• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL PREDICTION OF SUBMARINE HYDRODYNAMIC COEFFICIENTS USING CFD SIMULATION*

    2012-08-22 08:32:14PANYucun
    關(guān)鍵詞:僵局消費(fèi)觀念蠶繭

    PAN Yu-cun

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, China,

    E-mail: pyc_navy@163.com

    ZHANG Huai-xin

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ZHOU Qi-dou

    Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, China

    (Received February 21, 2012, Revised September 3, 2012)

    NUMERICAL PREDICTION OF SUBMARINE HYDRODYNAMIC COEFFICIENTS USING CFD SIMULATION*

    PAN Yu-cun

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, China,

    E-mail: pyc_navy@163.com

    ZHANG Huai-xin

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ZHOU Qi-dou

    Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, China

    (Received February 21, 2012, Revised September 3, 2012)

    The submarine Hydrodynamic coefficients are predicted by numerical simulations. Steady and unsteady Reynolds Averaged Navier-Stokes (RANS) simulations are carried out to numerically simulate the oblique towing experiment and the Planar Motion Mechanism (PMM) experiment performed on the SUBOFF submarine model. The dynamic mesh method is adopted to simulate the maneuvering motions of pure heaving, pure swaying, pure pitching and pure yawing. The hydrodynamic forces and moments acting on the maneuvering submarine are obtained. Consequently, by analyzing these results, the hydrodynamic coefficients of the submarine maneuvering motions can be determined. The computational results are verified by comparison with experimental data, which show that this method can be used to estimate the hydrodynamic derivatives of a fully appended submarine.

    submarine maneuverability, hydrodynamic coefficients, Planar Motion Mechanism (PMM), dynamic mesh

    Introduction

    During the submarine scheme design period, the evaluation of maneuverability and stability is an important task. In practice, the six degree of freedom maneuvering motion is decoupled into the horizontal and the vertical motions, thus the problem can be simplified into a set of linear equations. Therefore, the estimation of the hydrodynamic coefficients of these motion equations is a key step to predict the motion of the submarine.

    Traditionally, the methods to predict the hydrodynamic derivatives of a submarine could be classified into three types: the semi-empirical method, thepotential flow method and the captive-model experiments including the oblique towing tests, the rotating arm experiments and the Planar Motion Mechanism (PMM) tests[1-4].

    With the semi-empirical method, the complicated submarine shape usually could not be taken into full account. The potential theory could predict the inertial hydrodynamic coefficients satisfactorily, but with the viscous terms neglected. The PMM experiment may be the most effective way, but it requires special facilities and equipment and it is both time-consuming and costly, as not economical at the preliminary design stage.

    An alternative method for determining the hydrodynamic derivatives is to use the Reynolds Averaged Navier-Stokes (RANS) simulations to simulate the captive-model tests numerically. The steady state CFD was successfully applied to simulate the straight line captive-model test for assessing the velocity based coefficients of submerged vehicles. Tyagi and Sen[5]investigated the transverse velocity based coefficients of two typical Autonomous Underwater Vehicles(AUV) using the RANS solver. Wu et al.[6]numerically simulated the steady straight line motion of the SUBOFF model with and without attack angle, close to an infinite level bottom. The motion-near-bottom effects on the hydrodynamic force were investigated. Hu et al.[7]used the CFX software to simulate the maneuvering tests. The kε- model was adopted to compute the positional hydrodynamic coefficients, and the kω- model was used to compute the rotational and other coupling hydrodynamic coefficients for “CR-02” AUV. The motion prediction based on these calculated hydrodynamic coefficients enjoyed a good agreement with the test at a lake.

    From these static maneuvering motions mentioned above, only the velocity-based hydrodynamic coefficients can be determined. In order to determine the acceleration-based hydrodynamic coefficients, unsteady experiments such as the PMM tests should be performed. An up-to-date application of the CFD to the marine maneuverability can numerically simulate the virtual PMM experiments to compute the unsteady hydrodynamic forces and moments. Broglia et al.[8]used a parallel CFD code to investigate the flow around the KVLCC2 tanker during the pure swaying maneuvering, with consideration of the free surface effects. The motion of the vessel was simulated using an overlapping mesh method with 8 blocks for a fixed background and 20 fitted blocks moving with the hull. The computed lateral force and the yaw moment agree well with the experimental data with a relative error less than 5.5% and 20%, respectively. Yang et al.[9]simulated the flow around a naked KVLCC1 hull undergoing the pure swaying motion in deep and shallow waters, with the effect of free surface ignored.

    The aim of the present study is to explore the possibility of developing a numerical method to evaluate the maneuvering characteristics of a submarine, especially at the earlier stage of the design cycle. The virtual towing tank and the PMM experiments are conducted using the RANS solver to compute the hydrodynamic forces and moments and the resultant coefficients.

    1. Numerical approach

    1.1 Governing equations

    Numerical simulations are performed with the CFD software Ansys Fluent. The flow around the vehicle is modeled using the incompressible, RANS equations:

    where uiis the time averaged velocity components inCartesian coordinates xi(i=1,2,3),ρis the fluid density, Fiis the body forces,P is the time averaged pressure, μ is the viscous coefficient, ui'is the fluctuating velocity componentsin Cartesian coordinates, andis the Reynolds stress tensor.

