• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An excimer ‘ON–OFF’switch based on telomeric G-quadruplex and rGO for trace thrombin detection

    2022-09-15 03:10:56LongZhoFridAhmedHiXiong
    Chinese Chemical Letters 2022年9期

    Long Zho, Frid Ahmed, Hi Xiong,?

    a Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China

    b College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

    ABSTRACT In the recent decade, GO has emerged as an amazing 2D nanomaterial for developing DNA-based biosensors due to its fluorescence quenching properties, whereas similar research based on rGO was reported rarely.Herein, a novel multi-pyrene functionalized G-rich DNA probe based on the screened rGO showed much higher fluorescence quenching efficiency and excimer emission than that of universal GO.Different from the universal thrombin detection of the G4-forming aptamer-TBA(GGTTGGTGTGGTTGG), the original telomeric sequence is used in this study.The excimer emission “ON-OFF” switch amplified the response of thrombin detection is as low as 50 units.Furthermore, for four pyrene moieties that are sited in a crowded steric circumstance, the melting temperature (Tm) values and molecular dynamics simulations showed a positive effect on duplex G-quadruplex or GDNA·cDNA stability, without disturbing its helix structure.

    Keywords:G-quadruplex rGO Multi-pyrene excimer Biosensor Thrombin detection

    Since the first demonstration of a fluorescent probe based on graphene oxide (GO) complexed with single-stranded DNA (ssDNA)to bind complementary oligonucleotide sequences in 2009 [1], ss-DNA/GO complexes, owing to their binding and quenching properties, have been widely applied to detect small molecules, metal ions, and biomolecules as well as for drug-delivery [2–5].Generally, negatively charged ssDNA is adsorbed on the GO surface by‘π-π’stacking between the DNA nucleobase moieties and GO carbon rings.Reduced graphene oxide (rGO) can be synthesized by the chemical reduction of GO, rGO possesses a high degree of aromaticity, which can facilitate a ‘π-π’stacking interface [6–9].As a result, the different oxygen contents of rGO have various quenching efficiencies for the fluorescence intensity of labeled ssDNA and aptamers, even if the examples are deficient [10,11].

    Furthermore, modified pyrene fluorophores exhibiting an emission excimer at red-shifted absorption are extensively being developed as desirable tools in diagnostics and nanomedicine [12].Compared to various fluorophores, the excimer emission of pyrene derivatives is especially generated from aπ-stack dimer between a pyrene unit in an electronically excited state and another in the ground state [13–15].In 1996, the Kool group first reported the direct attachment of pyrene to deoxyribose, as pyrene is a chromophore replacing nucleobases [16].Owing to dimer stacking with a tremendous overlap in theirπ-orbitals, the earliest pyrenecontaining multichromophores exhibit efficient excitation energy transfer and electron transfer [17,18].To detect complementary DNA/RNA and the multi-labeling of RNA or LNA, more pyrene chromophores with non-nucleoside linkers have been incorporated into DNA in the last two decades [19–23].

    G-quadruplexes are secondary structures of nucleic acids, which are composed of two or more stacked G-quartets with four guanine residues paired together through Hoogteen-like hydrogen bonds.Endogenous G-quadruplex models have been confirmed in the promoter regions of numerous oncogenes and the human telomeric sequence, and they have been regarded as potential targets for anticancer drugs at the telomeric level with the inhibition of telomerase activity overexpressed in tumor cells [24–26].Furthermore,the unique properties of G-quadruplexes have been investigated in some important reconstructions/reconfigurations and applications, including DNA origami, biosensing nanostructures, nanodevices, nanocarriers for disease therapeutics, and the detection of pathogens, including the causative agent of COVID-19 [27–32].

    In 2012, Xionget al.employed tripropargylated nucleosides to construct three-armed (Y-shaped) dendronized DNAviathe‘stepwise and double click’approach [33].In 2016, Kim and coworkers attached pyrene-modified monomers as dangling residues of the G-quadruplex.Red-shifted fluorescence emission was observed upon the addition of K+[34].Herein, oligonucleotides containing single or multiple residues of tripropargylated 2′-deoxyuridine were prepared by the solid-phase synthesis of its phosphoramidites.Thereafter, the artificial ssDNA incorporating multi-pyrene moieties at the center or terminal sites could be obtainedviathe ‘click’chemistry.Furthermore, the feasibility of using pyrene-functionalized G-rich human telomeric ssDNA as a fluorescence probe based on synthetic rGO was investigated.To optimize the sensitivity of the G-rich probe, the oxygen content of rGO was varied by analyzing the fluorescence quenching efficiency and excimer emission for multi-pyrene modification.Based on these results, various thrombin concentrations were detected.

