• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    制備方法對錳Mn摻雜鉀六鋁酸鹽催化劑催化甲烷燃燒性能的影響

    2012-09-15 11:43:04鄭建東任曉光葛秀濤
    無機化學學報 2012年4期
    關鍵詞:鋁酸鹽化工學院滁州

    鄭建東任曉光葛秀濤

    (1滁州學院材料與化工學院,滁州 239000)

    (2北京石油化工學院,北京 102617)

    制備方法對錳Mn摻雜鉀六鋁酸鹽催化劑催化甲烷燃燒性能的影響

    鄭建東*,1任曉光2葛秀濤1

    (1滁州學院材料與化工學院,滁州 239000)

    (2北京石油化工學院,北京 102617)

    以甲烷催化燃燒為目標反應,通過共沉淀法、溶膠凝膠法和反相微乳液法制備了Mn摻雜六鋁酸鹽催化劑,用XRD和TG-DTA技術對催化劑進行了物理性能表征,通過BET模型計算了其比表面積。結果說明3種方法所制備催化劑經(jīng)1 200℃焙燒4h后均可以形成完整的六鋁酸鹽晶型,同時都具有高的催化性能和高溫穩(wěn)定性,其中反相微乳液法制備的K2MnAl11O19催化劑具有較高的比表面積和甲烷催化燃燒活性,起燃溫度T10%為458℃,至676℃甲烷完全轉化。

    材料科學;六鋁酸鹽;催化活性

    0 Introduction

    The world is facing the ever-increasing challenges of energy shortage and environmental deterioration,mainly resulting from an over-dependence of our society on fossil energy[1].As the temperature of flame combustion raises,nitrogen oxide emission is increased.NOxcan cause atmospheric pollution,especially acid rain.The catalytic combustion is an effective method to suppress the nitrogen oxide emission from combustors.This potential application has attracted many researchers in recent decades.Catalytic combustion of hydrocarbons is an important technology both for energy production and for environmental pollution abatement.For heat generation process using natural gas as fuel,catalytic combustion instead ofthe conventional combustion has several advantages such as having higher efficiency and demanding lower temperature which effectively suppresses thermal NOx formation[2-4].

    In order to obtain a high energy transforming efficiency and low emission of air pollutants,the catalyst with excellent ignition activity and high heatresistant is still urgently needed[5-10].Noble metal catalysts have high catalytic activity.However,their high cost and low resistance are obvious disadvantages.Metal oxide catalysts are also not ideal in high temperature stability.Hexaaluminate is now considered as one of the most suitable materials for hightemperature catalytic combustion of methane due to its excellent thermal stability and high activity.

    Hexaaluminate compounds containing alkali,alkaline earth,or rare earth metals have β-A12O3or magnetoplumbite-type crystal structure.This structure consists of alternated stacking of a spinel block with close packed oxide ions and a mirror plane with the large cation along the c axis[11-13].This structure results in high resistance to high temperature sintering,because the large cation in mirror plane can suppress the crystal growth along the c axis[14-16].Many Mnsubstituted hexaaluminate catalysts were investigated and experimental results indicated that they were the most efficient catalysts for combustion of methane[17-20].At the same time their catalytic activity could be further improved by mirror plane cation substitution with ions of approximate radius[21].

    We report here a new hexaaluminate K2MnAl11O19prepared by co-precipitation method,sol-gel method or reverse microemulsion-mediated method to catalyze combustion ofmethane.The propertiesofthese catalysts were characterized by XRD,low temperature nitrogen adsorption-desorption and TG-DTA techniques.Their catalytic activities were evaluated for methane combustion in a fix bed micro-reactor.

    1 Experimental

    1.1 Preparation of materials

    1.1.1 Co-precipitation method

    K2MnAl11O19sample was prepared by coprecipitation method (carbonates route)[22].The appropriate amounts of potassium nitrate (0.516 g,0.005 1 mol,Sinopharm Chemical Reagent Co.,Ltd),manganese nitrate (0.457 g,0.915 mL)and aluminum nitrate(10.541 g,0.028 mol)solution were mixed(0.25 mol·L-1)and added into a well-stirred container by addition of(NH4)2CO3(6.805 g,0.028 mol)at constant temperature (90 ℃)and pH value of 7~8.After filtering and washing with water several times,the solid product was dried at 120℃for 3 h and then calcined at 1 200 ℃ in Muffle furnace for 4 h under air.The sample thus prepared is referred to as 1﹟hereafter.

