• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于Keggin陰離子鏈鎳化合物的結構和質子導電性

    2012-09-09 07:28:18魏梅林王曉湘李會華
    無機化學學報 2012年11期
    關鍵詞:分析表明河南師范大學煙酸

    魏梅林王曉湘 李會華

    (河南師范大學化學與環(huán)境科學學院,新鄉(xiāng) 453007)

    基于Keggin陰離子鏈鎳化合物的結構和質子導電性

    魏梅林*王曉湘 李會華

    (河南師范大學化學與環(huán)境科學學院,新鄉(xiāng) 453007)

    由H+(H2O)2.5陽離子,[Ni(H2O)8]2+陽離子,[PW12O40]3-陰離子和異煙酸氮氧化物(HINO)自組裝成一個具有質子導電性的化合物{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n。293 K的單晶X-射線衍射分析表明標題化合物形成1個帶有一維通道的三維氫鍵網(wǎng)絡結構。[PW12O40]3-陰離子填充在一維通道內并且自組裝成多陰離子鏈。熱重分析表明在20~100℃范圍內化合物沒有失重,表明化合物結構單元內所有的水分子在100℃以下不易失去。標題化合物在85~100℃范圍內表現(xiàn)出好的離子導電性(1×10-3~2× 10-3S·cm-1)。

    雜多酸;晶體結構;鎳(Ⅱ)配合物;異煙酸氮氧化物

    Keggin-type heteropolyacids(HPAs),possessing a unique discrete ionic structure including heteropoly anions and countercations(H+,H3O+,H5O2+,etc.),are widely known as proton conducting electrolytes for low-temperaturehydrogen-oxygen fuel cells[1].However, the application of HPAs is limited by the extreme sensitivity of their conductivity to the relative humidity(RH)and the temperature of the surrounding atmosphere[2].To overcome these problems,various attempts have been made to immobilize HPAs in silica gel and to disperse it in an organicallymodified electrolyte membrane and organic/inorganic hybrid membranes[3-4].In addition,to enable fast ionic conduction in the hybrid materials,themolecularmodification of organic ligands to inorganic structures of HPAs has been continuously investigated[5].For a long time,we have focused on the proton conductivity of organic/ inorganic complexes based-on the transition metal salts of HPAs dispersing in self-ordered hydrogenbonded networks.Salts crystallize with fewer water molecules than the acids,and are more stable. Incorporation of salts into the self-ordered hydrogenbonded networks protects them from dehydration and enhanced their thermal stability.Moreover,each transition metal ion could form an ionized water cluster with a special hydration number and a special structure.In this work,we have succeeded in constructing a proton-conductive organic/inorganic hybrid complex by a self-assembly of protonated water clusters,transition metal aqua ions,[PW12O40]3-anions and isonicotinic acid N-oxide(HINO).Here,we report its synthesis,crystal structure,and proton conductivity as a function of temperature.

    1 Experimental

    1.1 M aterials and instruments

    All organic solvents and material used for synthesis were of reagent grade and used without further purification.α-H3PW12O40·6H2O was prepared according to a literaturemethod[6]and characterized by IR spectra and TG analyses.HINO was synthesized according to a literaturemethod and characterized by IR spectra[7].Elemental analyses(C,H,and N)were carried out on a Perkin-Elmer 240C analyzer.X-ray powder diffraction(XRD)was performed on a Bruker D8 Advanced Instrument using Cu Kαradiation and a fixed power source(40 kV,40 mA).IR spectra were recorded on a VECTOR 22 Bruker spectrophotometer with KBr pellets in the 400~4 000 cm-1region at room temperature.Thermogravimetric analysis was performed on a Perkin-Elmer thermal analyzer under nitrogen at a heating rate of 10℃·min-1.For an electrical conductivity study,the powdered crystalline samples were compressed to about 1.0 mm in thickness and 12.0 mm in diameter under a pressure of 12~14 MPa.Ac impedance spectroscopy measurementwas performed on a chi660b(Shanghai chenhua) electrochemical impedance analyzer with copper electrodes[8](the purity of Cu ismore than 99.8%) over the frequency range from 105to 10 Hz.Samples were placed in a temperature-humidity controlled chamber(GT-TH-64Z,Dongwan Gaotian Corp).The conductivity was calculated asσ=(1/R)×(h/S),where R is the resistance,h is the thickness,and S is the area of the tablet.

    1.2 Synthesis of the title com plex

    The formation of heteropolyacid nickel salts was accomplished by neutralization of the acids.α-H3PW12O40·6H2O(180 mg,0.06 mmol)and adding NiCl2·6H2O(15 mg,0.06 mmol)dissolved in water(4 mL).The solution was heated at 80℃in a water bath.Light green crystals were formed by cooling the saturated solution and slow evaporation at room temperature,and characterized by IR spectrum.A mixture of result heteropolyacid nickel salts(90 mg, 0.03 mmol)and HINO(17 mg,0.12 mmol)was dissolved in enough acetonitrile/water(1∶1,V/V)to form a homogeneous solution.Finally,the solution was filtered and the solvent left to evaporate at room temperature.A week later,lightblue crystals appeared and were collected and dried in air after quickly being washed with water.Yield:76.4 mg,85%based onα-H3PW12O40·6H2O.Molecular formula is C24H42Ni W12N4O62.5P.Elemental analysis calcd.(%):C,7.83;H, 1.15;N,1.52.Found(%):C,7.92;H,1.28;N,1.61. Main IR bands(cm-1):four characteristic vibrations resulting from heteropolyanions with the Keggin structure:813ν(W-Oc),896ν(W-Ob),981ν(W=Ot), 1 081ν(P-Oa);and another vibrations resulting from theHINOmolecules:3 326ν(O-H),1704ν(C=O),1 618 ν(C=C),1 280ν(N-O),1 172δ(C-H,in plane).