    According to previous studies, the 5-[di(prop–2-ynl)amino]prop–1-ynyl derivative of 2′-deoxyuridine (2) was prepared from 5-iodo-2′-deoxyuridine (1) and 6-fold of tripropargylamine using the catalysts [Pd0(PPh3)4] and CuI.The Sonogashira cross-coupling reaction was performed to obtain nucleoside (2)in 71% yield.Further, the ‘double click’ reaction was carried out with nucleoside (2) containing two terminal triple bonds and 1-azidomethylpyrene (3) in the presence of CuSO4and sodium ascorbate (Scheme S1 in Supporting information).The corresponding phosphoramidite (5) was the final product, and all intermediates were characterized using1H and13C NMR spectroscopy (Scheme S2 in Supporting information).

    Scheme 1.‘Click’reactions were performed on oligonucleotides and 1-azidomethylpyrene (3).

    Modified oligonucleotides incorporating single or multiple residues of (2) were synthesized and constructed using standard solid-phase synthesis.The crude oligonucleotides were detritylated and purified by agarose gel electrophoresis or reversed-phase HPLC.To attach pyrene to the nucleobases on ssDNA, the ‘double click’reaction was also performed on the nucleoside moiety (2)and 1-azidomethylpyrene (3) (Scheme 1).Oligonucleotides incorporating artificial residues (4) were confirmed by LC-ESI-TOF mass spectrometry (Table S1 and Fig.S1 in Supporting information).

    The melting temperature (Tm) values of monomolecular Gquadruplexes or bimolecular duplexes incorporating single or multiple residues of (4) were measured by ultraviolet (UV) thermal denaturation (Figs.S2-S4 in Supporting information).Tmmeasurements showed that modifications with one or two moieties of(4), bearing oligonucleotides with two or four pyrene units, exhibited a positive effect on duplex or G-quadruplex stability.Indeed, an increase inTmvalues for the unmodified oligonucleotides(GDNA-1 for G4 andGDNA-1·CDNA for duplex) is shown in Table 1.As a comparison, the attachment to oligonucleotides of single or multiple residues of (2) demonstrated a negative effect on duplex stability, with a decrease in theTmvalues for the unmodified oligonucleotides (Table S2 in Supporting information).To determine whetherGDNA formed G-quadruplexes in the PBS buffer(20 mmol/L, pH 7.0),GDNA-10 was chosen for CD analysis.The CD spectrum with a maximum band at approximately 264 nm and a minimum at approximately 241 nm indicated a quadruplex with all the strands oriented parallel to each other (Fig.S5 in Supporting information) [35–38].

    Table 1 Tm values of G-quadruplexes and pyrene oligonucleotide duplexes with mono- or multi-pyrene residues.

    Molecular dynamics simulations at the MM+ force field (HyperChem 8.0 Professional; Hypercube Inc.) were conducted on the 27-mer duplexesGDNA-6·CDNA,GDNA-8·CDNA, andGDNA-11·CDNA containing one or two modification sites in the duplex (Fig.1).Fig.1A shows a duplex containing two dU residues displaced by the nucleoside (2) residue at the proximal position.Molecular modeling indicates that the proximal nucleoside (2) moieties bearing terminal alkynes seem to interfere with the DNA helix and arenot well adapted to the major groove.For the crowded steric situation, triazole rings of the modified derivative (4) at one or two proximal sites are not drawn while representing the stacking interactions of the nucleobase pairs (Figs.1B and C).Molecular modeling indicated that despite the presence of four pyrene moieties in the crowded steric circumstance, all residues were well accommodated in the major groove without disturbing the DNA helix.

    Fig.1.Molecular models of (A) duplex 5′-d(TTT T22 GGG TTA GGG TTA GGG TTA GGG) (GDNA-6) · 3′-d(AAA CCC AAT CCC AAT CCC AAT CCC) (CDNA), (B) duplex 5′-d(TTT TT4 GGG TTA GGG TTA GGG TTA GGG) (GDNA-8) · (CDNA) and (C) duplex 5′-d(TTT T44 GGG TTA GGG TTA GGG TTA GGG) (GDNA-11) · (CDNA).The molecular dynamics models were simulated by using energy minimized AMBER calculations.The green balls are diaplayed as the modification sites.

    The oxygen contents of GO and rGO were measured by X-ray photoelectron spectroscopy (XPS).The GO samples showed characteristic peaks for carboxyl groups and C–O single bonds.After reduction by NaBH4(different reduction times), the oxygen content of rGO gradually decreased, as shown in Figs.S6 and S7 (Supporting information).rGO with different oxygen contents has different water solubilities.Indeed, rGO-5 and rGO-6 demonstrated poor dispersion in water.The size of GO and rGO on the mica flakes was confirmed by AFM.The thickness of GO and rGO is approximately 1.0±0.2 nm.Considering the overestimation and the oxygen-containing group, the obtained thickness of approximately 1.0 nm for GO or rGO reasonably indicates a single-layer (Fig.S7B).

