吳曉毅,巢志茂,劉海萍,王 淳,譚志高,孫 文
中國中醫(yī)科學院中藥研究所,北京 100700
葫蘆科植物資源豐富,全世界共有約113屬800種,我國有32屬154種35變種,主要分布于西南部和南部,少數(shù)散布到北部[1]。我國能納入藥用植物的有20屬43種,可作113味藥材[2]。我國葫蘆科大多數(shù)的藥用植物既可藥用,又可食用,例如,衛(wèi)生部2002年監(jiān)發(fā)的[2002]51號文《關于進一步規(guī)范保健食品原料管理的通知》中明確規(guī)定:羅漢果既是食品又是藥品,絞股藍則可作為保健食品使用。葫蘆科藥用植物化學成分復雜多樣,常見的有植物甾醇類、脂肪酸類、三萜類、糖和苷類、氨基酸類及揮發(fā)性成分等。國內外學者對其化學成分的研究比較廣泛和深入,聶瑞麟曾對1980-1992年葫蘆科植物三萜皂苷的研究進展進行了歸納總結[3],邱明華等對葫蘆科的化學分類學進行了研究[4],Akihisa等學者對葫蘆科常見12個屬的植物甾醇類成分進行了報道[5],朱靖靜等對2004-2009年葫蘆科中主要的葫蘆素類四環(huán)三萜化合物進行了概括總結[6],但葫蘆科藥用植物中植物甾醇類成分的研究尚未見系統(tǒng)的報道。本綜述對近三十多年來我國葫蘆科藥用植物中植物甾醇的化學結構、特征1H NMR數(shù)據和藥理活性進行了系統(tǒng)的歸納和總結。
植物甾醇在植物界分布廣泛,多與油脂類成分共存于植物的種子和花粉中,具有和膽固醇相似的化學結構,可降低血液中的膽固醇含量,在市場上廣泛應用于功能性食品。我國衛(wèi)生部2010年發(fā)布的第3號公告,批準了植物甾醇及其酯可作為新資源食品。植物甾醇的廣泛應用,受到了學者們的關注,王會等對植物甾醇的應用與研發(fā)進行了簡單的總結[7],韓軍花等對我國30種藥食兩用植物和40種中草藥原料中植物甾醇的含量進行了研究分析[8]。本文根據國內外近30年來的研究報道,對我國葫蘆科藥用植物中的植物甾醇成分進行了歸納總結,為葫蘆科藥用植物資源的開發(fā)利用提供參考依據。
我國葫蘆科常見的藥用植物中,黃瓜、栝樓、冬瓜、苦瓜、絞股藍等13種植物的果實和種子均有較高含量的植物甾醇,少數(shù)植物甾醇分布在地上部分[5]。迄今為止,在葫蘆科藥用植物中,文獻共報道了29個植物甾醇類化合物。植物甾醇名稱與所屬植物來源見表1。
表1 植物甾醇結構與來源Table 1 Chemical structures and sources of phytosterols in Cucurbitaceae plants
備注:冬瓜 Benincasa hispida(Thunb.)Cogn.、西瓜 Citullus lanatus(Thunb.)、甜瓜 Cucumis melo L.、黃瓜 Cucumis sativus L.、南瓜 Cucurbita moschata(Duch.ex Lam.)Duch.ex Poir.、紅南瓜 Cucurbita pepo L.var.kintoga Makino、絞股藍 Gymnopetalum pentaphyllum(Thunb.)Makino、葫蘆 Lagenaria siceraria(Molina)Standl.、絲瓜 Luffa cylindricall(L.)Roem、苦瓜 Momordica charantia L.、木鱉 Momordica cochinchinensis(Lour.)Spreng、王瓜 Trichosanthes cucumeroides(Ser.)Maxim.、栝樓 Trichosanthes kirillowii Maxim.