    1.3 X-ray diffraction analysis

    Intensity data of the title complex was collected on a Bruker SMART-CCD area detector with graphitemonochromatic Mo Kαradiationλ=0.071 073 nm using SMARTand SAINTprograms[9].The structurewas solved by directmethods and refined on F2by using full-matrix least-squares methods with SHELXTL version 5.1[10].All non-hydrogen atoms except solvent water molecules were refined anisotropically.Two O (3W)centers are crystallographically disordered into four symmetrical positions with each oxygen site half-occupied,and two O(2W)centers are also crystallographically disordered into four symmetrical positions with each oxygen site half-occupied.The O(5W)with the occupancy of 50%is placed in a symmetry center and located in a tetragonal environment built from two watermolecules(O(6W)and O(7W)centers),which are crystallographically disordered into two symmetrical positions with each oxygen site half-occupied, respectively.Hydrogen atoms of the organicmolecules were localized in their calculated positions and refined using a ridingmodel.Hydrogen atoms ofwater molecules(O(1W)and O(4W))were localized by difference Fourier maps and refined by fixing the isotropic temperature factors 1.2 times that ofmother atoms attached.Hydrogen atoms of coordination water molecules(O(2W)and O(3W))and solvent water molecules were not treated because these oxygens are crystallographically disordered.The biggish absolute values of the final(Δρ)maxand(Δρ)minmight result from the many heavy metal atoms(W)in the title compound.The final(Δρ)maxand(Δρ)minare located the W atoms.The crystal parameters,data collection and refinement results for the title complex are summarized in Table 1,the selected bond lengths and bond angles are listed in Table 2,and the selected hydrogen bond parameters in Table 3.

    Table 1 Crystal and structure refinement data for 1

    Table 2 Selected bond lengths(nm)and angles(°)for 1

    CCDC:825709.

    2 Results and discussion

    2.1 IR spectra

    Comparison of the IR spectra of heteropolyacid nickel salts,isonicotinic acid N-oxide and the studied crystal shows that theν(C=O)band at 1710 cm-1and theν(N-O)band around 1280 cm-1in spectrum of free HINOmolecules[11]remains around the similar position in the complex,indicating that these groups are not involved in complex formation.The IR spectroscopic studies show that there are not strong interactionsbetween themetal ions and the organic groups in the solid state.The proton polarizabilities are particularly large in the case of hydrogen-bonded chains because in such chains a collective proton-tunnelling occurs. In the FT-IR spectra,these hydrogen bonds or hydrogen-bonded chains are manifested as continua because they interact very strongly with their environments because of large proton polarizabilities, and vice versa hydrogen bonds and hydrogen-bonded chains with large proton polarizabilities are indicated by these IR continua.Thus,such hydrogen-bonded chains are very effective proton pathways.They conduct protons within picoseconds.Water molecules are highly ordered for the entropic reasons if they are in a hydrophobic environment.Therefore,they build up a particularly stable pathway.An IR continuum indicates that this system shows proton polarizability due to collective protonmotion.

    Table 3 Selected hydrogen bond lengths and bond angles for 1

    2.2 Structure description

    The title complex,{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n,was synthesized by the reaction of NiHPW12O40·n H2O and HINO at room temperature.It was characterized by single-crystal X-ray diffraction, infrared spectroscopy,TG and elemental analyses.X-ray diffraction analysis at 293 K revealed that the title complex presented a 3D supramolecular framework built from non-covalent interactions among HINO molecules,[Ni(H2O)8]2+and H+(H2O)2.5cations,and [PW12O40]3-anions.Interestingly,[PW12O40]3-anions self-assembled into poly-Keggin-anion chains in the supramolecular framework.

    In[Ni(H2O)8]2+cations(Fig.1a),the Ni2+ion is placed in a symmetry center and located in a coordination octahedral environment built from six water molecules(two O(1W)centers,two O(2W)centers and two O(3W)centers),as well as two O(4W)centers are situated outside the coordination shell through short hydrogen-bonding interaction with the coordination water molecule.It should be noted that two O(3W)centers are crystallographically disordered into four symme-trical positions with each oxygen site half-occupied,and two O(2W)centers are also crystallographically disordered into four symmetrical positions with each oxygen site half-occupied[12].In the H+(H2O)2.5(the proton added to balance the charge)[11](Fig.1b),2.5 watermolecules,O(5W),O(6W) and O(7W),formed an tetragon structure.