    Owing to the different aromatic structures and oxygen content, GO and rGO have different adsorption capacities for ssDNA.In 20 mmol/L PBS buffer (pH 7.0), ssDNA was adsorbed on the GO or rGO surface in the form of a G-quadruplex.To investigate the fluorescence quenching efficiency, various concentrations of GO and rGO (0–50 μg/mL) were treated withGDNA-10 (Fig.S8 in Supporting information).Upon interaction with GO or rGO, the fluorescence intensity ofGDNA-10 was substantially quenched.When 2 μg/mL GO or rGO was added to theGDNA-10 in the PBS buffer,fluorescence quenching efficiencies of GO, rGO-1, rGO-3, and rGO-4 were below 20%.With a gradual increase in the GO or rGO concentration, the fluorescence intensity was further reduced.The rGO samples with a less oxygen content, rGO-5 and rGO-6, could not disperse well in water and aggregated rapidly, and therefore, they could not be used to investigate the interaction withGDNA-10.

    Upon the addition of 30 μg/mL rGO-2 in 1 μmol/L solution ofGDNA-10, the fluorescence intensity was quenched by 94% within 5 min, whereas the quenching of the fluorescence intensity ofGDNA-10 (1 μmol/L) was approximately 84% by the addition of GO or other rGOs (Fig.2A).Upon increasing the concentration of rGO-2 over 30 μg/mL, the fluorescence intensity ofGDNA-10 (1 μmol/L)was quenched by more than 95% (Fig.2B).When the concentration of rGO-2 was increased to 50 μg/mL, the fluorescence quenching efficiency ofGDNA-10 reached 100%.The other rGO or GO samples did not show complete quenching even at higher concentrations(50 μg/mL).For comparison, the quenching efficiency ofGDNA with different amounts of GO or rGO was also tested in 75 mmol/L Tris–HCl buffer at pH 7.5 (Figs.S9 and S10 in Supporting information).The optimized rGO-2 concentration of 30 μg/mL was selected for fluorescence quenching withGDNA in subsequent assays.

    A series of fluorescent quenching assays was performed onGDNA with different pyrene-labeled nucleoside positions after adding rGO-2 (30 μg/mL) (Fig.2C).The fluorescence intensity ofGDNAs (GDNA-7,GDNA-8, andGDNA-11) incorporating nucleoside(4) on the exterior of a G-quadruplex core was stronger than that ofGDNAs containing the modified nucleosides inside the quadruplex region (GDNA-9 andGDNA-10).Usually, quenching effects are caused by guanine residues acting as the strongest quencher.When ssDNA forms a G-quadruplex structure in the PBS buffer,the pyrene moieties are rapidly involved in ‘π-πstacking’with the G-tetrads, and the fluorescence intensity ofGDNA with pyrenemodified nucleosides inside the G-quadruplex core decreases significantly.These findings are also in agreement with earlier observations of pyrene modifications in DNA duplexes [39–41].GDNA-11, incorporating two proximal derivatives, nucleoside 4 with four pyrene moieties in a crowded steric situation, triggered a redshifted fluorescence excimer emission (λem=478 nm).Upon the addition of 30 μg/mL rGO-2, the fluorescence quenching efficiency of allGDNAs was more than 90% (Fig.2D).The fluorescence quenching efficiency of differentGDNA adsorbed on rGO-2 was also tested in 75 mmol/L Tris–HCl buffer (pH 7.5, Fig.S9).In the Tris–HCl buffer, the fluorescence intensity ofGDNA-11 was 2-fold higher than that of GDNAs (fromGDNA-7 toGDNA-10).AsGDNAs assume a random-coil structure in the Tris–HCl buffer, the pyrene moieties cannot rapidly form the ‘π-πstack’with the G-tetrads.These results showed that rGO-2 had a good quenching efficiency forGDNA in the Tris–HCl buffer.

    Fig.2.(A) Fluorescence spectra of GDNA-10 before and after adding GO or rGO (30 μg/mL) in PBS buffer (20 mmol/L, pH 7.0).(B) Fluorescence quenching efficiency (F0-F)/F0 of GDNA-10 in terms of different concentrations of GO and rGO. F0 and F are the fluorescence intensity before and after the addition of GO or rGO (λex=340 nm, GDNA-10 concentration=1 μmol/L).(C) Fluorescence spectra of GDNA before and after adding rGO-2 (30 μg/mL) in PBS buffer (20 mmol/L, pH 7.0).(D) The fluorescence quenching efficiency (F0-F)/F0 at 340 nm of λex and concentration with 1 μmol/L of GDNA.