    1.1.2 Sol-gel method

    The same K2MnAl11O19sample was also prepared by sol-gel method[23].Al(OC3H7)(99.5%,5.739g,0.028 mol,Beijing Reagents Chemicals)was dissolved in isopropanol (99.5%,100 mL,Beijing Reagents Chemicals).The solution was heated to 80 ℃ and kept for 3 h in dry N2.The solution was then cooled to room temperature.An aqueous solution of manganese nitrate and potassium was dropped to the isopropanol solution and a gel was formed rapidly.After kept 12 h at room temperature,the solvent was removed by evaporation under reduced pressure in a rotary evaporator.The obtained powder was dried for 3 h at 120℃in oven,and then calcined at 1 200 ℃ for 4 h in air.The sample thus prepared is referred to as 2﹟ hereafter.

    1.1.3 Reverse microemulsion-mediated method

    For comparison,the K2MnAl11O19sample was prepared by the microemulsion technique.Ionic surfactants may contaminate the system,therefore we use nonionic surfactant Triton X-100 as the surfactant,n-hexanol as the co-surfactant and cyclohexane as the oil phase.The microemulsion was composed of oil phase (34wt%),surfactant (23wt%),co-surfactant(21wt%)and water phase(22wt%)[5].Al(OC3H7)3(99.5%,5.739 g,0.028 mol)was dissolved in cyclohexane.An aqueous solution of manganese nitrate and potassium was added into the reverse microemulsion.After aging the precipitated particles for 24 h at room temperature,the suspended particles were recovered by means of centrifugation and washed with methanol in order toremove most of the surfactant.The obtained powder was dried for 24 h at 100℃in oven,and then calcined at 500℃for 3 h under oxygen flow to remove the surfactant.At last the powder was calcined at 1 200 ℃for 4 h under oxygen flow.The sample thus prepared is referred to as 3#hereafter.

    1.2 Characterization

    The phase composition of the calcined samples was determined by X-ray powder diffraction(XRD)(7000X diffractometer,Japan)using a Ni filter andCu Kα radiation(λ=0.154 18 nm),at 40 kV and 30 mA.The data were collected between 15°and 75°(the 2θ value range).The specific surface area and the pore volume of the samples were measured on an AUTOSORB-I-MP Series Instrument using N2adsorption at liquid N2temperature.The specific surface area was determined according to the Brunauer-Emmett-Teller theory and the analysis of the average pore diameter and pore volume was carried out according to BJH equation.

    TG and DTA were carried out on a B?HRSTA503 thermal analyzer at a constant heating rate of 10 ℃·min-1.

    The reaction of methane combustion was carried out in a conventional microreactor under atmospheric pressure.Catalyst(300 mg,420~841 μm (20~40 mesh))was loaded in a quartz reactor (i.d.8 mm),with quartz wool sealed at both ends of the catalyst bed.A mixture of 1vol%methane and 99vol%air was fed into the catalyst bed at GHSV=50,000 h-1.The output gas compositions were analyzed by an on-line gas chromatography(GC9890,Instrument of shanghai Linghua Co.Ltd.)with a capillary column(30 m×0.32 mm×0.5 μm,LanZhou Institute of Chemical Physics,Chinese Academy of Sciences)and a flame ionization detector(Temperature of column:150℃,Temperature of injector:200℃,Temperature of detector:230℃).

    2 Results and discussion

    2.1 Crystalline phases

    The XRD patterns of the samples are shown in Fig.1.One single hexaaluminate phase is formed after the catalysts are calcined at 1 200℃.We can see that three samples behave similarly.The microcrystalline Potassium hexaaluminate phase (PDF 84-0819)is the main component in three samples.The characteristic diffraction peaks of Potassium hexaaluminate are at 25.45°,5.73°,37.92°,43.22°,52.42°,57.72°and 66.79°.

    Fig.1 XRD patterns for K2Mn Al11O19prepared by different methods

    The diffraction intensity of K2MnAl11O19is weakened for the sample from carbonate precipitation method.The catalyst 3#has higher intensity than those of the others.The diffraction peaks of Mn oxides could not be observed.It reveals that the Mn ion could easily enter the hexaaluminate and occupy the proper lattice position to promote crystal shaping.

    The diffraction peaks of K3AlO3is observed in 1#.It is worthy of noting that those spinel can form hexaaluminate via the solid state reaction with γ-Al2O3.At the same time there are no disturbing peaks in the X-ray diffractions of 2#and 3#.This implies that the preparation method is important in the formation of hexaaluminate crystal.Reverse microemulsionmediated method renders the precursormixture homogenous and enables facile mass transfer,resulting in a formation of pure hexaaluminate during subsequent calcination at 1 200℃.