    Fig.1 Views of[Ni(H2O)8]2+(a)and H+(H2O)2.5(b)cations

    Fig.2 View of the 1D HINOs chain along the b axis

    HINO is a goodmono-or bidentate ligand for the construction of supramolecular complexes with versatile bindingmodes.Until now,a large number of metal-organic framework structures containing HINO ligands have been reported[11].Interesting,in the title complex,HINO molecules are not bound to the Ni2+ion,but remaining outside the coordination shell to form hydrogen-bonded chains along the b axis(Fig.2). Two oxygen atoms O(15)(N-O)and O(17)(O-H)of each HINO molecule are involved in the hydrogen-bonded chains.As shown in Fig.3,these HINO hydrogenbonded chains are linked together by[Ni(H2O)8]2+aqua-complexes and small H+(H2O)2.5cations into a 3D cationic network with large 1D channels through hydrogen bonds between coordination watermoleculesO(2W)and oxygen atoms O(15)of HINO molecules, as well as through weak hydrogen bonds between coordination water molecules and oxygen atoms of HINO molecules.Thus,all O atoms of each HINO molecule are involved in the hydrogen bonds,creating a 3D supramolecular assembly with 1D channels. Moreover,there are weakly hydrogen-bonding interaction between watermolecules O(7W)in the H+(H2O)2.5cations and O(1W)center of the[Ni(H2O)8]2+cations. The section size of the channels based on the Ni…Ni separations is ca.1.04 nm×1.60 nm×1.98 nm for the title complex(these separations are equal to three axial lengths respectively),indicating that each pore could only accommodate a single Keggin anion. Interestingly,the adjacent Ni…Ni separation along the a axis ismuch shorter than other two separations along the b and c axes,and even shorter than the diameter of the discrete[PW12O40]3-anion(ca.1.05 nm),resul-ting in each cavity being heavily condensed along the a axis.In addition,the presence of positively charged species,[Ni(H2O)8]2+and H+(H2O)2.5cations,could attract the polyanions,as a result,the Keggin-type[PW12O40]3-anions for charge compensation are embedded in the voids of the 3D cationic framework and connect to one another leading to poly-Keggin-anion chains in the channel along the a axis(Fig.4).In the polymeric polyanion,there are some short atomatom separations of 0.279(2)nm,such as O(7A)…O(8BB),O(8A)…O(7BB),O(7AA)…O (8CB),O(7CB)…O(8AA).

    Fig.4 3D hydrogen-bonded network showing the 1D channels filled by poly-anion chains down the a axis(a),and view of the poly-anion chain along the a axis(b)

    In the[PW12O40]3-unit,the central P atom is surrounded by a cube of eight oxygen atomswith each oxygen site half-occupied.These eight oxygen atoms are all crystallographically disordered,and this case can be found inmany compounds[13].In the title complex, the bond lengths of P-O and W-O are 0.151(2)~0.156 4(19)and 0.166 6(8)~0.249 6(18)nm respectively. The bond lengths of P-O and W-O in the title complex are respectively comparable to those in the 3D porous polyoxometalates-based organic-inorganic hybrid materials with Keggin anions as guests[13].In addition,the O-P-O anglesare in the range of108.3(6)° ~111.4(6)°for the title complex.All these results indicate that the[PW12O40]3-units have a normal Keggin structure in the polymeric-polyanion chains. The poly-Keggin-type anions play not only a chargecompensating role,but they can dramatically influence the overall solid-state architecture through their templating function,as well as the cationic framework with special channels also influences the polymerization of polyanions through its host function. In addition,several hydrogen bonds exist between the poly-Keggin-anion chain and the channel,such as between thewatermolecules(O(1W),O(2W)and O(4W)) belong to the[Ni(H2O)8]2+cations and oxygen atoms of the polyanions(O(9),O(10)and O(12)centers).As a result,based on the self-assembly of HINOmolecules, [Ni(H2O)8]2+and H+(H2O)2.5cations,the title complex form 3D hydrogen-bonding networkswith 1D channels along the a axis,in which poly-Keggin anions chains were formed and stabilized based on electrostatic and H-bonding interactions,resulting in[PW12O40]3-anions being not easy dissociated from the hybrid network. Moreover,the section size of the channels along the b and c axes is so larger than the diameter of the [PW12O40]3-anion(ca.1.05 nm)that there is enough space outside the poly-Keggin-anion chains to admit some small species,such as water molecules or hydronium ions,to transport along the channels.All these results indicate that the title complex can potentially be a new good proton-conductingmaterial.

    2.3 TG Analysis

    The complex is insoluble in water.Water retention in the hybrid at high temperature is a key factor for having fast protonic conduction[8-9].Thermogravimetric analysis of the powder of the crystalline sample of the complex in an atmosphere of N2(Fig.5) shows no weight loss in the temperature range of 20~ 100℃,indicating that allwatermolecules in the unit structure are involved in constructing the H-bonding network,which is consistent with the result of structural analysis,and are not easily lost below 100℃. This is not like that observed in the proton conductors including the quasi-liquid water clusters(which are generally loosely bonded in the structure)like pure tungstophosphoric acid with 26 water molecules (PWA-26)or molybdophosphoric acid with 26 water molecules(PMA-26),as well as many proton-conducting compositemembranes doped with HPAs[1-2].

    Fig.5 Curve of the thermogravimetric analysis of 1 in the atmosphere of N2

    2.4 Proton conductivity

    The proton conductivities of the title complex in the temperature range of 25~100℃under 98%RH conditions were evaluated by the ac impedance method using a compacted pellet of the powdered crystalline sample,which has the same structure as the single-crystal(Fig.6).Surprisingly,the title complex reached good proton conductivities of 1×10-3~2.1×10-3S·cm-1in the temperature range of 85~100℃,estimated from the Nyquist plots.