化學結構如下所示: 基本骨架:
植物甾醇是在甾體母核C17位有8-10個碳原子鏈狀側鏈的甾體衍生物,一般分子中具有1~3個雙鍵。通常根據甾醇母核中雙鍵的個數(shù)和位置將其進行分類,常見的有△5-植物甾醇、△7-植物甾醇、△8-植物甾醇和無雙鍵植物甾醇四大類,其中,△5、△7-植物甾醇較常見。在植物不同的生長時期,△5、△7植物甾醇的含量也會隨之發(fā)生變化[23]?,F(xiàn)將葫蘆科藥用植物中發(fā)現(xiàn)的29種植物甾醇的特征1H NMR數(shù)據予以列表,見表2。
表2 植物甾醇的特征1H NMR數(shù)據Table 2 Characteristic1H NMR spectral data of phytosterols
△7 22-二氫菠菜甾醇22-dihydrospinasterol 2b△7,22 菠菜甾醇spinasterol 5b△7,22 24-甲基膽甾-7,22-二烯醇24-methylcholesta-7,22-dienol 6b△7,24 燕麥甾醇avenasterol 7b△7,25 24-乙基膽甾-7,25-二烯醇24-ethylcholesta-7,25-dienol 9b△7,22,25 24-乙基膽甾-7,22,25-三烯醇24-ethylcholesta-7,22,25-trienol 11b△8 24-乙基膽甾-8(14)-烯醇24-ethylcholest-8(14)-enol 2c△8,22 24-乙基膽甾-8,22-二烯醇24-ethylcholesta-8,22-dienol 5c△8,25 24-乙基膽甾-8,25-二烯醇24-ethylcholesta-8,25-dienol 9c△8,22,2524-乙基膽甾-8,22,25(27)-三烯醇24-ethylcholesta-8,22,25(27)-trienol 11c 0.660(3H,s,18-H),0.990(3H,s,19-H),0.900(3H,d,J=6.3 HZ,21-H),0.810(3H,d,J=6.6 HZ,26-H),0.790(3H,d,J=6.6 HZ,27-H),0.820(3H,t,J=6.8 HZ,29-H),3.500(1H,m,3-H),5.330(1H,d,J=4.8 HZ,7-H)0.551(3H,s,18-H),0.800(3H,s,19-H),1.025(3H,d,J=6.5 HZ,21-H),5.027(1H,dd,J=ca7.5 HZ,22-H),5.163(1H,dd,J=ca7.5 HZ,23-H),0.799(3H,d,J=6.2 HZ,26-H),0.849(3H,d,J=6.2 HZ,27-H),0.820(3H,t,J=6.8 HZ,29-H)0.543(3H,s,18-H),0.813(3H,s,19-H),1.008(3H,d,J=6.5 HZ,21-H),0.839(3H,d,J=6.8 HZ,26-H),0.822(3H,d,J=6.8 HZ,27-H),0.912(3H,d,J=6.8 HZ,28-H)0.537(3H,s,18-H),0.795(3H,s,19-H),0.949(3H,d,J=6.5 HZ,21-H),2.830(1H,m,25-H),0.976(6H,dd,J=6.7 HZ,26-,27-H),5.106(1H,m,28-H),1.588(3H,d,J=6.5 HZ,29-H)0.526(3H,s,18-H),0.795(3H,s,19-H),0.909(3H,d,J=6.5 HZ,21-H),1.566(3H,s,26-H),4.692(2H,brs,27-H),0.800(3H,t,J=7.2 HZ,29-H),3.599(1H,m,3-H),5.159(1H,brs,7-H)0.545(3H,s,18-H),0.797(3H,s,19-H),1.019(3H,d,J=6.5 HZ,21-H),5.221(2H,m,22-,23-H),1.653(3H,s,26-H),4.705(2H,s,27-H),0.834(3H,t,J=7.3 HZ,29-H)3.599(1H,m,3-H),5.159(1H,brs,7-H)0.935(3H,d,J=6.4 HZ,21-H),0.836(3H,d,J=6.7 HZ,26-H),0.814(3H,d,J=6.7 HZ,27-H),0.843(3H,t,J=8.3 HZ,29-H),4.71(1H,m,3-H)0.621(3H,s,18-H),0.964(3H,s,19-H),1.032(3H,d,J=6.5 