    The a and c unit cell parameters have been calculated(Table 1)for K2MnAl11O19catalysts prepared by different methods.Unit cell parameters value of a and c seems to be rather independent of the preparation methods.

    Table 1 Properties of the catalysts obtained from different methods

    2.2 Adsorption/desorption isotherm,pore size and specific surface area

    The adsorption/desorption isotherms of samples are shown in Fig.2.They all show the type-Ⅳisotherm with a type-H3 desorption hysteresis loop according to IUPAC classification[24].The shapes of the hysteresis loops have often been identified with specific pore structures.The type-Ⅳisotherm is associated with particles giving rise to slit-shaped pores.

    The specific surface area and pore volume as well asaverage pore diameterofthree samples are summarized in Table 1.We can see that 3#possesses much larger pore than those of 1#and 2#,which is in line with the characterization of the specific surface area.As seen from Table 1,the specific surface area of 3#is larger than those of 1#and 2#.The trend for the variation of pore volume is identical to that of the specific surface area.So we believe that preparation method plays an important role in the structure of the pores and specific surface area.

    Fig.2 Effect of the preparation method on the isotherms of K2MnAl11O19catalyst

    Fig.3 TG-DTA curves of 2#and 3#after 100℃ageing

    2.3 TG-DTA analysis

    TG-DTA results of 2#and 3#after 100℃ageing are shown in Fig.3.When the samples are heated from room temperature to 1 200℃at a constant heating rate of 10℃·min-1,2#and 3#loose about 50%and 95%of weight,respectively.Itshowsthatmore organic compounds such as surfactants and co-surfactants are removed during the reverse microemulsion-Mediated process.The samples of 2#and 3#behave differently when the temperature is under 700℃.For 2#sample,DTA curve presents two lower endothermic peaks and a stronger exothermic peak before 700℃.The first endothermic peak below 200℃is due to the removal of the adsorbed water.The second peak between 350℃and 450℃corresponds to the decomposition of MnCO3and K2CO3.At the same time the water is removed from AlOH3.The stronger exothermic peak between 220 and 320℃is caused by the burning of some oxides.For 3#sample,the peak is very weak.

    When the temperature is above 700℃,no weight loss is observed.The stronger endothermic peak(+Q)from 800 to 1 200℃for 2#and 3#may be related to the transformation of metal oxides into hexaaluminate.So we think,the formation of the hexaaluminate phase starts at 800℃and is completed at 1 200℃.

    2.4 Catalytic activity

    The catalytic activity for methane combustion over different catalysts is shown in Fig.4.The results indicate that the catalysts behave similarly.The T10%and T90%(T10%and T90%corresponding to 10%and 90%CH4conversion)of 3#catalyst are 458℃and 670℃,respectively.Compared with the 3#catalyst,the 1#catalyst shows lower activity,its T10%and T90%are 502℃and 700℃,respectively.2#catalyst has the activity with T10%at 490℃and T90%at 670℃.It is obvious that the difference in catalytic activity is attributed to the difference in the preparation.3#and 2#have the same complete conversion temperature.3#shows the best ignition activity.The samples prepared by reverse microemulsion-mediated method or sol-gel method have higher activity than that of the sample prepared by carbonate precipitation method.Thus we believe that K3AlO3is existed in 1#,when the temperature is higher,it will be sintered.Reverse microemulsion-mediated method renders the precursor mixture homogenous.

    Fig.4 Catalytic activities ofcatalysts in the combustion of methane

    3 Conclusions

    Hexaaluminate K2MnAl11O19catalyst was prepared by co-precipitation method,sol-gel method and reverse microemulsion-mediated method.The catalytic property ofthecatalystswasstrongly dependenton the preparation method.The formation of the hexaaluminate phase starts at 800℃and completes at 1 200℃.The catalyst of K2MnAl11O19prepared by reverse microemulsion-mediated method possesses the highest specific surface area (34 m2·g-1)and has the lowest temperature for initial and complete conversion of methane than those prepared by co-precipitation method or sol-gel method.

    Acknowledgements:We are very grateful to the Natural Science Foundation of China (No.21076025)and the Applied Chemistry Key Project of Anhui Province(No.200802187C)for the financial support.