    Fig.6 Powder X-ray diffraction data of the simulated powder pattern(a),the powder before the protonconductive measurement(b),and thepowder after the proton-conductivemeasurement(c)

    Fig.7 Arrhenius plotof the proton conductivity of 1

    Fig.7 shows the Arrhenius plots of the proton conductivities of the title complex in the temperature range of 25~100℃under 98%RH conditions.The ln(σT)increases almost linearly with temperature range from 25 to 100℃,and the corresponding activation energy(Ea)of conductivity was estimated to be 0.77 eV for the title complex from the equation below[12-13e]. whereσis the ionic conductivity,σ0is the preexponential factor,kBis the Boltzmann constant,and T is the temperature.The Eavalue is high in the temperature range of 25~100℃.The results show that the general features of the changes in conductivities are different from that of PWA-26 or PMA-26,whose protonic conductivity decreased with the temperature from ambient to 60℃[1-2].However,the title complex has thermally activated protonic conductivities[11]from 25 to 100℃;as the temperature increases,the proton conductivities increase on a logarithmic scale even with almost saturated humidities.This is probably due to the fact that protons belong to the protonated water clusters and those originating from water molecules need a thermally activated process for dissociation as hydrated forms such as H+,H3O+or other proton species at a distance from[PW12O40]3-clusters[14].The mechanism of proton conduction of the title complex is,therefore,expected to be similar to that of the vehicle mechanism[15],that is,the direct diffusion of additional protonswith watermolecules.The existence of these half-occupied oxygen sites of watermolecules in[Ni(H2O)8]2+and H+(H2O)2.5cationsmay be derived from direct-jump diffusion and be conducive to formation of the H-bonding network.In addition,the existence of H-bonding network suggests that proton conduction in the title complex includes some other process such as proton transport of additional protons along H-bonding network(Grotthusmechanism)[16].It is possible that in higher temperature and humidity some of isonicotinic acid N-oxide molecules can be deprotonated and the protons can be incorporated by the watermolecules and therefore conductivity can be a result of dissociation of organic acid.The results of measurement of the proton conductivity of HINO molecules in the temperature range of 85~100℃at 98%RH showed the free HINO molecules reached proton conductivities of 10-5~10-4S·cm-1in the temperature range of85~100℃,these proton conductivities are about 1~2 orders ofmagnitude lower than that of the title complex,which shows conductivity of about 10-3S·cm-1in the conditions described.Therefore,the fact that the title complex exhibits good proton conductivities in the temperature range of 85~100℃is indicative of a high carrier concentration based on a thermally activated process,as well as the existence of the whole H-bonding networks.Moreover,there is the possibility of hydrolysis of the complex when it is held at 100℃with a RH higher than 98%(100%,or condensed water that attack the metal centres).The powder X-ray diffraction data in Fig.6 suggested that the powder sample after the proton-conductivemeasurement have the same supramolecular framework as that of complex 1.The proton conductivities of the title complex were alsomeasured at 100℃in the RH range 35%~98%by a complex-plane impedance method.Fig.8 shows the lgσversus RH plots of complex 1 at 100℃under 35%~98%RH.Theconductivity under 35% RH is~3.95×10-5S·cm-1, and the conductivity increases with RH to reach a high conductivity of 1.70×10-3~2.05×10-3S·cm-1in the range 60%~98%RH.

    Fig.8 lgσversus RH plots of 1 at 100℃

    [1](a)Misono M.Chem.Commun.,2001:1141-1152(b)Katsoulis D E.Chem.Rev.,1998,98:359-388(c)MARong-Hua(馬榮華),WANGFu-Ping(王福平).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(3):445-450(d)FAN Ying(樊瑩),LIU Shi-Zhong(柳士忠).Chinese J.Inorg.Chem.(WujiHuaxue Xuebao),2002,18(6):635-638

    [2](a)AlbertiG,Casciola M,Costantino U,etal.J.Mater.Chem.,1995,5:1809-1812(b)Sang X G,Wu QY,PangW Q.Mater.Chem.Phys.,2003,82:405-409(c)Honma I,Nomura S,Nakajima H.J.Membr.Sci.,2001,185:83-94

    [3](a)Kim Y S,Wang F,Hickner M,etal.J.Membr.Sci.,2003, 212:263-282(b)Malers J L,Sweikart M A,Horan J L,et al.J.PowerSources,2007,172:83-88

    [4](a)Ramani V,Kunz H R,Fenton JM.J.Membr.Sci.,2004, 232:31-44(b)Verma A.,Scott K.J.Solid State Electrochem.,2010,14: 213-219

    [5](a)Kim JD,Honma I.Solid State Ionics,2005,176:547-552 (b)Li M Q,Shao Z G,Scott K.J.Power Sources,2008,183: 69-75(c)Verma A,Scott K.J.Solid State Electrochem.,2010,14: 213-219

    [6]Claude R D,Michel F,Raymonde F,et al.Inorg.Chem., 1983,22:207-216

    [7]Simapson PG,Vinciguerra A,Quagliano JV.Inorg.Chem., 1963,2:282-286

    [8]Wu QY,Zhao SL,Wang JM,etal.J.Solid State Electrochem., 2007,11:240-243

    [9]SMART and SAINT;Area Detector Control and Integration Software,Madison,WI:Siemens Analytical X-ray Systems, Inc.,1996.

    [10]Sheldrick GM.SHELXTL V5.1,Software Reference Manual, Madison,WI:Bruker AXS,Inc.,1997.