    Detecting the content of thrombin in tumor cells is of considerable significance for studying cancer cell proliferation and cancer diagnosis [42].In 2010, Liet al.reported a graphene FRET aptasensor for thrombin detection.FAM aptamers are suitable for commercial use [43].Using DNA intercalating dyes as FRET reporters,a quantum dot-aptamer beacon was successfully used for labelfree thrombin detection [43].Using a novel signal amplification strategy, Tanget al.developed a thrombin detection assay using a chiral supramolecular assembly with a physiological K+background in 2017 [44].In contrast to the universal thrombin detection of the G4-forming aptamer-TBA(GGTTGGTGTGGTTGG), an original telomeric sequence was used in this study.Herein, we developed a new pyrene-labeled G-quadruplex and rGO-based biosensing platform for thrombin detection.The fluorescence recovery of theGDNA-11 and rGO-2 complexes is depicted upon the addition of different amounts of thrombin (Figs.3A-C).Except for the fluorescence emissions at 381 nm and 395 nm, the excimer fluorescence at 478 nm also increased with the increasing concentration of thrombin.Compared with typical commercial dyes, these results can avoid the interference of many background signals for practical applications.The detection limit was 50 units of thrombin in a total volume of 1 mL.The addition of thrombin leads to fluorescence recovery owing to the formation of quadruplex-thrombin complexes, which have a weak affinity to rGO and push the dyes away from the rGO surface.

    Fig.3.(A) Fluorescence spectra of the GDNA-11 and rGO-2 via different concentrations of thrombin in 20 mmol/L of PBS buffer (pH 7.0, λex=340 nm, GDNA-11 concentration=1 μmol/L, rGO-2 concentration=30 μg/L).(B) The amplified fluorescence spectra of the GDNA-11 and rGO-2 after adding thrombin (from 0 to 500 units/mL).(C) Fluorescence intensity spectra of the GDNA-11 and rGO-2 after adding thrombin (from 0 to 500 units/mL,λex=340 nm, GDNA-11 concentration=1 μmol/L,rGO-2 concentration=30 μg/L).(D) AFM images including height profiles of GDNA-11 and rGO-2 senor.(E) The amplified images of GDNA-11 and rGO-2 senor.Scale size: 5 μm×5 μm.

    Atomic force microscopy (AFM) was performed to observe the structure of the rGO-GDNA sensor.The typical images (Fig.3D)displayed a few white areas on the rGO surface because of the presence ofGDNA, with a thickness of less than 10 nm, for the rGO-GDNA biosensor.TheGDNA sequences were uniformly distributed on the rGO surface without apparent selectivity, which is in good agreement with a previous report [45].Besides, the details ofGDNA-11 are magnified and shown in Fig.3E.

    In this study, a series of mono- and multi-pyrene-labeled Gquadruplex sequences in different buffers were constructed.The ssDNA absorbed on GO or rGO can be effectively protected against enzymatic degradation and biological interferencein vivo.Furthermore, the adsorption of ssDNA on GO or rGO surfaces results in the exposition of ssDNA nucleic digestion and desorption of dsDNA,desorbed from the (r)GO by a complementary strand, to nuclease digestionin vitro.In the G-quadruplex form, the fluorescence intensity of multi-pyrene functional DNA probes decreases owing to the fluorescence quenching of stacked pyrene moieties, whileTmvalues show increased stability.Importantly, the G-quadruplex form with consecutive pyrene modifications (GDNA-11) exhibited strong excimer emission.Further, the fluorescence quenching of DNA based on GO and rGO with different oxygen contents was investigated in PBS or Tris–HCl buffers.Furthermore, the morphology of the rGO-based aptasensor assembled with the pyrene-labeledGDNA was determined by AFM.

    In this study, negatively charged rGO demonstrated a better fluorescence quenching efficiency for DNA aptamer compared to GO.As an optimized result, the G-quadruplex form with consecutive pyrene modifications (GDNA-11) based on rGO-2 was selected as a biosensor to detect thrombin.Moreover, the application of such kind of optical or electrical G-quadruplex rGO-biosensor in cancer cell recognition will open the possibility of diagnostics and other diverse nano-medical applications.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work is supported by the Science and Technology Innovation Commission of Shenzhen, China (Nos.KQJSCX20180328095517269 and JCYJ20210324095607021), and Top Young Talent of the Pearl River Talent Recruitment Program,China.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.02.048.

