鄒 妍,龍道崎,陶兵兵,趙國(guó)華,2,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.重慶市農(nóng)產(chǎn)品加工技術(shù)重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
高壓切換凍結(jié)在食品保鮮中的應(yīng)用
鄒 妍1,龍道崎1,陶兵兵1,趙國(guó)華1,2,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.重慶市農(nóng)產(chǎn)品加工技術(shù)重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
高壓切換凍結(jié)是一種新興的食品保鮮技術(shù),在凍結(jié)過(guò)程中利用高壓與溫度來(lái)控制凍結(jié)過(guò)程,改變冰晶體的大小、形態(tài)與分布,從而改善凍品的品質(zhì)。文章詳細(xì)闡述了高壓切換凍結(jié)法的基本原理以及在食品保鮮領(lǐng)域研究的進(jìn)展,最后分析了該技術(shù)存在的問(wèn)題,以對(duì)高壓切換凍結(jié)技術(shù)的進(jìn)一步研究提供參考。
高壓切換凍結(jié),保鮮,食品
Abstract:High-pressure-shift-freezing(HPSF),an emerging food preservation technique,takes advantages of different ice crystals properties such as size,shape and distribution resulting from controlling of high pressure and temperature to improve the quality of frozen food.The basic principle of HPSF as well as the study of technique in food industry was depicted.In addition,the main problems were listed,and it could be a reference for further research of HPSF in food preservation.
Key words:high-pressure-shift-freezing;fresh-keeping;food
如今人們對(duì)生鮮食品需求的增加與其易腐蝕性、季節(jié)性和地域性等特點(diǎn)之間的矛盾促進(jìn)了保鮮技術(shù)的發(fā)展。冷凍保鮮效果好、造價(jià)較低、保存時(shí)間較長(zhǎng),并且可以最大限度的保持食品的色、香、味和營(yíng)養(yǎng)價(jià)值,成為保持生鮮食品質(zhì)量的最普遍的方法[1],但是在凍結(jié)過(guò)程中較大冰晶體的形成與分布不均是食品品質(zhì)劣化的主要原因。為了獲得更小、分布更加均勻的冰晶體,近年來(lái)出現(xiàn)了很多凍結(jié)的新技術(shù),如超聲凍結(jié)技術(shù)、超高壓凍結(jié)技術(shù)、冰核活性細(xì)菌和冰核活性蛋白及抗凍蛋白在食品冷凍過(guò)程中的應(yīng)用等。在高壓技術(shù)的基礎(chǔ)上發(fā)展起來(lái)的高壓凍結(jié)技術(shù),不僅很好地解決了高水分食品易凍裂的難題,還能夠改善凍品的其他品質(zhì)。高壓凍結(jié)有三種類型[2]:高壓切換凍結(jié)(HPSF-High Pressure Shift Freezing)、高壓輔助凍結(jié)(HPAF-High Pressure Assisted Freezing)和高壓誘導(dǎo)凍結(jié)(HPIF-High Pressure Induced Freezing)。高壓誘導(dǎo)凍結(jié)是利用壓力的升高來(lái)獲得凍結(jié)的相轉(zhuǎn)變,用于高級(jí)晶型的形成,現(xiàn)在對(duì)這種技術(shù)的研究較少。高壓輔助凍結(jié)法中,產(chǎn)品的整個(gè)凍結(jié)過(guò)程在高壓下實(shí)現(xiàn),當(dāng)設(shè)置不同的高壓與相應(yīng)的溫度時(shí),可以獲得不同的冰晶型。通過(guò)對(duì)高壓切換凍結(jié)和高壓輔助凍結(jié)后的凍品進(jìn)行比較,確定了高壓切換凍結(jié)在改善凍品品質(zhì)上的優(yōu)越性[3],如今在食品工業(yè)中被廣泛研究。在高壓切換凍結(jié)中產(chǎn)生的過(guò)冷度,可以使樣品中形成大量細(xì)小而均一的冰晶體,從而減少冷凍過(guò)程中食品品質(zhì)的劣化[4]。