    [1]Yan X Y,Crookes R J.Prog.Energ.Combust.,2010,36:651-676

    [2]Gao Z M,Wang R Y.Appl.Catal.B:Environ.,2010,98:147-153

    [3]Tian C X,Ahmad H,Andrew P.E.Catal.Today,2009,147:196-202

    [4]Yin F X,Ji S F,Wu P Y,et al.J.Mol.Catal.A,2008,294:27-36

    [5]Andrey J Z,Yin G Y.Langmuir,2000,16:3042-3049

    [6]Erik E S,Magali B.Appl.Catal.B,2008,84:241-250

    [7]Li S Q,Wang X I.J.Alloys Compd.,2006,432:333-337

    [8]Todd H,Gardner J J,Spivey A C.Catal.Today,2010,157:166-169

    [9]XU Jin-Guang(徐金光),TIAN Zhi-Jian(田志堅),ZHANG Pei-Qing(張培青),et al.Chem.J.Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao),2005,11:2103-2107

    [10]Ren X G,Zheng J D,Song Y J.Catal.Commun.,2008,9:807-810

    [11]Ersson A,Persson K,Adu I K.Catal.Today,2006,112:157-163

    [12]Wang J W,Tian Z J,Xu J G.Catal.Today,2003,83:213-222

    [13]Baylet A,Royer S,Mare P,et al.Appl.Catal.B:Environ.,2008,81:88-96

    [14]Teng F,Yi M,Liang S H.J.Non-cryst Solids,2007,56:4806-4812

    [15]Zhang K,Zhou G D,Li J.Catal.Lett.,2009,130:246-253

    [16]Yeh T F,Lee H G.Mater.Sci.Eng.A,2004,384:324-330

    [17]Tian M,Wang A,Wang X D.Appl.Catal.B:Environ.,2009,92:437-444

    [18]Woo S,Min S.J.Appl.Catal.B:Environ.,1998,18:317-324

    [19]Wang Y H,Ouyang J H,Liu Z G.Mater.Des.,2010,31:3353-3357

    [20]Dupeyrat C B,Martinez F O.Appl.Catal.A:General,2001,206:205-215

    [21]Zheng J D,Ren,X G.React.Kinet.Catal.Lett.,2008,93:3-9

    [22]Jang B W,Nelson R M,Spivey J J.Catal.Today,1999,47:103-113

    [23]Groppi G,Cristiani C.Appl.Catal.B:Environ.,2001,35:137-141

    [24]Parfitt G D,Sing K S.J.Colloid Interf.Sci.,1975,53:187-193

    Effect of Preparation Method on Catalytic Property of Mn-substituted Potassium Hexaaluminate for Methane Combustion

    ZHENGJian-Dong*,1REN Xiao-Guang2GE Xiu-Tao1
    (1College of Material and Chemical Engineering,Chuzhou University,Chuzhou,Anhui 239012,China)
    (2Beijing Institute of Petrochemical Technology,Beijing 102617,China)

    Manganese substituted potassium hexaaluminate catalyst was prepared by co-precipitation method,solgel method and reverse microemulsion-mediated method.The title catalyst was calcined at 1 200℃and characterized by XRD and TG-DTA techniques.The catalytic activity was evaluated for methane combustion.The specific surface area of them was calculated using the BET model.The samples exhibit significant catalytic activity for methane combustion at 800℃.Upon calcination at 1 200℃ the K2MnAl11O19prepared by reverse microemulsion-mediated method retains a specific surface area of 34 m2·g-1and shows an excellent activity for methane combustion(the conversions of 10%and 90%are obtained at 458 and 670℃,respectively).

    materials science;hexaaluminate;catalytic activity

    O643

    A

    1001-4861(2012)04-0823-06

    2011-10-17。收修改稿日期:2011-12-25。

    國家自然科學基金(No.21076025),安徽省應用化學重點學科(No.200802187C),安徽省教育廳自然科學研究重點項目(No.KJ2012A213)資助項目。