    [11](a)Goher M A S,Mautmer F A.J.Mol.Struct.,2007,846: 153-156(b)Hong J.J.Mol.Struct.,2006,783:9-12(c)Zhang L P,Du M,Lu W,et al.Polyhedron,2004,23:857-863

    [12](a)Sadakiyo M,Yamada T,Kitagawa H.J.Am.Chem.Soc., 2009,131:9906-9907(b)Yamada T,Sadakiyo M,Kitagawa H.J.Am.Chem.Soc.,2009,131:3144-3145(c)England W A,Cross M G,Hamnett A,et al.Solid StateIonics,1980,1:231-249

    [13](a)Wei M L,He C,Hua W J,et al.J.Am.Chem.Soc., 2006,128:13318-13319(b)Wei M L,He C,Sun Q Z,et al.Inorg.Chem.,2007,46:5957-5966(c)Duan C Y,Wei M L,Guo D,et al.J.Am.Chem.Soc.,2010,132:3321-3330(d)WeiM L,Zhuang PF,LiH H,etal.Eur.J.Inorg.Chem.,2011:1473-1478

    [14](a)Janic M J,Davis R J,Neurock M.J.Am.Chem.Soc., 2005,127:5238-5245(b)Hayashi EG,Moffat JB.J.Catal.,1983,83:192-204(c)Honma I,Nomura S,Nakajima H.J.Membr.Sci.,2001,185:83-94

    [15]Kreuer K D,Rabenau A,Weppner W.Angew.Chem.Int. Ed.,1982,21:208-209

    [16]Agmon N.Chem.Phys.Lett.,1995,244:456-462

    Crystal Structure and Proton-Conductivity of a Nickel(Ⅱ)Comp lex Constructed by Poly-Keggin-anion Chains

    WEIMei-Lin*WANG Xiao-Xiang LIHui-Hua
    (College of Chemistry and Environmental Science,Henan Normal University,Xinxiang,Henan 453007,China)

    A proton-conductive complex{[Ni(H2O)8][H(H2O)2.5](HINO)4(PW12O40)}n,wasconstructed by aself-assembly of cations,[Ni(H2O)8]2+cations,[PW12O40]3-anions and isonicotinic acid N-oxide(HINO).Single-crystal X-ray diffraction analysis at 293 K revealed that the title complex presented exactly a three-dimensional(3D)hydrogenbonded network with large one-dimensional(1D)channels.Interestingly,[PW12O40]3-anions just filled in the 1D channels and self-assembled into poly-Keggin-anion chains.Thermogravimetric analysis shows no weight loss in the temperature range of 20~100℃,indicating that all watermolecules in the unit structure are not easily lost below 100℃.The title complex was characterized by a satisfactory ionic conductivity(1×10-3~2×10-3S·cm-1)in the temperature range 85 to 100℃.CCDC:825709.