    The finite volume method is employed to discretize the governing equations with the second-order upwind scheme. The Semi-Implicit Method for the Pressure-Linked Equations (SIMPLE) is used for the pressure-velocity coupling. In order to allow the closure of the time averaged Navier-Stokes equations, various turbulence models were introduced to provide an estimation of the. Here, the realizable k-ε model is chosen[10], as is used for applications in a wide range of flows due to its robustness and economical merit, and the standard wall function is applied for a better analysis of the turbulent viscous flow around the wall.

    1.2 Description of the model

    Thetarget studiedinthis paperisthe SUBOFF model[11], designedbytheDavidTaylor Research Center (DTRC). A series of captive-model experiments[12]were performed in the David Taylor Model Basin on the towing carriage to measure the hydrodynamic force and moment acting on the model.

    The entity model is a body of revolution, which has a sail, no bow planes, two horizontal planes and two vertical rudders, and a ring wing supported by four struts in an “X” configuration. The overall length of the SUBOFF model is 4.356 m, while the length between the perpendiculars is 4.261 m, the maximum diameter is 0.508 m.

    The six degree of freedom motion of the submarine is normally described using two coordinate systems. The first is a right-handed, body-fixed coordinate system, with its origin at a point 2.013 m aft of the forward perpendicular on the hull centerline. The x-axis is positive pointing upstream. The y-axis is positive pointing starboard and the z-axis is positive pointing downward.

    The second coordinate systen, an inertial reference frame, is used to define the translational and rotational motions of the body-fixed coordinate system in the earth-fixed coordinates, as shown in Fig.1. In this coordinate syetem, the position of the vehicle’s coordinate system is then expressed in ξ,η,ζ coordinates. The orientation of the body-fixed coordinatesystem is described by Euler angles ψ (yaw), θ (pitch), φ (roll).

    Fig.1 Principal earth-fixed and body-fixed coordinate systems

    Fig.2 Boundary condition for numerical simulation

    1.3 Boundary conditions

    The boundary conditions around the submarine model are as follows: The inlet boundary is positioned 1.5 body-length upstreamwith an inflo7w velocity of 4 m/s (Reynolds number of 1.693 × 10 based on the vehicle length), a pressure-outlet condition is defined 3 body-lengths downstream. Free slip wall boundary conditions are applied to the 4 remaining walls 9 diameters away from the model and a no-slip boundary condition is applied to the hull. Figure 2 shows the boundary conditions for numerical simulation.

    Fig.3 Surface grid of the model

    1.4 Mesh def inition

    In order to simulate the motion of the model,the fluid domain is split into three regions: aninner region, an outer region, and an intermediate layer between them. The grid is generated by such a hybrid mesh strategy: in the inner region, a multi-block hexahedral mesh is used to define the fluid immediately surrounding the vessel, which allows a detailed control of the mesh parameters and the element quality. The hexahedral mesh is also used in the outer region, which is rather coarse, so the number of grids can be reduced. The intermediate layer consists of unstructured tetrahedral grids, which can be conveniently remeshed in the case of the element deformation, see Figs.3 and 4. The geometry modeling and the grid generation are done by using the Gambit software.

    Fig.4 Meshes of three sub-regions

    To numerically simulate the oscillatory motion produced in the PMM tests, the User Defined Function (UDF) is used to controlthe motion of the vessel. The outer domain remains fixed in space, while the inner region containing the SUBOFF model moves or rotates to simulate the motion induced in the PMM experiment. It should be noted that the mesh in the inner region remains locked in a position relative to the motion of the vessel. Hence, the mesh of the intermediate layer is deformed to accommodate the motion of the inner region. The new node locations are updated at each time step according to the calculation of the UDF, while the overall mesh topology is maintained. Such a treatment guarantees a high quality of the meshes around the vessel during the maneuvering motion.

    2. The grid independence

    Before the CFD analysis, the sensitivity of the solution to the resolution of the grid should be determined. Based on an initial grid, a series of successively refined grids were generated. The results from the base grid and the refined grids were compared to check the result variation with the grid refinement.

    With the limited computational resource, in the inner region the grid was refined with a ratio ofin t hree directio ns: the lo ngitudi nal , th e transversal andthenormaldirections,whileintheintermediatelayer and the outer region, the refinement ratio was less than. Thecomputational grids contained from 4.33×106cells for the coarse grid to 1.436×107cells for the finest grid.

    Table 1 Mesh sensitivity

    Besides the grid density, the y+value, i.e., the thickness of the first cells adjacent the hull, is also related with the accuracy of the numerical prediction. In this study, the y+value varied from 30 for the finest mesh to 60 for the coarsest. The mesh convergence test was carried out focusing on the forces andothe mo

    oments on thevehicle with a drift angle of 0 and 3. Table 1 summarizes the longitudinal forces X, the lateral forces Y and the yaw moments N computed in the tested mesh cases.

    From the results in Table 1, it is seen that, on the who le, the solutions do not change significantly from the fine grid to the coarse grid, with only minor differences between results obtained by the fine and medium grids, and a little bit larger differences between the results obtained by the coarse and medium grids. Therefore, the medium grid was chosen for the maneuvering prediction.

    Normally, the time step convergence investigation is a necessary step for an unsteady CFD simulation. In Turnock’s paper[13], simulations with 50, 100 and 500 time steps per oscillation cycle were performed. For all three cases, the variations of the sway force and the yaw moment were stabilized after less than a quarter of an oscillation cycle.