    *通訊聯(lián)系人。E-mail:zjd071@126.com

    猜你喜歡
    鋁酸鹽化工學院滁州
    使固態(tài)化學反應100%完成的方法
    《滁州西澗》(草書)
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    稀土鋁酸鹽(RE4Al2O9)的研究現(xiàn)狀與應用
    陶瓷學報(2020年3期)2020-10-27 02:07:22
    《滁州學院學報》征稿簡則
    硅灰對硫鋁酸鹽水泥砂漿物理力學性能的影響
    上海建材(2017年5期)2018-01-22 02:58:52
    《滁州學院學報》征稿簡則
    錄唐·韋應物詩《滁州西澗》(草書)
    陽光(2016年11期)2016-11-03 17:18:48
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    欧美+亚洲+日韩+国产| 午夜免费激情av| 国产伦精品一区二区三区视频9 | 成人性生交大片免费视频hd| tocl精华| 亚洲av第一区精品v没综合| 亚洲国产欧美人成| 在线观看美女被高潮喷水网站 | 日韩三级视频一区二区三区| 毛片女人毛片| 久久热在线av| 国产精品99久久99久久久不卡| 日本与韩国留学比较| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 国产高清videossex| 国产久久久一区二区三区| 天堂动漫精品| 亚洲国产色片| 国产一区二区在线av高清观看| 90打野战视频偷拍视频| 亚洲精品粉嫩美女一区| 成人特级av手机在线观看| 国产黄色小视频在线观看| 欧美在线一区亚洲| 久久精品91无色码中文字幕| 日本一二三区视频观看| 亚洲精华国产精华精| a在线观看视频网站| www.www免费av| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 久久午夜综合久久蜜桃| 老熟妇乱子伦视频在线观看| 国产一区在线观看成人免费| 18美女黄网站色大片免费观看| 亚洲男人的天堂狠狠| 欧美绝顶高潮抽搐喷水| av欧美777| 香蕉丝袜av| 久久午夜亚洲精品久久| 亚洲成a人片在线一区二区| 亚洲在线观看片| 免费观看的影片在线观看| x7x7x7水蜜桃| e午夜精品久久久久久久| 又爽又黄无遮挡网站| 久久国产精品人妻蜜桃| 欧美另类亚洲清纯唯美| 国产精品久久电影中文字幕| 国产欧美日韩一区二区三| 亚洲性夜色夜夜综合| 亚洲乱码一区二区免费版| 久久国产精品影院| av片东京热男人的天堂| 热99re8久久精品国产| 午夜激情福利司机影院| 亚洲第一欧美日韩一区二区三区| 国产精品久久电影中文字幕| 亚洲在线自拍视频| av黄色大香蕉| 国产黄片美女视频| 亚洲国产欧美网| 特级一级黄色大片| 欧美不卡视频在线免费观看| 欧美精品啪啪一区二区三区| 国产亚洲av高清不卡| 波多野结衣巨乳人妻| 黄色丝袜av网址大全| 99热精品在线国产| 老司机福利观看| 亚洲第一电影网av| 白带黄色成豆腐渣| 麻豆成人午夜福利视频| 桃红色精品国产亚洲av| 国产淫片久久久久久久久 | 99热这里只有是精品50| 丁香六月欧美| 国产精品一区二区三区四区免费观看 | 亚洲最大成人中文| 人妻夜夜爽99麻豆av| 激情在线观看视频在线高清| 成年版毛片免费区| 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 在线观看66精品国产| 国产私拍福利视频在线观看| 亚洲欧美日韩高清专用| 丁香六月欧美| 无遮挡黄片免费观看| 亚洲国产欧洲综合997久久,| 午夜激情欧美在线| 国产毛片a区久久久久| 久久婷婷人人爽人人干人人爱| 免费看十八禁软件| 高潮久久久久久久久久久不卡| 身体一侧抽搐| 国产精品爽爽va在线观看网站| 老司机午夜十八禁免费视频| 香蕉久久夜色| 久久精品国产亚洲av香蕉五月| 一个人观看的视频www高清免费观看 | 亚洲av五月六月丁香网| 亚洲美女视频黄频| 久久久色成人| 99国产精品99久久久久| 国产真人三级小视频在线观看| 国产伦人伦偷精品视频| 国产激情久久老熟女| 免费av不卡在线播放| 国产私拍福利视频在线观看| 国产日本99.免费观看| 久久精品亚洲精品国产色婷小说| 日韩欧美一区二区三区在线观看| 欧美乱妇无乱码| 免费看日本二区| av片东京热男人的天堂| 老熟妇乱子伦视频在线观看| 搡老熟女国产l中国老女人| 午夜福利成人在线免费观看| 国产精品久久电影中文字幕| 美女被艹到高潮喷水动态| 国产1区2区3区精品| 国产成人av激情在线播放| 亚洲国产欧美网| 国产精品98久久久久久宅男小说| 久久久久久九九精品二区国产| 1024香蕉在线观看| 日韩三级视频一区二区三区| 搡老妇女老女人老熟妇| 青草久久国产| 法律面前人人平等表现在哪些方面| 日韩欧美在线乱码| 一区二区三区高清视频在线| 十八禁网站免费在线| 久久久国产成人免费| 亚洲男人的天堂狠狠| 黄色日韩在线| 亚洲av日韩精品久久久久久密| 少妇的丰满在线观看| 国产乱人伦免费视频| 