    polyoxometalates;crystal structure;nickel(Ⅱ)complex;isonicotinic acid N-oxide

    book=0,ebook=33

    O614.81+3

    A

    1001-4861(2012)11-2485-09

    2012-10-18。收修改稿日期:2012-08-03。

    國家自然科學基金(No.20971038,21171050)資助項目。

    *通訊聯(lián)系人。E-mail:weimeilinhd@163.com

    猜你喜歡
    分析表明河南師范大學煙酸
    河南師范大學作品精選
    聲屏世界(2024年1期)2024-04-11 07:51:08
    2050年中國碳中和累計投資規(guī)模預計約180萬億元
    河南師范大學作品精選
    聲屏世界(2023年23期)2023-03-10 04:49:28
    裳作
    炎黃地理(2022年5期)2022-06-07 03:35:41
    河南師范大學美術學院作品選登
    由胡克定律的數(shù)學表達式說開去
    相轉移催化合成2-氨基異煙酸
    鋱-2-甲硫基煙酸摻雜配合物的合成及熒光性質研究
    煙酸在畜禽生產(chǎn)中的應用
    中國飼料(2012年21期)2012-06-29 10:27:04
    巧歸納 善總結
    甘肅教育(2012年10期)2012-04-29 13:56:56
    在线 av 中文字幕| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 韩国精品一区二区三区| 色播在线永久视频| 在线观看国产h片| 制服诱惑二区| 精品国产乱码久久久久久男人| 久久久欧美国产精品| 国产亚洲av高清不卡| 欧美久久黑人一区二区| 日韩电影二区| 又黄又粗又硬又大视频| 岛国毛片在线播放| 中文字幕制服av| 老司机影院成人| 啦啦啦中文免费视频观看日本| 国产成人av教育| 永久免费av网站大全| 女人久久www免费人成看片| 久热这里只有精品99| 国产一级毛片在线| 丁香六月欧美| 国产精品 欧美亚洲| 精品久久久久久电影网| 一级片免费观看大全| 深夜精品福利| 亚洲成人免费av在线播放| 又紧又爽又黄一区二区| 日韩免费高清中文字幕av| 国产日韩一区二区三区精品不卡| 亚洲av成人精品一二三区| 这个男人来自地球电影免费观看| 成人免费观看视频高清| av视频免费观看在线观看| av天堂在线播放| 亚洲三区欧美一区| 2021少妇久久久久久久久久久| 亚洲欧美日韩高清在线视频 | 男男h啪啪无遮挡| 久久久国产一区二区| 别揉我奶头~嗯~啊~动态视频 | 国产在线视频一区二区| h视频一区二区三区| 一级黄片播放器| 99久久综合免费| 久久久久久久久免费视频了| av网站在线播放免费| 菩萨蛮人人尽说江南好唐韦庄| 18在线观看网站| 亚洲欧美一区二区三区黑人| 视频区欧美日本亚洲| 精品人妻在线不人妻| 亚洲精品一区蜜桃| 久久人人爽人人片av| 一区二区三区乱码不卡18| 黄片播放在线免费| 高清av免费在线| 亚洲成a人片在线一区二区| 午夜精品久久久久久毛片777| 国产精品 国内视频| 亚洲狠狠婷婷综合久久图片| 亚洲第一av免费看| 天天躁夜夜躁狠狠躁躁| 国产精品香港三级国产av潘金莲| 在线观看66精品国产| 黄色毛片三级朝国网站| 国产高清videossex| 免费看日本二区| 久9热在线精品视频| 美女 人体艺术 gogo| 桃红色精品国产亚洲av| or卡值多少钱| 国产精品一区二区三区四区久久 | 久久香蕉国产精品| 男女做爰动态图高潮gif福利片| 神马国产精品三级电影在线观看 | 一本大道久久a久久精品| 免费一级毛片在线播放高清视频| 国产v大片淫在线免费观看| 国产区一区二久久| 国产成人一区二区三区免费视频网站| 大香蕉久久成人网| 老鸭窝网址在线观看| 国产高清有码在线观看视频 | 黑人巨大精品欧美一区二区mp4| 免费在线观看视频国产中文字幕亚洲| 成人欧美大片| 最近最新中文字幕大全电影3 | 国内精品久久久久精免费| 在线免费观看的www视频| 久久久久久九九精品二区国产 | 亚洲国产日韩欧美精品在线观看 | 精品国产乱子伦一区二区三区| 午夜久久久久精精品| 日本三级黄在线观看| 国产区一区二久久| 99精品久久久久人妻精品| av福利片在线| 久久午夜亚洲精品久久| 国产亚洲av嫩草精品影院| 欧美黑人巨大hd| 淫秽高清视频在线观看| 久久精品影院6| 亚洲精品美女久久av网站| 日本精品一区二区三区蜜桃| 久热这里只有精品99| 日本 av在线| 精华霜和精华液先用哪个| av中文乱码字幕在线| 此物有八面人人有两片| 亚洲中文字幕一区二区三区有码在线看 | 国产99白浆流出| 成年版毛片免费区| 黄色成人免费大全| 欧美日韩瑟瑟在线播放| 一二三四在线观看免费中文在| 757午夜福利合集在线观看| 搞女人的毛片| 白带黄色成豆腐渣| 婷婷亚洲欧美| 女性被躁到高潮视频| 老司机深夜福利视频在线观看| 久久久久免费精品人妻一区二区 | 久久精品人妻少妇| 亚洲自拍偷在线| 欧美+亚洲+日韩+国产| 免费在线观看影片大全网站| 又紧又爽又黄一区二区| 免费无遮挡裸体视频| 99国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费日韩欧美大片| 黄片大片在线免费观看| 欧美黑人巨大hd| 久久精品成人免费网站| 1024视频免费在线观看| 18美女黄网站色大片免费观看| 久久亚洲真实| 视频在线观看一区二区三区| 最近最新免费中文字幕在线| 亚洲黑人精品在线| 99久久无色码亚洲精品果冻| 99国产精品一区二区蜜桃av| 久久中文字幕一级| 国产精品精品国产色婷婷| 99国产综合亚洲精品| 91av网站免费观看| 欧美色视频一区免费| 久久精品国产亚洲av高清一级| 久久人妻福利社区极品人妻图片| a级毛片a级免费在线| 香蕉丝袜av| 国内毛片毛片毛片毛片毛片| 日韩欧美免费精品| 欧美日韩一级在线毛片| 1024手机看黄色片| 在线观看日韩欧美| 在线观看日韩欧美| xxxwww97欧美| 国产成人欧美在线观看| 亚洲一区高清亚洲精品| 午夜久久久在线观看| 国产v大片淫在线免费观看| 国产视频内射| 免费在线观看亚洲国产| 非洲黑人性xxxx精品又粗又长| 欧美人与性动交α欧美精品济南到| 别揉我奶头~嗯~啊~动态视频| 美女 人体艺术 gogo| 免费在线观看亚洲国产| 欧美一级毛片孕妇| 国产精品亚洲av一区麻豆| 99久久综合精品五月天人人| e午夜精品久久久久久久| 无人区码免费观看不卡| av福利片在线| 18禁黄网站禁片午夜丰满| 可以在线观看的亚洲视频| aaaaa片日本免费| 国产日本99.