HZ,21-H),5.120(2H,m,22-,23-H),0.850(3H,d,J=6.8 HZ,26-H),0.801(3H,d,J=6.8 HZ,27-H),0.805(3H,t,J=6.7 HZ,29-H),4.74(1H,m,3-H)0.599(3H,s,18-H),0.959(3H,s,19-H),0.912(3H,d,J=6.5 HZ,21-H),1.562(3H,s,26-H),0.800(3H,t,J=6.7 HZ,29-H)0.617(3H,s,18-H),0.962(3H,s,19-H),1.020(3H,d,J=6.5 HZ,21-H),1.650(3H,s,26-H),4.697(2H,s,27-H),0.834(3H,d,J=7.3 HZ,29-H)10,18 10,18 18 10 10,18 10,18,19 5 5,18 18 18無雙鍵 豆甾烷-3β,6α-二醇stigmastane-3β,6α-diol 2e 9 0.6503H,s,18-H),0.820(3H,s,19-H),0.910(3H,d,J=6.0 HZ,21-H),0.840(3H,d,J=7.2 HZ,26-H),0.810(3H,d,J=7.2 HZ,27-H),0.840(3H,t,J=7.7 HZ,29-H),3.580(1H,tt,J=11.0 HZ,5.1 HZ,3-H),3.420(1H,td,J=11.0 HZ,4.4 HZ,6-H)
植物甾醇具有和膽固醇相似的化學結構,在人體小腸中能夠抑制膽固醇的吸收[24-26],降低血液中的膽固醇濃度,從而達到防治冠心病、動脈粥樣硬化等疾?。?7]。每天服用0.8~4.0g植物甾醇,就能將低密度脂蛋白的濃度水平降低10% ~15%[26],若患者的低密度脂蛋白濃度水平越高(被定義為大于等于3.5 mmol/L),植物甾醇的作用越明顯[28-30]。當植物甾醇和燕麥-β-葡萄糖結合使用時,能增強其降低血漿膽固醇的水平[31]。2010年,我國衛(wèi)生部發(fā)布第3號公告,批準植物甾醇及植物甾醇酯等7種物質作為新資源食品。
豆甾醇對一些促炎因子有明顯的抑制作用[32],而一些低熱量、富含植物甾醇的橘汁飲料則能降低12%的炎癥指標超敏C反應蛋白[33]。β-谷甾醇由于有類似于氫化可的松和羥基保泰松等的抗炎作用,還可直接入藥,臨床上由β-谷甾醇與其他藥物組成的克平喘,有較強的平喘、止咳、祛痰的作用,能夠促進慢性氣管炎病變組織的修復[7]。
IsoPs是脂質過氧化產物,具有特殊的生物活性,能引起氧化應激性,因此,降低IsoPs的濃度,即可達到抗氧化的作用。Mannarin等學者研究得出,若連續(xù)六周服用富含植物甾醇的食品,血漿中的8-IsoPs濃度即隨著血漿總膽固醇濃度和低密度脂蛋白膽固醇濃度的降低而顯著下降[34]。此外,β-谷甾醇,豆甾醇和菜油甾醇還能有效地保護低密度脂蛋白的過氧化[36]。
Awad等學者研究發(fā)現(xiàn),植物甾醇可以顯著減少膽酸引起的細胞增殖,降低細胞的有絲分裂,如:β-谷甾醇可降低膽汁酸和膽汁酸代謝物的濃度,并能抑制化學致癌劑誘發(fā)的腸癌。通過大量的臨床試驗,當總植物甾醇攝入量增加時,胃癌發(fā)病率下降,當和α胡蘿卜素的攝入量共同增多時,胃癌的發(fā)生率下降得更為明顯[36]。
Berges發(fā)現(xiàn),β-谷甾醇培養(yǎng)可促進人類前列腺基質細胞生長因子β1的表達和增強蛋白激酶C-α的活性[37],VonHoltz 研究表明,用 β-谷甾醇來培養(yǎng)細胞可增加鞘磷脂循環(huán)中的兩種關鍵酶——磷脂酶D和蛋白磷脂酶的活性,促進鞘磷脂循環(huán),抑制細胞的生長,從而有效防止男性前列腺肥大[38]。
植物甾醇對皮膚有較強的滲透性,能保持皮膚表面水份,促進皮膚新陳代謝,抑制皮膚炎癥,可防止日曬紅斑、皮膚老化,具有美容之功效,如:β-谷甾醇能使干燥和硬化的角質皮膚恢復柔軟,防治皮膚曬傷,防止和抑制雞眼的形成[7]。植物甾醇可與脂質在水中形成分子膜,促進動物性蛋白質的合成[7]。
葫蘆科植物既是重要的食用資源,又為人們提供了豐富的藥用植物資源。植物甾醇作為葫蘆科植物含有的主要成分,在工業(yè)、食品、化妝品等領域起著重要的作用。韓軍花等學者估算我國植物甾醇的平均攝入量為每日 322.41 mg[39],但至今為止,對于葫蘆科藥用植物的研究,以及其中的植物甾醇類成分的研究還遠遠不夠。本文對13種藥用植物中的植物甾醇進行了歸納總結,僅占我國葫蘆科藥用植物總數(shù)的1/3,還有大量的植物尚未見相關的研究和報道,有待深入研究,以擴大葫蘆科豐富的藥用植物資源的開發(fā)和利用。