男女床上黄色一级片免费看| 久久久久国产一级毛片高清牌| 成年版毛片免费区| 久久久久久大精品| www国产在线视频色| 白带黄色成豆腐渣| 国产三级黄色录像| 美女扒开内裤让男人捅视频| 三级国产精品欧美在线观看 | 熟女人妻精品中文字幕| 国产精品一区二区精品视频观看| 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 黄色成人免费大全| 淫秽高清视频在线观看| 成人18禁在线播放| 国产精品影院久久| 嫁个100分男人电影在线观看| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 欧美激情在线99| 一本精品99久久精品77| 日本与韩国留学比较| 麻豆av在线久日| 中文字幕久久专区| 午夜a级毛片| 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻丝袜一区二区| 桃色一区二区三区在线观看| 三级国产精品欧美在线观看 | 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久黄片| 久久中文字幕人妻熟女| 视频区欧美日本亚洲| 最近最新免费中文字幕在线| av女优亚洲男人天堂 | 黑人欧美特级aaaaaa片| 狂野欧美白嫩少妇大欣赏| 国产精品 欧美亚洲| 特级一级黄色大片| 此物有八面人人有两片| 五月玫瑰六月丁香| 欧美成人性av电影在线观看| 三级毛片av免费| 日本一本二区三区精品| av天堂中文字幕网| 国产真人三级小视频在线观看| 香蕉丝袜av| 女人被狂操c到高潮| 国产激情偷乱视频一区二区| 免费看a级黄色片| 成人特级av手机在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品精品国产色婷婷| 国产精品精品国产色婷婷| 99riav亚洲国产免费| 美女 人体艺术 gogo| 免费大片18禁| a在线观看视频网站| 国产高清videossex| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲 国产 在线| 麻豆国产97在线/欧美| 久久九九热精品免费| 欧美国产日韩亚洲一区| 无限看片的www在线观看| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 精品久久久久久久末码| 熟女少妇亚洲综合色aaa.| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 欧美日韩亚洲国产一区二区在线观看| 精品国产超薄肉色丝袜足j| 国产精品av久久久久免费| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 国产精品久久视频播放| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 男人舔奶头视频| 99riav亚洲国产免费| 亚洲一区二区三区不卡视频| 久久中文看片网| 国产69精品久久久久777片 | 成人亚洲精品av一区二区| 午夜视频精品福利| 午夜福利视频1000在线观看| 黄色日韩在线| 免费看美女性在线毛片视频| 怎么达到女性高潮| 丰满人妻一区二区三区视频av | 久久久久精品国产欧美久久久| 日韩精品青青久久久久久| 日韩av在线大香蕉| 黄色丝袜av网址大全| 看免费av毛片| 亚洲九九香蕉| 免费在线观看成人毛片| 精品国产乱子伦一区二区三区| 国产一级毛片七仙女欲春2| 国产精品香港三级国产av潘金莲| 午夜亚洲福利在线播放| 性欧美人与动物交配| 国产精品99久久久久久久久| 亚洲美女黄片视频| 国产精品精品国产色婷婷| 美女高潮的动态| 欧美乱色亚洲激情| 日韩成人在线观看一区二区三区| 性色av乱码一区二区三区2| 色综合欧美亚洲国产小说| 亚洲自偷自拍图片 自拍| 久久精品aⅴ一区二区三区四区| 精品无人区乱码1区二区| 亚洲 欧美 日韩 在线 免费| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 99久久精品热视频| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 欧美一区二区国产精品久久精品| 成熟少妇高潮喷水视频| 久久精品91蜜桃| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av| 午夜免费观看网址| 午夜福利成人在线免费观看| 丁香欧美五月| 又爽又黄无遮挡网站| 999久久久国产精品视频| 欧美xxxx黑人xx丫x性爽| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 91在线观看av| 90打野战视频偷拍视频| 看免费av毛片| 免费高清视频大片| 久久人妻av系列| 亚洲国产看品久久| 精品日产1卡2卡| 国产三级在线视频| 在线看三级毛片| 色哟哟哟哟哟哟| 成人无遮挡网站| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 久久久久久久久免费视频了| 国产男靠女视频免费网站| 久久亚洲真实| 黄频高清免费视频| 2021天堂中文幕一二区在线观| 精品国产乱码久久久久久男人| 在线观看日韩欧美| 亚洲av片天天在线观看| 每晚都被弄得嗷嗷叫到高潮| 男女床上黄色一级片免费看| 操出白浆在线播放| 亚洲最大成人中文| 亚洲,欧美精品.