    性色av乱码一区二区三区2| 九色国产91popny在线| 日本五十路高清| 九色国产91popny在线| 午夜免费激情av| 国产精品久久久久久精品电影 | 国产日本99.免费观看| 久久久久久大精品| 日本免费一区二区三区高清不卡| 啦啦啦韩国在线观看视频| 99在线视频只有这里精品首页| 久久久久久久久久黄片| 身体一侧抽搐| 国产1区2区3区精品| www国产在线视频色| 母亲3免费完整高清在线观看| 免费高清视频大片| 91成人精品电影| 欧美三级亚洲精品| 欧美国产精品va在线观看不卡| 免费观看精品视频网站| 少妇的丰满在线观看| 俄罗斯特黄特色一大片| 香蕉av资源在线| 亚洲自拍偷在线| 999久久久国产精品视频| 啦啦啦观看免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色视频,在线免费观看| 国产黄a三级三级三级人| 手机成人av网站| 国产成人精品久久二区二区免费| 国产精品久久电影中文字幕| 在线观看日韩欧美| 免费高清视频大片| 麻豆成人av在线观看| 亚洲avbb在线观看| 1024手机看黄色片| 变态另类丝袜制服| 久久久久亚洲av毛片大全| 国产精品亚洲一级av第二区| 亚洲专区字幕在线| 久久青草综合色| a在线观看视频网站| 欧美在线黄色| 国产精品一区二区精品视频观看| 亚洲国产日韩欧美精品在线观看 | 听说在线观看完整版免费高清| 久久精品国产亚洲av香蕉五月| 99国产极品粉嫩在线观看| 亚洲精品在线美女| 欧美精品亚洲一区二区| 老司机深夜福利视频在线观看| 免费观看精品视频网站| 成人亚洲精品一区在线观看| 久久精品91蜜桃| 精品久久久久久久久久久久久 | 叶爱在线成人免费视频播放| 国产99白浆流出| 久久国产亚洲av麻豆专区| 亚洲一卡2卡3卡4卡5卡精品中文| a在线观看视频网站| 母亲3免费完整高清在线观看| 99久久无色码亚洲精品果冻| 国产精品九九99| 岛国视频午夜一区免费看| 久久中文看片网| 欧美日本亚洲视频在线播放| 亚洲欧洲精品一区二区精品久久久| 国产精品久久视频播放| 男人舔女人下体高潮全视频| 黄色成人免费大全| 看黄色毛片网站| 亚洲精品国产一区二区精华液| 男人操女人黄网站| 亚洲欧美一区二区三区黑人| 久久中文看片网| 国产高清激情床上av| 亚洲专区中文字幕在线| 777久久人妻少妇嫩草av网站| 国产精品电影一区二区三区| 亚洲av电影不卡..在线观看| 国产精品亚洲av一区麻豆| 中文字幕人妻熟女乱码| 成人亚洲精品一区在线观看| 波多野结衣av一区二区av| 老熟妇乱子伦视频在线观看| 精品国产乱子伦一区二区三区| 啦啦啦观看免费观看视频高清| 精品国内亚洲2022精品成人| 脱女人内裤的视频| 亚洲国产欧美网| 亚洲第一电影网av| 一级作爱视频免费观看| 狠狠狠狠99中文字幕| 女性生殖器流出的白浆| 国产精品爽爽va在线观看网站 | 国产一区在线观看成人免费| 美女午夜性视频免费| 午夜福利高清视频| 日韩欧美国产一区二区入口| 亚洲av成人不卡在线观看播放网| 伊人久久大香线蕉亚洲五| 亚洲欧美精品综合一区二区三区| 亚洲av五月六月丁香网| 亚洲专区字幕在线| 99在线视频只有这里精品首页| 桃色一区二区三区在线观看| 国产国语露脸激情在线看| 亚洲七黄色美女视频| 亚洲国产精品sss在线观看| 欧美绝顶高潮抽搐喷水| 欧美一级毛片孕妇| 可以免费在线观看a视频的电影网站| 国产成年人精品一区二区| 国产精品,欧美在线| 丰满的人妻完整版| 国产精品久久久久久精品电影 | 国产单亲对白刺激| 国产亚洲欧美精品永久| 久久久久久亚洲精品国产蜜桃av| 免费女性裸体啪啪无遮挡网站| 久久精品国产亚洲av香蕉五月| 无遮挡黄片免费观看| 一边摸一边做爽爽视频免费| 人人妻人人澡人人看| 禁无遮挡网站| 最近最新中文字幕大全免费视频| 亚洲狠狠婷婷综合久久图片| 亚洲熟妇中文字幕五十中出| 国产蜜桃级精品一区二区三区| 国产精品香港三级国产av潘金莲| av天堂在线播放| 亚洲自拍偷在线| 国产蜜桃级精品一区二区三区| 波多野结衣高清作品| 久久香蕉国产精品| 国产午夜精品久久久久久| 在线天堂中文资源库| 久久精品aⅴ一区二区三区四区| 国产三级在线视频| 国产成人系列免费观看| 男女做爰动态图高潮gif福利片| 久热爱精品视频在线9| 在线十欧美十亚洲十日本专区| 激情在线观看视频在线高清| 又紧又爽又黄一区二区| 999久久久国产精品视频| 欧美激情久久久久久爽电影| 亚洲av五月六月丁香网| 变态另类成人亚洲欧美熟女| 又紧又爽又黄一区二区| 色婷婷久久久亚洲欧美| 50天的宝宝边吃奶边哭怎么回事| 久久人妻av系列| 99久久综合精品五月天人人| 少妇的丰满在线观看| 亚洲色图 男人天堂 中文字幕| 