    Since transient simulations are required to solve the multiple coefficient loops at each time step, further time step refinement would be difficult due to the hardware limitations. Indeed, the study of the temporal discretization convergence would significantly increase the overall cost. With a due review of the published data in literature[13-16], the scheme with 400 time steps per oscillation cycle was adopted for the following transient computations.

    3. Numerical simulation of maneuvering motion

    3.1 Simulation of oblique towing tests

    For the marine hydrodynamics, the CFD techniquehas been developed mainly in the fields of resistance and propulsion. As is known, the oblique towing test is a direct and explicit means of determining the static coefficients and is very similar to the resistance test, except that the model has a fixed attitude during towing. Obviously, it is a logical and natural way to carry out the simulation of the steady oblique towing as an example of the application of the CFD to the field of maneuverability.

    Fig.5 Comparison of the computed and measured lateralforce Y' and yawing moment N'

    The model was towed with a straight path ata constant velocity, while for each run the model was setat a prescribed pitch angle or heading angle.Thus theheave velocity v or the sway velocity w ofthe model change according to the following rule

    Table 2 Comparison of hydrodynamic force/moment coefficientsdue to transverse velocity

    where U∞is the uniform inflow velocity and αis the attack angle,βis the drift angle.

    The computed hydrodynamic force and moment are non-dimensionalized as follows

    where Lis the length of the model. As shown in Fig.5,thevariation trends of the transverse force and the moment with the drift angles are well predicted. The agreement between the numerical results and the experimental data[12]is good. Similarly, the simulated and the measured normal force Z' and the pitching moment M' are also in good agreement.

    3.2 Numerical simulation of planar motion mechanism tests

    The PMM generates two kinds of motions: the translation and the rotation, imposed on the vehicle as it travels down the tank at a constant forward velocity. Thesinusoidal motion can be designed in such a manner as to produce the desired conditions of hydrodynamically “pure heaving”, “pure swaying”, “pure yawing” and “pure pitching”. Thus, the rotary-based and acceleration-based coefficients can be explicitly determined.

    The system is designed for obtaining the hydrodynamic characteristics of deeply submerged bodies in either the vertical or horizontal planes of motion. For simplicity, the mode of operation applied to the submarine in the vertical plane is discussed here.

    Fig.6 Trajectory of model during pure heaving test

    3.2.1 Pure heaving

    During the pure heaving motion, the model’s Center of Gravity (CG) moves in such a sinusoidal paththat the pitch angleθ remains zero, as shown in Fig.6. The variation of the vertical displacement, the velocity and the acceleration are given by the following equations.

    where θ and θ˙ are the angle and the angular velocity in the direction of rotating around the y axis, w and w˙ are the vertical velocity and the acceleration, a is the amplitude, ωis the circular frequencyof the heaving motion.

    Fig.7 Force and moment acting on the hull during pure heaving test (f=0.2Hz)

    Fig.8 The oscillating wake pattern behind SUBOFF in pure heaving motion

    The normal force and the pitch moment acting on the hull are monitored as the model oscillates with different frequencies (0.1 Hz, 0.2 Hz and 0.3 Hz). The unsteady RANS simulations are performed for 8 cycles, with the first 7 cycles allowing the system to settle down before the monitoring. Figure 7 shows the time history of the variation of the force and the moment acting on the hull with the oscillating frequency of 0.2 Hz. From these results, the translatory velocity-based and the acceleration-based coefficients Zw'˙,,' can be determined using the Fourier expansion, as shown in Table 3.

    Table 3 The hydrodynamic coefficients of the SUBOFF model

    As the SUBOFF model oscillates vertically, the flow pattern around the vehicle varies with time.As an example, an instantaneous representation of the velocity field around the vehicle is given on Fig.8.

    Fig.9 Trajectory of model duringpure pitching test

    Fig.10 Force and moment acting on the hull during pure pitching test (f=0.2Hz)

    3.2.2 Pure pitching

    而事實(shí)上,絲綢具有在醫(yī)療、美容、保健等方面的獨(dú)特功效和在審美、收藏等方面的文化魅力。在新的科學(xué)技術(shù)蓬勃發(fā)展的背景下,絲綢企業(yè)應(yīng)重視絲綢產(chǎn)品的創(chuàng)新,切實(shí)推進(jìn)桑蠶繭絲綢的綜合利用開發(fā)。此外,結(jié)合當(dāng)下興盛的“工業(yè)旅游”,絲綢企業(yè)借鑒“前店后廠”的模式,完善絲綢體驗(yàn)區(qū)的建設(shè),全方位展示絲綢多功能的形象,打破思維僵局,向世界傳遞絲綢新的消費(fèi)觀念。

    The pure pitching motion is one in which the model CG moves in a sinusoidal path while themodel axis remains tangent to the path, that is, the angle of attackα remains zero, as shown in Fig.9. In this case,the pitch angle traces (θ,θ˙,θ˙) are of primary interest.

    where θ0is the amplitude, q andare the angular velocity and the acceleration in the direction of rotating around Y axis. The normal force and the pitch moment acting on the hull aremonitored as the model osci llate swit h dif feren t freque ncies (0.1 H z, 0 .2 Hz and0.3Hz).Thetimehistoryvariationoftheforceand the moment acting on the hull with the oscillating frequency of 0.2 Hz is shown in Fig.10. From these results, the rotary rate-based and the accelerationbased coefficients,can be determined using the Fourier expansion, as shown in Table 3.