通常情況下,水在0℃形成冰晶為I型,而I型冰晶的密度小于水的密度,導(dǎo)致冰晶體體積增加了9%。Bridgman[5]對(duì)高壓下水的相行為進(jìn)行了研究,指出在高壓下水會(huì)出現(xiàn)多種冰晶型,除了常見(jiàn)的冰I型外,還有冰II~V型等,并且高壓下水的冰點(diǎn)也發(fā)生變化。由圖1a可見(jiàn),當(dāng)壓力在632.4MPa以上時(shí),會(huì)出現(xiàn)0℃以上的冰點(diǎn)。也就是說(shuō)在0~632.4MPa范圍內(nèi),水的冰點(diǎn)低于常壓下的冰點(diǎn),形成了一個(gè)低于0℃的不凍結(jié)區(qū)域。
高壓切換凍結(jié)法就是利用了0℃下的不凍區(qū)域,凍結(jié)是在壓力釋放的瞬間開(kāi)始的,形成大量均勻分布的晶核,在隨后的大氣壓下長(zhǎng)大成為冰晶體。高壓切換凍結(jié)過(guò)程如圖1b所示:先對(duì)容器內(nèi)的材料進(jìn)行加壓(A→E),當(dāng)達(dá)到預(yù)定的壓力后,對(duì)物料進(jìn)行預(yù)冷凍(E→F),F(xiàn)點(diǎn)的溫度必須高于該壓力下的初始凍結(jié)溫度,從而保持低溫下的不凍結(jié)狀態(tài),然后突然釋放壓力(F→D),此時(shí)極大的過(guò)冷度促使物料的凍結(jié),相變的潛熱釋放,使得物料溫度升高,在大氣壓下完成凍結(jié),最后降到預(yù)定的冷藏溫度[2]。而在食品體系中,由于溶質(zhì)的存在,使得食品中水的凍結(jié)點(diǎn)比純水的低,相應(yīng)的凍結(jié)曲線也向下移。
高壓切換凍結(jié)時(shí)涉及到晶核的形成與晶體的長(zhǎng)大,并且只能獲得I型冰晶,整個(gè)結(jié)晶過(guò)程都是由極大的過(guò)冷度作為驅(qū)動(dòng)力。而且整個(gè)過(guò)程處于等壓狀態(tài),因此晶核分布均勻,形成的冰晶呈球形[6]。研究表明,每1K的過(guò)冷度,成核速率提高10倍[7],所以過(guò)冷度越大,形成的冰晶體越小。
高壓切換凍結(jié)法不僅可以降低冰晶體對(duì)凍品的機(jī)械破壞,還可以降低酶活性[8],減緩或抑制食品中的生化反應(yīng)。高壓作用滅活微生物已有大量研究,而高壓與低溫共同作用,以及凍結(jié)過(guò)程中的相轉(zhuǎn)變都有利于提高微生物的滅活率[9]。但是,高壓切換凍結(jié)會(huì)使得蛋白質(zhì)變性[10],從而導(dǎo)致顏色、持水率、硬度值的變化。
圖1 高壓下的水相圖及高壓切換凍結(jié)原理圖[2,5]Fig.1 Water phase diagram under high pressure and the schematic diagram of HPSF[2,5]
利用高壓切換凍結(jié)可以使肉類冷凍食品中形成較小而均勻分布的冰晶體,減少對(duì)組織的破壞,從而減少解凍后的水分流失,并且在恒定的低溫貯藏過(guò)程中冰晶體穩(wěn)定性好,但當(dāng)貯藏溫度發(fā)生波動(dòng)時(shí),晶體發(fā)生重結(jié)晶,使得冰晶體數(shù)量變小、體積變大[11]。同時(shí),壓力與溫度的共同作用可以提高滅菌率[12]。而過(guò)高的壓力會(huì)導(dǎo)致肉中的蛋白質(zhì)變性,使得其硬度值增加,肉色改變,但是熟制后的肉色與新鮮的肉熟制后無(wú)差別[13-14]。相關(guān)的應(yīng)用進(jìn)展見(jiàn)表1。