国产成人精品无人区| 一级片免费观看大全| 午夜精品久久久久久毛片777| 亚洲免费av在线视频| 精品第一国产精品| 我的亚洲天堂| 一本精品99久久精品77| 成熟少妇高潮喷水视频| xxxwww97欧美| 午夜久久久久精精品| 啦啦啦观看免费观看视频高清| 午夜成年电影在线免费观看| 精品第一国产精品| 亚洲中文日韩欧美视频| 国产免费男女视频| 国产视频一区二区在线看| 麻豆久久精品国产亚洲av| 国产三级在线视频| 午夜福利一区二区在线看| 十八禁网站免费在线| 嫩草影院精品99| 色播亚洲综合网| 成人手机av| 日本 欧美在线| 亚洲九九香蕉| 欧美黄色片欧美黄色片| 精品人妻1区二区| 久久婷婷成人综合色麻豆| 婷婷精品国产亚洲av| 色综合婷婷激情| 精品一区二区三区av网在线观看| 欧美大码av| 午夜久久久在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久久免费视频| 好看av亚洲va欧美ⅴa在| 在线十欧美十亚洲十日本专区| 亚洲 欧美 日韩 在线 免费| 欧美亚洲日本最大视频资源| 无遮挡黄片免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 免费人成视频x8x8入口观看| 老司机靠b影院| 亚洲最大成人中文| 悠悠久久av| 欧美三级亚洲精品| 久久人妻av系列| 免费在线观看日本一区| 在线观看舔阴道视频| 日本成人三级电影网站| 欧美三级亚洲精品| 国产亚洲精品综合一区在线观看 | 国产av不卡久久| 美女高潮喷水抽搐中文字幕| 午夜福利一区二区在线看| 欧美午夜高清在线| 免费电影在线观看免费观看| 欧美激情 高清一区二区三区| 久久国产精品男人的天堂亚洲| 国产99白浆流出| 欧美日韩瑟瑟在线播放| 国产又黄又爽又无遮挡在线| 中文字幕最新亚洲高清| 国产av一区在线观看免费| 国产97色在线日韩免费| 美女 人体艺术 gogo| 久久久国产成人精品二区| 91老司机精品| 亚洲午夜精品一区,二区,三区| 日韩精品中文字幕看吧| 人妻久久中文字幕网| 桃色一区二区三区在线观看| 亚洲精品久久国产高清桃花| 日韩一卡2卡3卡4卡2021年| 亚洲免费av在线视频| 免费在线观看黄色视频的| 精品无人区乱码1区二区| 在线观看免费午夜福利视频| 成人亚洲精品av一区二区| 国产精品一区二区免费欧美| 高潮久久久久久久久久久不卡| 成人欧美大片| 成人国产综合亚洲| 国产精品亚洲一级av第二区| 色哟哟哟哟哟哟| 国产私拍福利视频在线观看| 精品电影一区二区在线| 久久精品91蜜桃| 超碰成人久久| www.熟女人妻精品国产| 免费在线观看亚洲国产| 1024手机看黄色片| 嫁个100分男人电影在线观看| 一级片免费观看大全| 成人亚洲精品一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情极品国产一区二区三区| 国产精品爽爽va在线观看网站 | 久久香蕉国产精品| 国产一卡二卡三卡精品| 亚洲精品国产精品久久久不卡| 午夜福利一区二区在线看| 日韩欧美三级三区| 国产真人三级小视频在线观看| 亚洲av美国av| 亚洲全国av大片| 在线国产一区二区在线| 国产熟女xx| 精品卡一卡二卡四卡免费| 国产精品野战在线观看| 免费在线观看日本一区| 脱女人内裤的视频| 看片在线看免费视频| 久久国产亚洲av麻豆专区| 国产黄片美女视频| 一级a爱视频在线免费观看| 亚洲 欧美 日韩 在线 免费| 12—13女人毛片做爰片一| 伊人久久大香线蕉亚洲五| 亚洲第一av免费看| 国产精品爽爽va在线观看网站 | 一进一出好大好爽视频| 丁香欧美五月| 国产精品一区二区三区四区久久 | 日韩三级视频一区二区三区| 久久中文字幕人妻熟女| 国产成人精品久久二区二区91| 青草久久国产| 免费在线观看黄色视频的| 免费在线观看亚洲国产| 国产成人啪精品午夜网站| 国产亚洲精品av在线| 亚洲av五月六月丁香网| 色哟哟哟哟哟哟| 99国产极品粉嫩在线观看| 亚洲五月色婷婷综合| 国产精品1区2区在线观看.