    Fig.11 The oscillating wake pattern calculated behind SUBOFF in pure pitching motion

    The flow pattern around the vehicle is shown in Fig.11. In this case, the characteristics of the wake pattern are different from those shown in Fig.8. In studying the velocity field, it can be seen that the rotary motion imposed on the SUBOFF model has a distinct impact on the flow asymmetry and loading.

    3.2.3 Results

    The motion of the pure swaying is similar to that of the pure heaving, and the motion of the pure yawing is similar to that of the pure pitching. From the results of the above four virtual PMM tests, 16 hydrodynamic coefficients can be determined, as shown in Table 3.

    The resulting predictions of the hydrodynamic coefficients show a good correlation with the experimental data. Most of the discrepancies between the predicted hydrodynamic coefficients and the measured values are in the range 0.5%-15% except for a few cases, which are in an acceptable level of accuracy for the preliminary design. The possible source of error lies in the insufficient mesh resolution and the inadequacy of the turbulence model[16].

    3.3 Discussions

    The overall results indicate that the RANS method can predict the hydrodynamic coefficients in the same level of accuracy as the model test based method. However, the present method might be improved.

    In the submarine design, the computational cost may be the main concern that prevents the application of the CFD method. In this study, the unsteady simulations are carried out on a desktop PC using an Intel Core Processor i5 2500 with 16 GB of RAM. A PMM simulation takes approximately 100 h to complete. Thus the total runtime for a set of linear coefficients would be 16 d on a single machine.

    Another important issue is that in the preliminary design stages for the submarine maneuverability, a great number of iterations is required, with considerations of various combinations of sizes, locations and configurations of the control surfaces. During such a design process, the changes in geometry in the iteration will make the problem very complex in using the CFD methods and a vast amount of time will be consumed to generate the CFD meshes.

    Therefore, a compromise between the semi-empirical method and the RANS method would be more attractive. That is, at the first estimate loop, the semiempirical method is used to determine a small number of design alternatives. And they will be further assessed with the RANS method during the next optimization loop. The accuracy of these predictions is balanced with the calculation speed.

    4. Conclusions

    A method for the unsteady RANS simulation for the submarine maneuverability is proposed. The method can successfully be used to calculate the flow around a submarine model, and the force and the moment during the steady oblique towing and dynamic PMM motion. The predictions of the static, rotary, acceleration coefficients of the submarine model enjoy an acceptable level of accur acy. The CFD method is shown to be able to provide a good estimate of the maneuveringcoefficients for the fully appended submarine model. However, more studies ae required for more advanced turbulence models, finer grid resolutions and additional verifications and validations before such simulations can be applied with a high degree of confidence.

    The main drawbacks of using the CFD method inthe submarine design are that it is time-consuming to obtain the flow solution and to carry out the mesh generation. Advances in the parallel computing and the processor speed can reduce the total simulation time. In view of the iterative design changes, the automatic grid generation should be a desirable technique.

    [1] KIM Y. G., KIM S. Y. and KIM H. T. et al. Prediction of the maneuverability of a large container ship with twin propellers and twin rudders[J]. Journal of Marine Science and Technology, 2007, 12(3): 130-138.

    [2] LI Gang, DUAN Wen-yang. Experimental study on the hydrodynamic property of a complex submersible[J]. Journal of Ship Mechanics, 2011, 15(1): 58-65(in Chinese).

    [3] OBREJA D., NABERGOJ R. and CRUDU L. et al. Identificationof hydrodynamic coefficients for manoeuvring simulation model of a fishing vessel[J]. Ocean Engineering, 2010, 37(8): 678-687.

    [4] FAN Shi-bo, LIAN Lian and REN Ping et al. Oblique towing test and maneuver simulation at low speed and large drift angle for deep sea open-framed Remotely operated vehicle[J]. Journal of Hydrodynamics, 2012, 24(2): 280-286.

    [5]TYAGI A., SEN D. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering, 2006, 33(5-6): 798-809.

    [6]WU Ban-shan, XING Fu and KUANG Xiao-feng et al. Investigation of hydrodynamic characteristics of submarine moving close to the sea bottom with CFD methods[J]. Journal of Ship Mechanics, 2005, 9(3): 19-28.

    [7]HU Zhi-qiang, LIN Yang and GU Hai-tao. On Numerical computation of viscous hydrodynamics of unmanned underwater vehicle[J]. Robot, 2007, 29(2): 145-150(in Chinese).

    [8]BROGLIA R., MASCIO A. D. and AMATI G. A. parallel unsteady RANS code for the numerical simulations of free surface flows[C]. 2nd international Conference on Marine Research and Transportation. Naples, Italy, 2007.

    [9] YANG Yong, ZOU Zao-jian and ZHANG Chen-xi. Calculation of hydrodynamic forces on a KVLCC hull in sway motion in deep and shallow water[J]. Chinese Journal of Hydrodynamics, 2011, 26(1): 85-93(in Chinese).

    [10] PHILLIPS A. B., TURNOCK S. R. and FURLONG M. Influence of turbulence closure models on the vortical flow field around a submarine body undergoing steady drift[J]. Journal of Marine Science and Technology, 2010, 15(3): 201-217.

    [11] GROVES N., HUANG T. T. and CHANG M. S. Geometric characteristics of DARPA SUBOFF models (DTRC Models Nos. 5470 and 5471)[R]. DTRC/SHD 1298-01, 1989, 1-75.

