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 国产三级在线视频| 免费播放大片免费观看视频在线观看| 最近手机中文字幕大全| av福利片在线观看| 久久久久九九精品影院| 人妻一区二区av| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 久久久久久久久久成人| 欧美一级a爱片免费观看看| 看非洲黑人一级黄片| 亚州av有码| 免费人成在线观看视频色| 五月玫瑰六月丁香| 联通29元200g的流量卡| 午夜免费男女啪啪视频观看| 亚洲欧美精品专区久久| 简卡轻食公司| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 成年女人在线观看亚洲视频 | 国产精品熟女久久久久浪| 免费观看av网站的网址| 99九九线精品视频在线观看视频| 久久久久久久久久人人人人人人| 日本av手机在线免费观看| 麻豆成人av视频| 男女下面进入的视频免费午夜| 伊人久久国产一区二区| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 两个人的视频大全免费| 久久精品夜色国产| 天堂网av新在线| 婷婷色麻豆天堂久久| 午夜免费激情av| 久久亚洲国产成人精品v| 深爱激情五月婷婷| 国产成人精品一,二区| 亚洲欧美日韩东京热| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 中文字幕av成人在线电影| 大片免费播放器 马上看| 国产一区二区三区综合在线观看 | 久久久a久久爽久久v久久| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 国产中年淑女户外野战色| 亚洲精品日韩av片在线观看| 夜夜爽夜夜爽视频| 久久久久精品久久久久真实原创| 久久久欧美国产精品| 国产综合精华液| 最近中文字幕2019免费版| 一级av片app| 欧美成人午夜免费资源| 秋霞伦理黄片| 丰满乱子伦码专区| 99re6热这里在线精品视频| 天美传媒精品一区二区| 午夜福利网站1000一区二区三区| 成人性生交大片免费视频hd| 国产爱豆传媒在线观看| 天堂影院成人在线观看| 亚洲精品久久午夜乱码| 国产高潮美女av| 青春草国产在线视频| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| av国产久精品久网站免费入址| 国产精品.久久久| 国产成人福利小说| 欧美日韩综合久久久久久| 69av精品久久久久久| 波野结衣二区三区在线| 国产亚洲精品久久久com| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜爱| 蜜臀久久99精品久久宅男| 亚洲人成网站高清观看| 亚洲内射少妇av| 尾随美女入室|