1 The Flora of China Commission in Chinese Academy of Science(中國科學院中國植物志編輯委員會).Flora of China(中國植物志).BEIJING:Scientific& Technical Publishers,2004,3:84.
2 The Chinese Materia Medica Commission(中華本草編委會).Chinese Materia Medica(中華本草)1999,5:502-595.
3 Nie RL(聶瑞麟).The decadal progress of triterpene saponins from Cucurbitaceae(1980-1992).ActaBotanica Yunnanica(云南植物研究),1994,16:201-208.
4 Qiu MH(邱明華),et al.Chemotaxonomy of Cucurbitaceae.Chin J Appl Environ Biol(應用與環(huán)境生物學報),2005,11(6):673-685.
5 Akihisa T,et al.Sterol compositions of seeds and mature plants of family Cucurbitaceae.Oil Chem Soc,1986,63:653-658.
6 Zhu JJ(朱靖靜),Zou K(鄒坤).Current research progress of Cucurbitacins.J Chin Three Gorges Univ,Nat Sci(三峽大學學報,自科版),2009,31(5):82-87.
7 Wang H(王會),Zhang PX(張普香).The application and development of phytosterols.Sci&Tech Info(科技資訊),2009,194(17):1-1.
8 Han JH(韓軍花),et al.The phytosterols content in plant materials commonly used in functional food in China.Acta NutrSinica(營養(yǎng)學報),2010,32:82-85.
9 Chao ZM,et al.Some triterpenes and steroids from the seeds of Trichosanthes cucumeroides.Phytomedicines(Recent progress in Medicinal Plants)Studium Press LLC,2007,16:544-554.
10 Garg VK,Nes WR.Occurrence of△5-sterols in plants producing predominantly△7-sterols:studies on the sterol compositions of six Cucurbitaceae seeds.Phytochemistry,1986,25:2591-2597.
11 Chen DC(陳德昌).The13C NMR and Its Application in the Chemistry of Chinese Herbal Medicine(碳譜及其在中草藥化學中的應用).BEIJING:People’s Medical Publishing House,1991.
12 GargVK,NesWR.Codisterol and other Δ5-sterols in the seeds of Cucurbita maxima.Phytochemistry,1984,23:2925-2929.
13 Grunwald C.Plant sterols.Ann Rev Plant Physiol,1975,26:209-236.
14 Itoh T,et al.Co-occurrence of chondrillasterol and spinasterol in two Cucurbitaceaeseeds as shown by13C NMR.Phytochemistry,1981,20:761-764.
15 Garg VK,NesWR.Studies on the C-24 configurations of Δ7-sterols in theseeds of Cucurbita maxima.Phytochemistry,1984,23:2919-2923.