    [12]RODDY R. F. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC model 5470) from captivemodel experiments[R]. DTRC/SHD 1298-08, 1990, 1- 108.

    [13] TURNOCK S. R., PHILLIPS A. B. and FURLONG M. et al. URANS simulations of static drift and dynamic manoeuvres of the KVLCC2 tanker[C]. Proceeding of SIMMAN International Manoeuvring Workshop. Copenhagen, Demark, 2008.

    [14] PHILLIPS A. B., TURNOCK S. R. and FURLONG M. The use of computational fluid dynamics to aid costeffective hydrodynamic design of autonomous underwater vehicles[J]. Journal of Engineering for the Maritime Environment, 2010, 1(1): 1-16.

    [15] PHILLIPS A. B., FURLONG M. and TURNOCK S. R. Virtual planar motion mechanism tests of the autonomous underwater vehicle autosub[C]. STG-Conference/Lectureday “CFD in Ship Design”. Hamburg, Germany, 2007.

    [16] STERN F., AGDRUP K. and KIM S. Y. et al. Experience from SIMMAN 2008-the first workshop on verification and validation of ship maneuvering simulation methods[J]. Journal of Ship Research, 2011, 55(2): 135-147.

    10.1016/S1001-6058(11)60311-9

    * Project supported by the National Natural Science Foundation of China (Grant No. 11272213).