| 女警被强在线播放| 国产1区2区3区精品| 成人国产一区最新在线观看| 日韩欧美免费精品| 啦啦啦观看免费观看视频高清| 无遮挡黄片免费观看| 免费看十八禁软件| 波多野结衣巨乳人妻| 亚洲av五月六月丁香网| 国产精品久久久久久精品电影| 18美女黄网站色大片免费观看| 校园春色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久99热这里只有精品18| 很黄的视频免费| 麻豆成人av在线观看| 最新中文字幕久久久久 | 日韩中文字幕欧美一区二区| 国产精品久久久久久精品电影| 黄片大片在线免费观看| 好看av亚洲va欧美ⅴa在| 88av欧美| 精品99又大又爽又粗少妇毛片 | 黄色 视频免费看| 变态另类丝袜制服| 成人av在线播放网站| 婷婷丁香在线五月| 中文资源天堂在线| 国产精品av视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 国产精品香港三级国产av潘金莲| 久9热在线精品视频| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区三| 国产99白浆流出| 亚洲九九香蕉| 国产高清videossex| 国产爱豆传媒在线观看| 国产精品 国内视频| 在线国产一区二区在线| 精华霜和精华液先用哪个| 俺也久久电影网| 黑人操中国人逼视频| 免费电影在线观看免费观看| 极品教师在线免费播放| 亚洲成人久久爱视频| 老司机午夜福利在线观看视频| 亚洲五月天丁香| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 美女黄网站色视频| e午夜精品久久久久久久| 欧美日韩瑟瑟在线播放| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 黄色日韩在线| 国产黄a三级三级三级人| 久久久色成人| 午夜精品一区二区三区免费看| 草草在线视频免费看| 毛片女人毛片| 在线观看舔阴道视频| 中文字幕人妻丝袜一区二区| 国产69精品久久久久777片 | 日韩有码中文字幕| 午夜福利在线观看免费完整高清在 | 18美女黄网站色大片免费观看| 国产蜜桃级精品一区二区三区| 综合色av麻豆| 18禁黄网站禁片午夜丰满| 日本成人三级电影网站| 亚洲欧美一区二区三区黑人| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 国产亚洲欧美98| 欧美一区二区精品小视频在线| 又紧又爽又黄一区二区| 丰满的人妻完整版| 国产日本99.免费观看| 老熟妇仑乱视频hdxx| av在线天堂中文字幕| 久久久久久久久中文| 亚洲国产欧美人成| 久久伊人香网站| ponron亚洲| 桃红色精品国产亚洲av| netflix在线观看网站| 琪琪午夜伦伦电影理论片6080| 日韩欧美在线二视频| 国产乱人视频| 久久九九热精品免费| 麻豆成人av在线观看| 日韩av在线大香蕉| 一个人看视频在线观看www免费 | 丁香欧美五月| 99久久国产精品久久久| 亚洲电影在线观看av| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 亚洲av日韩精品久久久久久密| 啦啦啦韩国在线观看视频| 亚洲国产欧洲综合997久久,| 一本精品99久久精品77| 丰满的人妻完整版| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美国产一区二区入口| 男女视频在线观看网站免费| 国产精品电影一区二区三区| 麻豆成人av在线观看| 在线免费观看的www视频| 1024手机看黄色片| 成人永久免费在线观看视频| 宅男免费午夜| 亚洲国产色片| 婷婷丁香在线五月| 国产高潮美女av| 一边摸一边抽搐一进一小说| 亚洲国产欧美网| 亚洲18禁久久av| 99热这里只有精品一区 | 舔av片在线| 免费观看精品视频网站| 国产私拍福利视频在线观看| 国产精品久久电影中文字幕| 亚洲乱码一区二区免费版| 好男人在线观看高清免费视频| 变态另类成人亚洲欧美熟女| 成人午夜高清在线视频| 欧美日本视频| 99在线人妻在线中文字幕| 九色国产91popny在线| 日本 av在线| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 两性夫妻黄色片| 国产乱人伦免费视频| 亚洲精品中文字幕一二三四区| 在线国产一区二区在线| 搡老妇女老女人老熟妇| 国产精品亚洲一级av第二区| 欧美日韩福利视频一区二区| 亚洲成人中文字幕在线播放| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 成人一区二区视频在线观看| 久久中文字幕人妻熟女| 