表1 高壓切換凍結(jié)在肉類食品中的應(yīng)用進(jìn)展Table 1 Application progress of high-pressure-shift-freezing in meats
高壓切換凍結(jié)不受果蔬體積的限制,可以在凍品表面與中心形成細(xì)小均一的冰晶體[20]。酶的滅活并不能在整個(gè)凍結(jié)過(guò)程中實(shí)現(xiàn),PPO活性會(huì)隨壓力增大呈先增后減的趨勢(shì),果蔬的褐變程度與其變化一致[21]。果蔬凍品解凍后硬度的下降可以通過(guò)與其他工藝聯(lián)合應(yīng)用,如凍結(jié)前的熱燙、浸鈣等來(lái)解決,但是在冷藏過(guò)程中冰晶體的重結(jié)晶會(huì)使得硬度值再次降低,這與凍品本身的質(zhì)地相關(guān)[22]。相關(guān)的應(yīng)用進(jìn)展見(jiàn)表2。
高壓切換凍結(jié)法可以明顯的減小冰淇淋中冰晶體的大小,果糖與海藻酸鈉的加入可以減小晶體尺寸,使其外觀更加平滑,從而改善冰淇淋口感,并且快速釋壓有利于較小冰晶體的形成[29]。由此看出乳化液中的成分、凍結(jié)時(shí)的壓力與溫度參數(shù)、釋壓時(shí)間都是影響高壓切換凍結(jié)效果的因素。對(duì)凝膠類食品的研究也得出相似的結(jié)論,并指出當(dāng)壓力為200~500MPa時(shí),凝膠有較好的質(zhì)地[30-31]。相關(guān)的應(yīng)用進(jìn)展見(jiàn)表3。
高壓切換凍結(jié)在食品工業(yè)中的研究已經(jīng)證明了它較其他凍結(jié)方法在食品保藏中的優(yōu)越性,能更好的保持食品的新鮮的品質(zhì),但其在應(yīng)用研究上仍有待進(jìn)一步深入:a.如何有效提高高壓切換凍結(jié)食品的穩(wěn)定性,使其在運(yùn)輸、銷售過(guò)程中保持較小的冰晶體,盡可能避免重結(jié)晶的發(fā)生;b.水餃、湯圓、饅頭等中國(guó)傳統(tǒng)食品是人們?nèi)粘_x擇的主食,速凍產(chǎn)品正提供了其食用的便利性,其中冰晶體大小也是影響凍品品質(zhì)的因素,而利用高壓切換凍結(jié)改善品質(zhì)的探究還是空白,因此高壓切換凍結(jié)在中國(guó)傳統(tǒng)食品上的應(yīng)用將會(huì)是一次創(chuàng)新;c.高壓對(duì)食品成分影響的研究現(xiàn)已有很多,但是在對(duì)高壓切換凍結(jié)法的探究過(guò)程中,只對(duì)蛋白質(zhì)有相關(guān)報(bào)道,在以后的研究中可以對(duì)食品中其他的功能性成分進(jìn)行探究。
表2 高壓切換凍結(jié)在果蔬食品中的應(yīng)用進(jìn)展Table 2 Application progress of high-pressure-shift-freezing in fruits and vegetables
表3 高壓切換凍結(jié)在其它食品中的應(yīng)用進(jìn)展Table 3 Application progress of high-pressure-shift-freezing in other foods
[1]George RM.Freezing processes used in the food industry[J].Trends in Food Science and Technology,1993,4(5):134-138.
[2]Urrutia-Benet G,Schluter O,Knorr D.High pressure-low temperature processing.Suggested definitions and terminology[J].Innovative Food Science and Emerging Technologies,2004,5(4):413-427.
[3]Fernandez PP,Otero L,Guignon B,et al.High-pressure shift freezing versus high-pressure assisted freezing:Effects on the microstructure of a food model[J].Journal of Food Science,2000,65(3):466-470.