    Biography: PAN Yu-cun (1980- ), Male, Ph. D. Candidate,

    Lecturer

    ZHANG Huai-xin,

    E-mail: hxzhang@sjtu.edu.cn

    猜你喜歡
    僵局消費(fèi)觀念蠶繭
    咬破死亡的蠶繭
    蠶繭與飛蝶
    小讀者(2021年4期)2021-06-11 05:42:12
    提高鳴龍鎮(zhèn)蠶繭質(zhì)量的措施探討
    重視蠶病綜合防治 提高蠶繭質(zhì)量
    高中生日常消費(fèi)行為和消費(fèi)觀念調(diào)查研究
    山東電改僵局
    能源(2020年10期)2020-11-13 07:05:40
    高中生消費(fèi)觀念與學(xué)校周邊經(jīng)濟(jì)生活的關(guān)聯(lián)探討
    神回復(fù)
    意林(2014年18期)2014-09-23 17:01:04
    解決公司僵局“亡羊補(bǔ)牢”不如“未雨綢繆”
    法人(2014年1期)2014-02-27 10:41:15
    大學(xué)生綠色消費(fèi)觀念調(diào)查
    在线av久久热| 黑丝袜美女国产一区| 精品久久久精品久久久| 日韩有码中文字幕| 日韩三级视频一区二区三区| 日韩欧美国产一区二区入口| 丰满少妇做爰视频| 中文字幕人妻熟女乱码| 大陆偷拍与自拍| 欧美人与性动交α欧美软件| 亚洲一卡2卡3卡4卡5卡精品中文| 国产不卡一卡二| 国产精品98久久久久久宅男小说| 视频区图区小说| 亚洲成av片中文字幕在线观看| 在线观看免费视频日本深夜| 老司机福利观看| 久久亚洲真实| 亚洲欧美色中文字幕在线| 天天躁日日躁夜夜躁夜夜| 亚洲成a人片在线一区二区| 国产精品.久久久| 亚洲av成人不卡在线观看播放网| 一区二区三区乱码不卡18| av片东京热男人的天堂| 国内毛片毛片毛片毛片毛片| 狠狠精品人妻久久久久久综合| 国产99久久九九免费精品| 欧美亚洲 丝袜 人妻 在线| 久久亚洲精品不卡| av线在线观看网站| 老司机深夜福利视频在线观看| 国产aⅴ精品一区二区三区波| 久久久精品国产亚洲av高清涩受| 99国产精品一区二区蜜桃av | 一区二区三区国产精品乱码| 老司机福利观看| 美女主播在线视频| 人成视频在线观看免费观看| 免费在线观看完整版高清| 久久久水蜜桃国产精品网| 美女高潮喷水抽搐中文字幕| 国产精品1区2区在线观看. | 丝袜美腿诱惑在线| 日本黄色日本黄色录像| 欧美在线黄色| 欧美亚洲日本最大视频资源| 在线观看免费高清a一片| 国产成人啪精品午夜网站| 女警被强在线播放| 欧美精品人与动牲交sv欧美| 国产午夜精品久久久久久| 国产免费av片在线观看野外av| 丁香欧美五月| 亚洲欧美激情在线| 久久国产精品人妻蜜桃| a级毛片在线看网站| 国产又色又爽无遮挡免费看| 久久久久网色| 亚洲精品国产色婷婷电影| 亚洲人成电影观看| 十八禁网站免费在线| 女人被躁到高潮嗷嗷叫费观| 搡老熟女国产l中国老女人| 99久久国产精品久久久| 亚洲av欧美aⅴ国产| 欧美黑人欧美精品刺激| 成人av一区二区三区在线看| 国产免费视频播放在线视频| 老司机午夜福利在线观看视频 | 国产黄频视频在线观看| 在线永久观看黄色视频| 天堂俺去俺来也www色官网| 桃花免费在线播放| 成人亚洲精品一区在线观看| 在线观看人妻少妇| 在线观看66精品国产| 国产成人免费无遮挡视频| av又黄又爽大尺度在线免费看| 天天操日日干夜夜撸| 成人免费观看视频高清| 精品视频人人做人人爽| 一区二区三区激情视频| 美女国产高潮福利片在线看| 99九九在线精品视频| 国产精品一区二区在线不卡| 欧美一级毛片孕妇| 亚洲国产av影院在线观看| 69精品国产乱码久久久| 最近最新免费中文字幕在线| 老司机深夜福利视频在线观看| www.熟女人妻精品国产| 日本vs欧美在线观看视频| 少妇裸体淫交视频免费看高清 | 免费不卡黄色视频| 国产精品成人在线| 中亚洲国语对白在线视频| 亚洲性夜色夜夜综合| 午夜福利,免费看| 国产xxxxx性猛交| 老司机靠b影院| 黑人巨大精品欧美一区二区mp4| 女人爽到高潮嗷嗷叫在线视频| 国精品久久久久久国模美| 欧美大码av| 法律面前人人平等表现在哪些方面| 色婷婷av一区二区三区视频| 视频在线观看一区二区三区| 久久中文字幕一级| 99精品欧美一区二区三区四区| 国产又爽黄色视频| www.自偷自拍.com| 成年版毛片免费区| 99国产精品一区二区三区| 777米奇影视久久| 久久九九热精品免费| 欧美在线一区亚洲| 黑丝袜美女国产一区| 国产精品免费一区二区三区在线 | 国产97色在线日韩免费| 国产色视频综合| 欧美 日韩 精品 国产| 久久ye,这里只有精品| 大香蕉久久网| 少妇精品久久久久久久| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品高潮呻吟av久久| 在线观看免费视频日本深夜| 五月天丁香电影| 久久热在线av| 女人精品久久久久毛片| 精品免费久久久久久久清纯 | 久久久久久免费高清国产稀缺| 中文字幕精品免费在线观看视频| 淫妇啪啪啪对白视频| 精品午夜福利视频在线观看一区 | 中文欧美无线码| 久久av网站| 亚洲美女黄片视频| 少妇粗大呻吟视频| 无限看片的www在线观看| 午夜久久久在线观看| 免费不卡黄色视频| 亚洲一区二区三区欧美精品| 国内毛片毛片毛片毛片毛片| 国产午夜精品久久久久久| 一本一本久久a久久精品综合妖精| 在线观看一区二区三区激情| 亚洲成人免费av在线播放| 黑人巨大精品欧美一区二区蜜桃| 中文字幕制服av| 欧美亚洲日本最大视频资源| 每晚都被弄得嗷嗷叫到高潮| 另类精品久久| 亚洲精品中文字幕在线视频| 动漫黄色视频在线观看| 国产视频一区二区在线看| 热99国产精品久久久久久7| 一本久久精品| 亚洲成人手机| 日韩免费高清中文字幕av| 丰满少妇做爰视频| 久久 成人 亚洲| 一级毛片女人18水好多| 黄色a级毛片大全视频| 国产高清国产精品国产三级| 久久久久国产一级毛片高清牌| 亚洲一卡2卡3卡4卡5卡精品中文| 久久性视频一级片| 最黄视频免费看| 男人操女人黄网站| av福利片在线| 叶爱在线成人免费视频播放| 黄色片一级片一级黄色片| 天堂8中文在线网| 色老头精品视频在线观看| 欧美变态另类bdsm刘玥| 欧美黄色淫秽网站| 日本黄色视频三级网站网址 | 18禁黄网站禁片午夜丰满| av不卡在线播放| 国产精品国产av在线观看| 免费在线观看黄色视频的| 无限看片的www在线观看| 久久久欧美国产精品| 99香蕉大伊视频| 一本综合久久免费| 亚洲成av片中文字幕在线观看| 99久久精品国产亚洲精品| 成年版毛片免费区| 日韩视频一区二区在线观看| 久久ye,这里只有精品| 纯流量卡能插随身wifi吗| 男女免费视频国产| 丝袜美足系列| 欧美黑人欧美精品刺激| 亚洲avbb在线观看| 中文亚洲av片在线观看爽 | 99久久国产精品久久久| 午夜福利影视在线免费观看| 黄色视频不卡| 一级毛片电影观看| 亚洲成人免费av在线播放| 十八禁人妻一区二区| 美女福利国产在线| 宅男免费午夜| 午夜激情久久久久久久| www.