免费观看| 好男人在线观看高清免费视频 | 老熟妇乱子伦视频在线观看| 国产精品乱码一区二三区的特点| 老司机深夜福利视频在线观看| netflix在线观看网站| 搡老熟女国产l中国老女人| 99国产精品一区二区三区| 老司机在亚洲福利影院| 又紧又爽又黄一区二区| 老司机靠b影院| 人人妻人人澡欧美一区二区| 久久久国产欧美日韩av| 搡老岳熟女国产| 在线永久观看黄色视频| 精品乱码久久久久久99久播| 午夜福利免费观看在线| 精品免费久久久久久久清纯| 老鸭窝网址在线观看| 久9热在线精品视频| 欧美黄色淫秽网站| 欧美中文日本在线观看视频| 亚洲第一电影网av| 我的亚洲天堂| 欧美日本视频| 熟女电影av网| 久久久久久九九精品二区国产 | 日韩中文字幕欧美一区二区| 老司机靠b影院| 久久久久亚洲av毛片大全| av欧美777| 欧美激情极品国产一区二区三区| 国产伦人伦偷精品视频| 精品欧美国产一区二区三| 日本撒尿小便嘘嘘汇集6| 色尼玛亚洲综合影院| 黄色毛片三级朝国网站| 亚洲最大成人中文| 日韩中文字幕欧美一区二区| 午夜影院日韩av| 精华霜和精华液先用哪个| 哪里可以看免费的av片| av视频在线观看入口| 久久久久国内视频| 国产国语露脸激情在线看| 国产成人欧美在线观看| 黄色丝袜av网址大全| 香蕉久久夜色| 麻豆久久精品国产亚洲av| 一a级毛片在线观看| 亚洲精品粉嫩美女一区| 国产黄色小视频在线观看| 男人的好看免费观看在线视频 | 最近最新中文字幕大全免费视频| 1024视频免费在线观看| 亚洲人成电影免费在线| 欧美中文日本在线观看视频| 人妻丰满熟妇av一区二区三区| 美国免费a级毛片| 国产乱人伦免费视频| 黄色 视频免费看| 久久国产精品男人的天堂亚洲| 亚洲第一青青草原| 叶爱在线成人免费视频播放| 亚洲五月婷婷丁香| 在线看三级毛片| 91麻豆av在线| 久久国产亚洲av麻豆专区| 手机成人av网站| 精品电影一区二区在线| 精品人妻1区二区| 久热这里只有精品99| 国产亚洲av高清不卡| 日本熟妇午夜| 欧美三级亚洲精品| 亚洲精品一区av在线观看| 两个人免费观看高清视频| 久久久久久国产a免费观看| 国产精品 国内视频| 热99re8久久精品国产| 一区二区三区国产精品乱码| 国产爱豆传媒在线观看 | 亚洲欧美日韩无卡精品| 午夜福利欧美成人| 亚洲精品粉嫩美女一区| 狠狠狠狠99中文字幕| 青草久久国产| 国产成人欧美在线观看| 看免费av毛片| 国产熟女xx| 免费一级毛片在线播放高清视频| xxxwww97欧美| 长腿黑丝高跟| 在线播放国产精品三级| 国产野战对白在线观看| 午夜a级毛片| 亚洲成人国产一区在线观看| 欧美zozozo另类| 国产成人欧美在线观看| 久久 成人 亚洲| 日本黄色视频三级网站网址| 亚洲精品久久成人aⅴ小说| 91av网站免费观看| 国内精品久久久久久久电影| 夜夜躁狠狠躁天天躁| 欧美精品亚洲一区二区| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| 可以在线观看的亚洲视频| 一本精品99久久精品77| 亚洲最大成人中文| 久久人人精品亚洲av| 国产三级黄色录像| 男人操女人黄网站| 观看免费一级毛片| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 91成年电影在线观看| 麻豆成人午夜福利视频| 久久久久精品国产欧美久久久| 女性被躁到高潮视频| 在线视频色国产色| 色综合站精品国产| 禁无遮挡网站| 日韩欧美在线二视频| 色播在线永久视频| 每晚都被弄得嗷嗷叫到高潮| 99精品欧美一区二区三区四区| 1024视频免费在线观看| 国产激情久久老熟女| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 在线免费观看的www视频| 亚洲国产精品成人综合色| 亚洲av电影不卡..在线观看| 91九色精品人成在线观看| 男人舔奶头视频| 久久久久久大精品| 在线观看日韩欧美| 精品国产乱子伦一区二区三区| 日韩中文字幕欧美一区二区| 亚洲片人在线观看| 亚洲国产精品成人综合色| 亚洲免费av在线视频| 99国产精品99久久久久| 999精品在线视频| 久久精品aⅴ一区二区三区四区| 午夜亚洲福利在线播放| 久久久国产成人精品二区| 韩国av一区二区三区四区| 麻豆久久精品国产亚洲av| 一级a爱片免费观看的视频| 天堂√8在线中文| 久久久国产成人免费| 人妻丰满熟妇av一区二区三区| 岛国在线观看网站| 国产精品久久久av美女十八| 亚洲无线在线观看| 男人操女人黄网站| 日韩大尺度精品在线看网址| 一二三四在线观看免费中文在| www日本黄色视频网| 两个人视频免费观看高清| 国产区一区二久久| 精品国产国语对白av| 国产爱豆传媒在线观看 | 亚洲片人在线观看| 免费搜索国产男女视频| 老司机福利观看| 91九色精品人成在线观看| 嫩草影视91久久| 90打野战视频偷拍视频| 日本撒尿小便嘘嘘汇集6| 欧美日本视频| 亚洲成人精品中文字幕电影| 欧美在线一区亚洲| 午夜日韩欧美国产| 久久国产精品男人的天堂亚洲| 99在线视频只有这里精品首页| 亚洲在线自拍视频| 不卡一级毛片| 在线免费观看的www视频| 亚洲五月婷婷丁香| 在线国产一区二区在线| 成人国产一区最新在线观看| 露出奶头的视频| 在线观看免费午夜福利视频| 国产精品电影一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 精品国内亚洲2022精品成人| 精品国产超薄肉色丝袜足j| 亚洲av美国av| 日韩中文字幕欧美一区二区| 国产一卡二卡三卡精品| 好男人在线观看高清免费视频 | www日本黄色视频网| 大型av网站在线播放| 正在播放国产对白刺激| 黄色成人免费大全| 国产一卡二卡三卡精品| 国产成人av教育| 午夜两性在线视频| 国产精品爽爽va在线观看网站 | 国产av一区在线观看免费| 黄色成人免费大全| 久久中文看片网| 18禁裸乳无遮挡免费网站照片 | av电影中文网址| 男人舔女人下体高潮全视频| www.www免费av| 一级毛片女人18水好多| 好男人电影高清在线观看| 日韩视频一区二区在线观看| 美女 人体艺术 gogo| 国产成人精品久久二区二区免费| 亚洲av成人不卡在线观看播放网| 视频区欧美日本亚洲| 一进一出抽搐动态| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 欧美性猛交╳xxx乱大交人| 一卡2卡三卡四卡精品乱码亚洲| 曰老女人黄片| 国产免费av片在线观看野外av| 亚洲成av人片免费观看| 亚洲精品av麻豆狂野| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 中文字幕久久专区| 神马国产精品三级电影在线观看 | a级毛片a级免费在线| 国产亚洲欧美精品永久| 亚洲国产高清在线一区二区三 | 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看| 久久精品国产亚洲av高清一级| 中文在线观看免费www的网站 | 又紧又爽又黄一区二区| 国产午夜精品久久久久久| www国产在线视频色| 在线观看66精品国产| 亚洲精品美女久久av网站| 久久精品国产99精品国产亚洲性色| 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 99热6这里只有精品| 色老头精品视频在线观看| 老汉色av国产亚洲站长工具| 老司机午夜十八禁免费视频| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影 | 国产亚洲av高清不卡| 久久久久久国产a免费观看| 国产成人欧美在线观看| 午夜激情av网站| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| 极品教师在线免费播放| 级片在线观看| 久久人人精品亚洲av| 桃红色精品国产亚洲av| 韩国av一区二区三区四区| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 欧美精品啪啪一区二区三区| 99热只有精品国产| 国产成人欧美在线观看| 亚洲色图av天堂| 十八禁网站免费在线| 日韩欧美在线二视频| 欧美一区二区精品小视频在线| 国产精品久久久久久人妻精品电影| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣av一区二区av| 青草久久国产| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 麻豆成人av在线观看| 久久久久久大精品| 正在播放国产对白刺激| av天堂在线播放| 嫁个100分男人电影在线观看| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| av片东京热男人的天堂| 国产一区二区三区视频了| 久久久久久久精品吃奶| 一级毛片精品| 国产欧美日韩一区二区三| 国产区一区二久久| 成人特级黄色片久久久久久久| 香蕉丝袜av| 黄色毛片三级朝国网站| 草草在线视频免费看| aaaaa片日本免费| 亚洲精品国产区一区二| av超薄肉色丝袜交足视频| 亚洲av片天天在线观看| 国产欧美日韩一区二区三| 免费看日本二区| 好男人电影高清在线观看| 久久亚洲真实| 一本综合久久免费| 国产黄a三级三级三级人| 久久伊人香网站| 男人舔奶头视频| 两性夫妻黄色片| 女性被躁到高潮视频| 日韩视频一区二区在线观看| 亚洲欧美日韩高清在线视频| 久久精品aⅴ一区二区三区四区| 桃色一区二区三区在线观看| 亚洲国产欧美日韩在线播放| 免费搜索国产男女视频| 欧美乱码精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看 | 久久久久国内视频| 亚洲最大成人中文| 国产精品精品国产色婷婷| 亚洲中文日韩欧美视频| 亚洲av成人av| 最近最新免费中文字幕在线| 国产亚洲精品综合一区在线观看 | 久久精品国产清高在天天线| 精品久久蜜臀av无| 久久久久亚洲av毛片大全| tocl精华| 日本成人三级电影网站| 极品教师在线免费播放| 国产99久久九九免费精品| 欧美午夜高清在线| 特大巨黑吊av在线直播 | 国产国语露脸激情在线看| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清 | 这个男人来自地球电影免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲熟女毛片儿| 亚洲国产精品成人综合色| av电影中文网址| 亚洲中文av在线| 九色国产91popny在线| 久久精品夜夜夜夜夜久久蜜豆 | 91麻豆精品激情在线观看国产| 狂野欧美激情性xxxx| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 亚洲国产高清在线一区二区三 | 国产单亲对白刺激| 神马国产精品三级电影在线观看 | 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| 国内毛片毛片毛片毛片毛片| 久久久久久久久中文| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址| 国产私拍福利视频在线观看| 日韩欧美在线二视频| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区| 午夜影院日韩av| xxxwww97欧美| 好男人电影高清在线观看| 别揉我奶头~嗯~啊~动态视频| 国产99白浆流出| 午夜福利视频1000在线观看| 国产精品免费视频内射| 一级片免费观看大全| 曰老女人黄片| 人成视频在线观看免费观看| 婷婷亚洲欧美| cao死你这个sao货| 精品福利观看| 亚洲国产欧美一区二区综合| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 熟妇人妻久久中文字幕3abv| 性色av乱码一区二区三区2| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 一级毛片高清免费大全| av有码第一页| 我的亚洲天堂| 国产欧美日韩精品亚洲av| 一级毛片女人18水好多| 久久久水蜜桃国产精品网| 国产激情欧美一区二区| 免费高清视频大片| 成人欧美大片| 成人免费观看视频高清| 久久久久久久久中文| 日韩视频一区二区在线观看| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 免费观看人在逋| 国产免费男女视频| 国产高清有码在线观看视频 | 成年女人毛片免费观看观看9| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 精华霜和精华液先用哪个| 欧美日韩亚洲国产一区二区在线观看| 国产又色又爽无遮挡免费看| 久久伊人香网站| 丰满的人妻完整版| 制服人妻中文乱码| 亚洲熟妇中文字幕五十中出| 久久青草综合色| 亚洲无线在线观看| 女人爽到高潮嗷嗷叫在线视频| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 又紧又爽又黄一区二区| 亚洲成av人片免费观看| 999精品在线视频| 无人区码免费观看不卡| 男女午夜视频在线观看| 免费看日本二区| 国产蜜桃级精品一区二区三区| 欧美大码av| 亚洲久久久国产精品| 波多野结衣巨乳人妻| 免费女性裸体啪啪无遮挡网站| 免费无遮挡裸体视频|