[4]Chevalier D,Le Bail A,Ghoul M.Freezing and ice crystals formed in a cylindrical food model:pare II.Comparison between freezing at atmospheric pressure and pressure-shift freezing[J].Journal of Food Engineering,2000,46(4):287-293.
[5]Bridgman PW.Water,in the liquid and five solid forms,under pressure[J].Proceeding of the American Academy of Arts and Sciences,1912,47(13):441-558.
[6]Martino MN,Otero L,Sanz PD,et al.Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods[J].Meat Science,1998,50(3):303-313.
[7]Kalichevsky MT,Knorr D,Lillford PJ.Potential food applications of high-pressure effects on ice-water transitions[J].Trends in Food Science and Technology,1995,6(8):253-259.
[8]Prestamo G,Palomares L,Sanz P.Frozen foods treated by pressure shift freezing:proteins and enzymes[J].Journal of Food Science,2005,70(1):22-27.
[9]Picart L,Dumay E,Guiraud JP,et al.Microbial inactivation by pressure-shift freezing:effects on smoked salmon mince inoculated with Pseudomonas fluorescens,Micrococcus luteus and Listeria innocua[J].LWT-Food Science and Technology,2004,37(2):227-238.
[10]Fernandez-Martin F,Otero L,Solas MT,et al.Proteindenaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle[J].Journal of Food Science,2000,65(6):1002-1008.
[11]Tironi V,Lamballeri MD,Le-Bail A.Quality changes during the frozen storage of sea bass(Dicentrarchus labrax) muscle after pressure shiftfreezing and pressure assisted thawing[J].Innovative Food Science and Emerging Technologies,2010,11(4):565-573.
[12]陳淑花,趙啟成,夏遠(yuǎn)景,等.超高壓與低溫協(xié)調(diào)作用對(duì)黃花魚(yú)品質(zhì)影響的研究[J].食品與生物技術(shù)學(xué)報(bào),2009,28(4):517-520.
[13]Zhu Songming,Le-Bail A,Chapleau N,et al.Pressure shift freezing of pork muscle:effect on color,drip loss,texture,and protein stability[J].Biotechnology Progress,2004,20(3):939-945.
[14]Chevalier D,Sentissi M,Havet M,et al.Comparison of airblast and pressure shift freezing on Norway lobster quality[J].Journal of Food Science,2008,65(2):329-333.
[15]Alizadeh E,Chapleau N,Lamballerie MD,et al.Effect of different freezing processes on the microstructure of Atlantic salmon(Salmo salar) fillets[J].Innovative Food Science and Emerging Technologies,2007,8(4):493-499.
[16]Tironi V,Lamballerie MD,Le-Bail A.Quality changes during the frozen storage of sea bass(Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing[J].Innovative Food Science and Emerging Technologies,2010,11(4):565-573.
[17]Alizadeh E,Chapleau N,De-Lamballerie M,et al.Impact of freezing process on salt diffusivity of seafood:application to salmon(Salmo salar) using conventional and pressure shift freezing[J].Food Bioprocess Technology,2009,2(3):257-262.
[18]Chen CR,ZHU Songming,Ramaswamy HS,et al.Computer simulation of high pressure cooling of pork[J].Journal of Food Engineering,2007,79(2):401-409.
[19]Zhu Songming,Ramaswamy HS,Le-Bail A.High-pressure calorimetric evaluation of ice crystal ratio formed by rapid depressurization during pressure-shift freezing of water and pork muscle[J].Food Research International,2005,38(2):193-201.
[20]Otero L,Solas MT,Sanz PD,et al.Contrasting effects of high-pressure-assisted freezing and conventional air-freezing on eggplant tissue microstructure[J].European Food Research and Technology,1997,206(5):338-342.
[21]Urrutia-Benet G,Balogh T,Schneider J,et al.Metastable phases during high-pressure-low-temperature processing of potatoes and their impact on quality-related parameters[J].Journal of Food Engineering,2007,78(2):375-389.