自偷自拍.com| 欧美成狂野欧美在线观看| 天天躁日日躁夜夜躁夜夜| kizo精华| 大片电影免费在线观看免费| 日本五十路高清| 欧美精品一区二区大全| 亚洲国产欧美网| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频| 亚洲专区字幕在线| 成人免费观看视频高清| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 久久午夜亚洲精品久久| 亚洲色图av天堂| 亚洲精品粉嫩美女一区| 久久人妻av系列| 亚洲少妇的诱惑av| 中文欧美无线码| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 精品久久久久久电影网| 丝袜在线中文字幕| 视频在线观看一区二区三区| 在线 av 中文字幕| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 日韩大码丰满熟妇| 五月天丁香电影| 老汉色av国产亚洲站长工具| 成人影院久久| 亚洲国产看品久久| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 久久国产精品人妻蜜桃| 久热这里只有精品99| 菩萨蛮人人尽说江南好唐韦庄| 中文亚洲av片在线观看爽 | 老司机午夜福利在线观看视频 | 免费看十八禁软件| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 50天的宝宝边吃奶边哭怎么回事| 久久精品aⅴ一区二区三区四区| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 国产精品 国内视频| 99久久99久久久精品蜜桃| 亚洲精品一二三| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 亚洲av第一区精品v没综合| 亚洲精品av麻豆狂野| 久久精品国产亚洲av香蕉五月 | 国产免费视频播放在线视频| 精品少妇黑人巨大在线播放| 高清在线国产一区| 国产xxxxx性猛交| 三级毛片av免费| 亚洲精品成人av观看孕妇| 久久中文字幕人妻熟女| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| 国产在线精品亚洲第一网站| 欧美变态另类bdsm刘玥| www.精华液| av线在线观看网站| 国产极品粉嫩免费观看在线| 精品一区二区三区视频在线观看免费 | 午夜久久久在线观看| 亚洲少妇的诱惑av| 一区二区av电影网| 午夜视频精品福利| 波多野结衣一区麻豆| 激情在线观看视频在线高清 | 国产熟女午夜一区二区三区| 欧美成人午夜精品| 男女边摸边吃奶| av不卡在线播放| 露出奶头的视频| 两个人看的免费小视频| 一进一出好大好爽视频| 国产激情久久老熟女| 精品人妻1区二区| 69精品国产乱码久久久| 国产精品久久久久久精品古装| 欧美在线一区亚洲| 岛国在线观看网站| 免费女性裸体啪啪无遮挡网站| 国产免费视频播放在线视频| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线不卡| 另类亚洲欧美激情| 国产成人啪精品午夜网站| 波多野结衣av一区二区av| 国产国语露脸激情在线看| 在线观看www视频免费| 男女之事视频高清在线观看| 欧美日韩国产mv在线观看视频| 啦啦啦 在线观看视频| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 久久久精品国产亚洲av高清涩受| 亚洲 国产 在线| 后天国语完整版免费观看| 麻豆成人av在线观看| 亚洲欧美一区二区三区黑人| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 在线观看免费高清a一片| 亚洲精品美女久久久久99蜜臀| 中文字幕最新亚洲高清| 热99久久久久精品小说推荐| 伦理电影免费视频| 国产高清激情床上av| 成人国语在线视频| 亚洲欧美色中文字幕在线| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 亚洲人成电影免费在线| 狠狠精品人妻久久久久久综合| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 午夜福利,免费看| 正在播放国产对白刺激| a级片在线免费高清观看视频| 国产男女内射视频| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 欧美午夜高清在线| 久久热在线av| 亚洲第一青青草原| 人人妻人人添人人爽欧美一区卜| www.999成人在线观看| 9色porny在线观看| 91精品三级在线观看| 黑人欧美特级aaaaaa片| 精品人妻熟女毛片av久久网站| 欧美精品av麻豆av| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区 | 免费在线观看黄色视频的| 丝袜在线中文字幕| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲综合一区二区三区_| 大片免费播放器 马上看| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 日韩视频一区二区在线观看| 亚洲专区字幕在线| 久久99一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲 国产 在线| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 少妇粗大呻吟视频| 国产成人一区二区三区免费视频网站| 亚洲少妇的诱惑av| 可以免费在线观看a视频的电影网站| 精品人妻1区二区| 99久久精品国产亚洲精品| 精品人妻1区二区| aaaaa片日本免费| 亚洲精品在线观看二区| 老司机午夜十八禁免费视频| 波多野结衣av一区二区av| 国产单亲对白刺激| 一区福利在线观看| 久久久精品94久久精品| 国产不卡av网站在线观看| av天堂久久9| 国产精品免费一区二区三区在线 | 丝袜美足系列| 日韩欧美免费精品| 一本综合久久免费| 99国产精品一区二区蜜桃av | 日韩欧美一区视频在线观看| 欧美大码av| 人妻一区二区av| 