| 在线观看66精品国产| 国产亚洲av高清不卡| 老汉色∧v一级毛片| av免费在线观看网站| 黄网站色视频无遮挡免费观看| 人人妻,人人澡人人爽秒播| 亚洲久久久国产精品| 欧美日韩乱码在线| 1024手机看黄色片| 午夜福利在线观看吧| 免费高清在线观看日韩| 一级片免费观看大全| 最近在线观看免费完整版| 久久草成人影院| 午夜免费鲁丝| 亚洲 欧美一区二区三区| 国语自产精品视频在线第100页| 天天躁夜夜躁狠狠躁躁| 男女下面进入的视频免费午夜 | 欧美av亚洲av综合av国产av| 成在线人永久免费视频| 18禁美女被吸乳视频| 欧美成狂野欧美在线观看| 可以在线观看的亚洲视频| 老司机福利观看| 女警被强在线播放| 免费看十八禁软件| 国产欧美日韩一区二区精品| 99热6这里只有精品| 99热这里只有精品一区 | 老熟妇仑乱视频hdxx| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美一区视频在线观看| 波多野结衣高清作品| 久久久久久大精品| 三级毛片av免费| 在线播放国产精品三级| 国产精品野战在线观看| av免费在线观看网站| 久久久久久人人人人人| 在线视频色国产色| 91成人精品电影| 久热这里只有精品99| 亚洲精品国产精品久久久不卡| 黄色视频不卡| 欧美性猛交╳xxx乱大交人| 欧美日韩乱码在线| 免费搜索国产男女视频| 在线av久久热| 国产aⅴ精品一区二区三区波| 热re99久久国产66热| 手机成人av网站| 国产高清视频在线播放一区| 波多野结衣高清无吗| 天堂√8在线中文| 国产精品精品国产色婷婷| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 禁无遮挡网站| 99久久精品国产亚洲精品| 美女扒开内裤让男人捅视频| 色播在线永久视频| 熟女电影av网| 久久精品国产清高在天天线| 精品无人区乱码1区二区| 九色国产91popny在线| 精品福利观看| 一区二区日韩欧美中文字幕| 国产av一区二区精品久久| 亚洲性夜色夜夜综合| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 黑人巨大精品欧美一区二区mp4| 亚洲专区中文字幕在线| 哪里可以看免费的av片| 欧美成人性av电影在线观看| 人人妻人人澡人人看| 正在播放国产对白刺激| 亚洲国产日韩欧美精品在线观看 | 亚洲精品美女久久av网站| a级毛片在线看网站| 久久香蕉激情| 制服人妻中文乱码| 精品福利观看| 亚洲精品一区av在线观看| 一夜夜www| 在线观看免费午夜福利视频| 啦啦啦观看免费观看视频高清| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| 久久久久久九九精品二区国产 | 黄色片一级片一级黄色片| 黄色片一级片一级黄色片| 99在线视频只有这里精品首页| 人妻久久中文字幕网| 午夜激情av网站| 国产男靠女视频免费网站| 18禁国产床啪视频网站| 两个人视频免费观看高清| www.熟女人妻精品国产| 岛国在线观看网站| 日本免费一区二区三区高清不卡| 午夜免费观看网址| 久久久精品欧美日韩精品| 久久香蕉激情| www.精华液| 国产1区2区3区精品| www日本在线高清视频| 黄网站色视频无遮挡免费观看| 精品乱码久久久久久99久播| 国产一区二区三区在线臀色熟女| 老鸭窝网址在线观看| 首页视频小说图片口味搜索| 久久午夜综合久久蜜桃| 女同久久另类99精品国产91| 国产不卡一卡二| 久久中文看片网| 琪琪午夜伦伦电影理论片6080| 久久精品成人免费网站| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 黄网站色视频无遮挡免费观看| 在线视频色国产色| 这个男人来自地球电影免费观看| 午夜久久久在线观看| 国产精品国产高清国产av| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲最大成人中文| 国产av一区二区精品久久| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9| av电影中文网址| 日本免费一区二区三区高清不卡| 久久伊人香网站| 国产麻豆成人av免费视频| 我的亚洲天堂| 亚洲三区欧美一区| 国产精品二区激情视频| 国产视频内射| 搞女人的毛片| 美女午夜性视频免费| 听说在线观看完整版免费高清| 成人三级做爰电影| 久久久久免费精品人妻一区二区 | 中文在线观看免费www的网站 | 精品午夜福利视频在线观看一区| 亚洲国产欧美网| av中文乱码字幕在线| 精品久久久久久久末码| 国产精品 欧美亚洲| 午夜激情av网站| ponron亚洲| 两个人视频免费观看高清| 校园春色视频在线观看| 欧美绝顶高潮抽搐喷水| 88av欧美| 操出白浆在线播放| 看片在线看免费视频| 亚洲美女黄片视频| 国产色视频综合| 日日摸夜夜添夜夜添小说| ponron亚洲| 老鸭窝网址在线观看| 51午夜福利影视在线观看| 99在线视频只有这里精品首页| 欧美 亚洲 国产 日韩一| 欧美人与性动交α欧美精品济南到| 久久久久久久久免费视频了| 亚洲精品国产区一区二| 亚洲av熟女| 黄色丝袜av网址大全| 亚洲精品在线美女| 两个人视频免费观看高清| 国产精品 欧美亚洲| 妹子高潮喷水视频| 一级片免费观看大全| 