[22]Buggenhout SV,Messagie I,Loey AV,et al.Influence of low-temperature blanching combined with high-pressure shift freezing on the texture of frozen carrots[J].Journal of Food Science,2005,70(4):S304-S308.
[23]Luscher C,Schluter O,Knorr D.High pressure-low temperature processing of foods:impact on cell membranes,texture,color and visual appearance of potato tissue[J].Innovative Food Science and Emerging Technologies,2005,6(1):59-71.
[24]Urrutia-Benet G,Chapleau N,Lille M,et al.Quality related aspects of high pressure low temperature processed whole potatoes[J].Innovative Food Science and Emerging Technologies,2006,7(1-2):32-39.
[25]Castro SM,Van Loey A,Saraiva JA,et al.Effect of temperature,pressure and calcium soaking pre-treatments and pressure shift freezing on the texture and texture evolution of frozen green bell peppers(Capsicum annuum)[J].European Food Research and Technology,2007,226(1-2):33-43.
[26]Buggenhout V,Lille M,Messagie I,et al.Impact of pretreatment and freezing conditions on the microstructure of frozen carrots:quantification and relation to texture loss[J].European Food Research and Technology,2006,222(5-6):543-553.
[27]Buggenhout SV,Messagie I,Maes V,et al.Minimizing texture lossoffrozen strawberries:effectofinfusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions[J].European Food Research and Technology,2006,223(3):395-404.
[28]Otero L,Martino M,Zaritzky N,et al.Preservation of microstructure in peach and mango during high-pressure shift freezing[J].Journal of Food Science,2000,65(3):466-470.
[29]Thiebaud M,Dumay EM,Cheftel JC.Pressure-shift freezing of o/w emulsions:influence of fructose and sodium alginate on undercooling,nucleation,freezing kinetics and ice crystal size distribution[J].Food Hydrocolloids,2002,16(6):527-545.
[30]Fuchigami M,Ogawa N,Teramoto A.Trehalose and hydrostatic pressure effects on the structure and sensory properties of frozen tofu(soybean curd)[J].Innovative Food Science and Emerging Technologies,2002,3(2):139-147.
[31]Fuchigami M,Teramoto A.Texture and structure of highpressure-frozen gellan gum gel[J].Food Hydrocolloids,2003,17(6):895-899.
[32]Levy J,Dumay E,Kolodziejczyk E,et al.Freezing kinetics of a model oil-in-water emulsion under high pressure or by pressure release.Impact on ice crystals and oil droplets[J].LWT-Food Science and Technology,1999,32(7):396-405.
[33]Zhu Songming,Ramaswamy HS,Le-Bail A.Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing[J].Journal of Food Engineering,2005,66(1):69-76.
[34]Fuchigami M,Teramoto A,Jibu Y.Texture and structure of pressure-shift-frozen agar gel with high visco-elasticity[J].Food Hydrocolloids,2006,20(2-3):160-169.
[35]Fernandez PP,Martino MN,Zaritzky NE,et al.Effects of locust bean,xanthan and guar gums on the ice crystals of a sucrose solution frozen at high pressure[J].Food Hydrocolloids,2007,21(4):507-515.
[36]Otero L,Sanz PD,Guignon B,et al.Experimental determination of the amount of ice instantaneously formed in high-pressure shift freezing[J].Journal of Food Engineering,2009,95(4):670-676.
Mechanism and application progress of high-pressure-shift-freezing in food preservation
ZOU Yan1,LONG Dao-qi1,TAO Bing-bing1,ZHAO Guo-hua1,2,*
(1.College of Food Science,Southwest University,Chongqing 400715,China;2.Chongqing Key Laboratory of Agricultural Product Processing,Chongqing 400715,China)
TS205.7
A
1002-0306(2012)22-0432-04
2012-06-21 *通訊聯(lián)系人
鄒妍(1989-),女,碩士研究生,研究方向:食品化學(xué)與營(yíng)養(yǎng)學(xué)。