色视频在线一区二区三区| 久久久久精品人妻al黑| 成人精品一区二区免费| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 久久人妻熟女aⅴ| av不卡在线播放| 久久99一区二区三区| 激情在线观看视频在线高清 | 色尼玛亚洲综合影院| 久久精品熟女亚洲av麻豆精品| av网站在线播放免费| 欧美黑人精品巨大| 国产一区二区 视频在线| 亚洲久久久国产精品| 国产av国产精品国产| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 久久精品国产亚洲av高清一级| 色老头精品视频在线观看| 久久亚洲真实| 妹子高潮喷水视频| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 波多野结衣av一区二区av| 777米奇影视久久| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 亚洲专区字幕在线| 日韩人妻精品一区2区三区| 中文亚洲av片在线观看爽 | 国产99久久九九免费精品| videosex国产| 99国产精品一区二区三区| 亚洲黑人精品在线| 国产精品亚洲一级av第二区| 69精品国产乱码久久久| 国产男靠女视频免费网站| 18禁裸乳无遮挡动漫免费视频| 国产在线观看jvid| 中文字幕最新亚洲高清| 大香蕉久久网| 国产精品久久久久成人av| 欧美在线一区亚洲| 午夜免费鲁丝| 午夜福利在线免费观看网站| 色婷婷av一区二区三区视频| 亚洲自偷自拍图片 自拍| 男女之事视频高清在线观看| 亚洲欧美日韩另类电影网站| 日韩大码丰满熟妇| 老司机靠b影院| 国产国语露脸激情在线看| 在线观看人妻少妇| 高清在线国产一区| 欧美激情极品国产一区二区三区| 一本久久精品| 男女边摸边吃奶| 亚洲精品国产区一区二| 99久久精品国产亚洲精品| 欧美在线黄色| 国产一区二区 视频在线| 国产一区二区激情短视频| 国产成+人综合+亚洲专区| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 国产精品秋霞免费鲁丝片| 91成人精品电影| 法律面前人人平等表现在哪些方面| 久久av网站| 精品高清国产在线一区| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 亚洲国产av影院在线观看| 国产xxxxx性猛交| 欧美大码av| av有码第一页| 久久久久网色| 国产av又大| 午夜免费成人在线视频| 国产精品欧美亚洲77777| 欧美黄色片欧美黄色片| 精品高清国产在线一区| 夜夜夜夜夜久久久久| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看 | 大片电影免费在线观看免费| 欧美老熟妇乱子伦牲交| 丝袜美足系列| 久久亚洲真实| 老熟妇仑乱视频hdxx| 操美女的视频在线观看| 午夜福利一区二区在线看| 国产成人av激情在线播放| 露出奶头的视频| 激情在线观看视频在线高清 | 国产在线精品亚洲第一网站| 黑丝袜美女国产一区| 97人妻天天添夜夜摸| 大香蕉久久成人网| av线在线观看网站| 国产精品欧美亚洲77777| 亚洲精品美女久久av网站| 丰满少妇做爰视频| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 国产成人啪精品午夜网站| 精品人妻熟女毛片av久久网站| 午夜福利影视在线免费观看| 日韩大码丰满熟妇| 午夜免费成人在线视频| 国产精品免费大片| 国产欧美日韩一区二区三| 色视频在线一区二区三区| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 人成视频在线观看免费观看| 日本黄色视频三级网站网址 | 精品卡一卡二卡四卡免费| 国产福利在线免费观看视频| 蜜桃国产av成人99| 成年女人毛片免费观看观看9 | 在线天堂中文资源库| 欧美 亚洲 国产 日韩一| 国产黄频视频在线观看| 91成人精品电影| 搡老乐熟女国产| 免费高清在线观看日韩| 麻豆成人av在线观看| 国产精品秋霞免费鲁丝片| 欧美黑人精品巨大| 99国产精品99久久久久| 最近最新免费中文字幕在线| www.自偷自拍.com| 色尼玛亚洲综合影院| 视频区欧美日本亚洲| 岛国在线观看网站| 午夜精品久久久久久毛片777| 免费少妇av软件| 高潮久久久久久久久久久不卡| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩另类电影网站| aaaaa片日本免费| 亚洲视频免费观看视频| 在线观看舔阴道视频| 最新的欧美精品一区二区| 欧美+亚洲+日韩+国产| 成人三级做爰电影| 欧美变态另类bdsm刘玥| 亚洲国产欧美网| 亚洲av国产av综合av卡| 97在线人人人人妻| 正在播放国产对白刺激| 99国产综合亚洲精品| 亚洲五月色婷婷综合| 99久久精品国产亚洲精品| 国产一卡二卡三卡精品| 日韩免费高清中文字幕av| 在线观看免费日韩欧美大片| 国产亚洲精品第一综合不卡| 亚洲精品国产色婷婷电影| 国产精品自产拍在线观看55亚洲 | 久热这里只有精品99| 亚洲中文日韩欧美视频| 久久精品91无色码中文字幕| 国产在线一区二区三区精| 国产精品一区二区在线不卡| 欧美日韩亚洲综合一区二区三区_| 天堂俺去俺来也www色官网| 在线av久久热| 捣出白浆h1v1| 欧美激情久久久久久爽电影 | 亚洲欧美色中文字幕在线| 精品国产乱子伦一区二区三区| 满18在线观看网站| 成人av一区二区三区在线看| 多毛熟女@视频| 久久国产精品大桥未久av| 日本黄色视频三级网站网址 | 成年人午夜在线观看视频| 后天国语完整版免费观看| 久久狼人影院| 色综合婷婷激情| 欧美亚洲 丝袜 人妻 在线| 少妇精品久久久久久久| 国产精品电影一区二区三区 | av一本久久久久| 亚洲av电影在线进入| 亚洲精品成人av观看孕妇| 一本色道久久久久久精品综合| 精品亚洲成a人片在线观看| 久久国产精品人妻蜜桃| 亚洲av日韩在线播放| 成人av一区二区三区在线看| 色尼玛亚洲综合影院| 国产精品av久久久久免费| 婷婷成人精品国产| 亚洲第一欧美日韩一区二区三区 | 正在播放国产对白刺激| 肉色欧美久久久久久久蜜桃| 久久久久久久大尺度免费视频| 久久久精品94久久精品| 免费观看人在逋| 老熟妇仑乱视频hdxx| 亚洲精品国产色婷婷电影| 免费女性裸体啪啪无遮挡网站| 在线亚洲精品国产二区图片欧美| 黄色丝袜av网址大全| 久久人妻熟女aⅴ| 亚洲全国av大片| 久久国产精品人妻蜜桃| 国产成人精品久久二区二区91| 黑人巨大精品欧美一区二区蜜桃| 久久热在线av| 亚洲黑人精品在线| 国产日韩欧美亚洲二区| 久久青草综合色| 这个男人来自地球电影免费观看|