国产黄片美女视频| 麻豆国产av国片精品| 久久久久亚洲av毛片大全| 性欧美人与动物交配| 男女做爰动态图高潮gif福利片| 制服人妻中文乱码| 国产精品九九99| 久久精品亚洲精品国产色婷小说| 日韩欧美免费精品| 好看av亚洲va欧美ⅴa在| or卡值多少钱| 中文在线观看免费www的网站| 少妇的逼水好多| 欧美日韩亚洲国产一区二区在线观看| 五月伊人婷婷丁香| 法律面前人人平等表现在哪些方面| 色噜噜av男人的天堂激情| 亚洲人成伊人成综合网2020| 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放| 免费无遮挡裸体视频| 亚洲av熟女| 搞女人的毛片| 精品国产乱码久久久久久男人| 九色国产91popny在线| 久久天堂一区二区三区四区| 国产人伦9x9x在线观看| 亚洲激情在线av| svipshipincom国产片| 久久这里只有精品中国| 成熟少妇高潮喷水视频| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 男人和女人高潮做爰伦理| 老汉色∧v一级毛片| 免费在线观看视频国产中文字幕亚洲| 欧美+亚洲+日韩+国产| 成年免费大片在线观看| 此物有八面人人有两片| 免费在线观看成人毛片| 亚洲成人精品中文字幕电影| 免费看日本二区| 最新中文字幕久久久久 | 日韩大尺度精品在线看网址| 美女黄网站色视频| 两个人看的免费小视频| 久久中文看片网| 波多野结衣高清作品| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 国产成人aa在线观看| 动漫黄色视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产精品亚洲美女久久久| 99在线人妻在线中文字幕| 中出人妻视频一区二区| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 三级国产精品欧美在线观看 | 亚洲国产欧美网| 亚洲av美国av| 最近最新中文字幕大全电影3| 午夜免费观看网址| 国产 一区 欧美 日韩| 亚洲,欧美精品.| 男女那种视频在线观看| 男女床上黄色一级片免费看| 怎么达到女性高潮| 久久香蕉国产精品| 欧美高清成人免费视频www| 精品国产乱码久久久久久男人| 国产免费男女视频| av视频在线观看入口| 成年版毛片免费区| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 精品国产乱码久久久久久男人| 在线观看舔阴道视频| 欧美激情在线99| 免费av不卡在线播放| 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 日本a在线网址| 亚洲人成网站在线播放欧美日韩| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品av一区二区| 宅男免费午夜| 一级毛片高清免费大全| 黄频高清免费视频| 不卡av一区二区三区| 久久亚洲真实| 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 欧美日韩精品网址| a在线观看视频网站| 麻豆久久精品国产亚洲av| 国产成人av教育| 亚洲成人精品中文字幕电影| 色av中文字幕| 国产欧美日韩一区二区三| 亚洲在线自拍视频| 国产av不卡久久| 中文字幕高清在线视频| 亚洲九九香蕉| 黄色成人免费大全| 国产日本99.免费观看| 丰满人妻一区二区三区视频av | 网址你懂的国产日韩在线| 国产成人一区二区三区免费视频网站| 国产精品久久久久久精品电影| 国产亚洲精品av在线| 久久性视频一级片| 99re在线观看精品视频| 99国产精品99久久久久| 成人无遮挡网站| 亚洲美女黄片视频| 国产在线精品亚洲第一网站| 性色av乱码一区二区三区2| 99久久久亚洲精品蜜臀av| 亚洲男人的天堂狠狠| a级毛片a级免费在线| 日本成人三级电影网站| 又爽又黄无遮挡网站| 亚洲精品美女久久av网站| 欧美日韩精品网址| 国产视频内射| 深夜精品福利| 少妇熟女aⅴ在线视频| 99精品久久久久人妻精品| 久久婷婷人人爽人人干人人爱| 9191精品国产免费久久| 嫁个100分男人电影在线观看| 一级a爱片免费观看的视频| 国产av麻豆久久久久久久| 精品久久久久久久末码| 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 天天躁日日操中文字幕| 国产爱豆传媒在线观看| 免费看日本二区| 丰满人妻一区二区三区视频av | 成年女人看的毛片在线观看| 十八禁人妻一区二区| 999精品在线视频| 亚洲人与动物交配视频| 国产三级中文精品| 国产精品亚洲av一区麻豆| 国内揄拍国产精品人妻在线| 精品久久久久久久久久免费视频| 亚洲av成人av| netflix在线观看网站| 色播亚洲综合网| 不卡一级毛片| xxxwww97欧美| 午夜a级毛片| 亚洲天堂国产精品一区在线| 亚洲精品粉嫩美女一区| 亚洲va日本ⅴa欧美va伊人久久| 性色avwww在线观看| 国产乱人视频|