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 欧美成狂野欧美在线观看| 国产熟女xx| 国产野战对白在线观看| 亚洲成人久久爱视频| www日本在线高清视频| 午夜福利欧美成人| xxxwww97欧美| 国产精品国产高清国产av| 午夜a级毛片| 99久久精品国产亚洲精品| 日韩精品中文字幕看吧| 97人妻精品一区二区三区麻豆 | 国产黄片美女视频| 亚洲狠狠婷婷综合久久图片| 久久久久国产一级毛片高清牌| 欧美精品啪啪一区二区三区| av有码第一页| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 午夜福利高清视频| 国产精品久久视频播放| 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 国产成人影院久久av| 国产人伦9x9x在线观看| 动漫黄色视频在线观看| 久久久水蜜桃国产精品网| www.熟女人妻精品国产| ponron亚洲| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品综合一区在线观看 | 国产精品国产高清国产av| 久久久久久久久久黄片| 中文字幕最新亚洲高清| 亚洲美女黄片视频| 国产精品 国内视频| 少妇熟女aⅴ在线视频| 在线天堂中文资源库| 成年女人毛片免费观看观看9| 欧美日本亚洲视频在线播放| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品av在线| 91成年电影在线观看| 成年女人毛片免费观看观看9| 妹子高潮喷水视频| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 操出白浆在线播放| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 亚洲国产欧洲综合997久久, | 久久久久国产一级毛片高清牌| 国产精品亚洲一级av第二区| 99在线人妻在线中文字幕| 青草久久国产| 超碰成人久久| 亚洲成人国产一区在线观看| 欧美色欧美亚洲另类二区| 成人国产综合亚洲| 中文字幕另类日韩欧美亚洲嫩草| 级片在线观看| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 久久久久久久久中文| 一a级毛片在线观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲av高清不卡| 91av网站免费观看| 国产精品 欧美亚洲| 国产不卡一卡二| 日韩有码中文字幕| 成人国产综合亚洲| 69av精品久久久久久| 中文字幕av电影在线播放| 神马国产精品三级电影在线观看 | 亚洲第一av免费看| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| 午夜福利高清视频| 亚洲国产欧美一区二区综合| www日本在线高清视频| 在线天堂中文资源库| 精品午夜福利视频在线观看一区| 最好的美女福利视频网| 欧美在线一区亚洲| 国内精品久久久久精免费| 国产精品久久久av美女十八| 国产精品久久视频播放| 50天的宝宝边吃奶边哭怎么回事| 久久人人精品亚洲av| 亚洲成人久久爱视频| 搞女人的毛片| 长腿黑丝高跟| 黄色丝袜av网址大全| 999久久久国产精品视频| а√天堂www在线а√下载| 两人在一起打扑克的视频| 波多野结衣高清无吗| 国产成人精品无人区| 淫妇啪啪啪对白视频| 91字幕亚洲| av视频在线观看入口| 一级毛片精品| av天堂在线播放| 在线观看免费午夜福利视频| 精品不卡国产一区二区三区| 久久久水蜜桃国产精品网| 三级毛片av免费| 国内少妇人妻偷人精品xxx网站 | 在线观看午夜福利视频| 国产亚洲精品一区二区www| 午夜福利一区二区在线看| 婷婷丁香在线五月| 精品国产超薄肉色丝袜足j| 日韩视频一区二区在线观看| 亚洲一区高清亚洲精品| 成人国产一区最新在线观看| 日韩av在线大香蕉| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 美女 人体艺术 gogo| 久热爱精品视频在线9| 长腿黑丝高跟| 国产精品久久电影中文字幕| 欧美日本亚洲视频在线播放| 一边摸一边抽搐一进一小说| 一级毛片高清免费大全| 亚洲激情在线av| 一进一出抽搐动态| 一级a爱视频在线免费观看| 国产三级黄色录像| 婷婷丁香在线五月| 国产伦在线观看视频一区| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 麻豆久久精品国产亚洲av| 性色av乱码一区二区三区2| 级片在线观看| 国产精品免费一区二区三区在线|