16 Subramanian SS,et al.(24S)-Ethylcholesta-5,22,25-triene-3β-olfrom four Clerodendron species.Phytochemistry,1973,12:2078-2079.
17 Pinto WJ,Nes WR.24 Ethylsterols,n-alkanes and n-alkanols of Clerodendrum splendens.Phytochemistry,1985,24:1095-1097.
18 Akihisa T,et al.Sterols of Cucurbitaceae:the configuration at C-24 of 24-alkyl-△5,△7-and △8-sterols.Lipids,1986,21:39-47.
19 Ma TJ(馬挺軍),et al.Chemical constituents of Bolbostemma paniculatum.ActaBot Boreal-Occident Sin(西北植物學報),2005,25:1163-1165.
20 Wang SZ(王賽貞),et al.Isolation and characterization of cholesterol in gandoerma iucidum fruitbody.Acta Edulis Fungi(食用菌學報),2005,12(1):5-8.
21 Kuang YY(匡云艷),et al.A studyon chemicalconstituents of softcoralSinularia gyrosa.J Tropical Oceanography(熱帶海洋學報),2002,21(3):95-98.
22 Matsumoto T,et al.24α-Methyl-5α-cholest-7-en-3β-ol from seed oil of Helianthus annuus.Phytochemistry,1984,23:921-923.
23 Gara VK,Nes WR.Changes in Δ5-and Δ7-sterols during germination and seedling development of Cucurbita maxima during germination and seedling development of Cucurbita maxima.Lipids,1985,20:876-882.
24 Mttson FH,et al.Opyimizing the effect of plant sterols on cholesterol absorption in man.Am J Clin Nutr,1982,35:697-700.
25 Plat J,Mensink RP.Plant stanol and sterol esters in the control of blood cheolesterol levels:Mechanismand safety aspects.Am J Cardiol,2005,96:15-22.
26 Katan MB,et al.Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels.Mayo Clin Proc,2003,78:965-978.
27 Ba?uls C,et al.Evaluation of cardiovascular risk and oxidative stress parametersin hypercholesterolemic subjects on a standard healthy diet including low-fat milk enriched with plantsterols.J NutrBiochem,2010,21:881-886.
28 Abumweis SS,et al.Plant sterols/stanols as cholesterol lowering agents:ameta-analysis of randomized controlled trials.FoodNutr Res,2008:52.
29 Demonty I,et al.Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake.J Nutr,2009,139:271-284.
30 Seppo L,et al.Plant stanol esters in low-fat milk products lower serum total and LDL cholesterol.Eur J Nutr,2007,46:111-117.
31 Theuwissen E,et al.Consumption of oat beta-glucan with or without plant stanols did notinfluence inflammatory markers in hypercholesterolemic subjects.Mol Nutr Food Res,2009,53:370-376.
32 Gabay O,et al.Stigmasterol:a phytosterol with potential antiosteoarthritic properties.Osteoand Cartil,2010,18:106-116.
33 Devaraj S,et al.Reduced-calorie orange juice beverage with plant sterols lowers C-reactive protein concentrations and improves the lipid profile in human volunteers.Am J Clin Nutr,2006,84:756-761.
34 Mannarino E,et al.Effects of a phytosterol-enriched dairy product on lipids,sterols and 8-isoprostane in hypercholesterolernic patients:a multicenter Italian study.Nutr Metab Cardiovasc Dis,2009,19(2):84-90.
35 Ferretti G,et al.Effect of phytosterols on copper lipid peroxidation of human low-density lipoproteins.Nutrition,2010,26:296-304.
36 Awad AB,et al.Beta-sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids.Anticancer Res,1996,16:2797-2804.
37 Berges RR,et al.Treatment of symptomatic benign prostatic hyperplasia with beta-sitosterol:an 18-month follow-up.BJUInt.,2000,85:842-846.
38 Holtz RL,et al.β-Sitosterol activates the shpingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells.Nutr Cancer,1998,32:8-12.
39 Han JH(韓軍花),et al.Analysis of phytosterol contents in Chinese plant food and primary estimation of its intake of people.J Hygiene Res(衛(wèi)生研究),2007,36:301-305.