• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy stochastic damage mechanics (FSDM) based on fuzzy auto-adaptive control theory

    2012-08-11 15:01:38YajunWANGWohuaZHANGChuhanZHANGFengJIN
    Water Science and Engineering 2012年2期

    Ya-jun WANG*, Wo-hua ZHANG, Chu-han ZHANG Feng JIN

    1. School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316000, P. R. China

    2. State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, P. R. China

    3. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, P. R. China

    4.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, P. R. China

    Fuzzy stochastic damage mechanics (FSDM) based on fuzzy auto-adaptive control theory

    Ya-jun WANG*1,2,3,4, Wo-hua ZHANG3,4, Chu-han ZHANG2, Feng JIN2

    1. School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316000, P. R. China

    2. State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, P. R. China

    3. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, P. R. China

    4.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, P. R. China

    In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated throughβprobability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which showβprobability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.

    β probability distribution; fuzzy membership of damage variable; fuzzy auto-adaptive theory; fuzzy stochastic finite element method; fuzzy stochastic damage

    1 Introduction

    Nowadays, research on damage mechanics is broadening and deepening with the help ofuncertain theoretical models originally conceptualized by Zhang and Valliappan (1990a, 1990b), who initiated stochastic damage models. Since then, conventional damage mechanics studies have been further developed based on the probabilistic theory. Based on a micro-mechanics model, damage evolution equations of a solid structure under random loading conditions were set up by Silberschmidt and Chaboche (1994). The damage-rupture development mechanism of discontinuous stochastic composite material reinforced by fibers was analyzed with statistics by Wu and Li (1995). Mechanical characteristics of solid brittle material with plane grain cracks showing correlated random distribution were investigated by Ju and Tseng (1995), who, on the basis of micro-mechanics and the mean-volume theory, introduced a Legedre-Tchebycheff orthogonal polynomial algorithm. With the help of flat noise generator simulation of random factors influencing the medium damage mechanism from both external and internal aspects, continuous damage mechanics were further explored by Silberschmidt (1998), based on his earlier studies. A semi-empirical calculation model, based on the statistical theory of extreme values, was developed by Rinaldi et al. (2007) for statistical analyses of damage simulation. With consideration of hydrochemical effects, Feng et al. (2002) and Qiao et al. (2007) carried out theoretical research on rock damage evolution mechanisms. Finally, some probabilistic conclusions were made by Wang et al. (2006), who applied the damage concepts to rock slope stability analysis.

    Dual math coverage implements, including fuzzy-stochastic ones, are still difficult to apply to the engineering domain. Nowadays, most international uncertainty studies on geo-mechanics give more attention to the single math model (Ihara and Tanaka 2000; Dzenis et al. 1993; Dzenis 1996; Bulleit 2004; Wang et al. 2009). Moreover, most uncertain mathematical models use linear coverage that can only simulate irreversible processes from the constitutive model to math coverage. These constitutive models, after the initial simulation of material damage evolution, have to divorce themselves from the uncertain mathematical model and the simulation ends.

    It is important to determine uncertain math coverage, i.e., an adaptive mathematical model which, coupled with constitutive functions over a whole time domain for the entire model space, can carry out simulation in accordance with the physical model (e.g., damage mechanics model) all the time. The adaptive mathematical model can identify field distribution of an engineering case to establish objective functional. The output obtained by the functional in generalized space is transformed into a common mechanical field through mathematically certain techniques (e.g., de-fuzzification).

    The predominant characteristic of damage measurement is the distance in topological space. The distance interval should be [0,1], in order to guarantee that the damage space is enclosed. The damage in different engineering problems is characterized by fuzzy elasticity (Pierpaolo and Elizabeth 2009; Rigatos and Zhang 2009; Rezaei et al. 2011). With fuzzy elasticity, damage development of the structure and material shows a dynamic nature in itsmapping model, which is not taken into account by conventional damage mechanics theory with static mapping definition. Thus, a fuzzy-stochastic damage mechanical model was developed in this study.

    2 Fundamentals of fuzzy stochastic damage mechanics (FSDM)

    2.1 Randomness and fuzziness of damage variables

    Primary concepts of the stochastic damage variable and stochastic damage mechanics were originally established by Zhang and Valliappan (1990a, 1990b, 1998a, 1998b), and the essential hypothesis was verified through Monte-Carlo statistical simulations, based on which the stochastic damage variable shows aβprobability distribution. Furthermore, theβprobability density function is the only classical probability model whose independent variable spans the interval [0,1], which is in accordance with the characteristics of the damage variable’s interval of [0,1] in topological structure and measurement. Moreover, the probability value and fuzzy membership are consistent and both range between [0,1], which enlightens advanced studies on damage mechanics. The original FSDM model is established here based on related work by Zhang et al. (2005).

    2.2 Probability distribution of random damage variables

    Micro-defects, the cause of material damage, show stochastic distribution. Thus, a damage variableΩalso has a stochastic nature and the stochastic damage variable can be established in random spaceΨ:

    whereα′ is a stochastic subset of a stochastic vectorX=(x1,x2,…,xn)T, andΛα′is a probabilistic set derived fromα′, consisting of a probabilistic nodal displacement vectorUα′, probabilistic body force vectorfα′, stochastic stress tensorσα′, and stochastic strain tensoreα′.

    The crucial propositions are as follows:

    Proposition 1:Ψ1is defined as a probability space of independentβdistribution, and [0,1] is defined as the domain of a stochastic vectorxinΨ1; that is,whereβ(p,q)is theβdistribution function, andpandqare the parameters for theβdistribution function. Therefore,Ψ1is a Banach space under the ∞ norm, or a complete normed linear space. The proof of this proposition was described by Wang and Zhang (2012).

    Meanwhile, theβprobabilistic cumulative distribution function vector can be defined asy1.Ψ2is defined as a probability space of the damage variableΩ, which shows independentBdistribution over [0,1], i.e.,. Following the same rule, it can be proven under the ∞ norm thatΨ2is a Banach space, which can be expressed as. Meanwhile, theBprobabilistic cumulative distribution function vector can be defined asy2.

    Proposition 2: The necessary and sufficient condition for coincidence of the probability spacesΨ1andΨ2is that vectory2converges to vectory1with the same definition domain [0,1] under the ∞ norm. The proposition has been proved by Wang and Zhang (2012).

    Based on this proposition,βprobability distribution can be used to simulateBprobability distribution of damage variableΩ, and this procedure can be applied to engineering through the law of averages over [0,1].

    2.3 Fuzzy membership constitution of damage variable

    Mechanical definition of damage is the macro-effect produced by micro-crack expansion as well as evolution and the development of material deformation. The damage is a physical-mechanical process from micro-defect to macro-behavior (the safety status of working conditions). A quantitative indexthat can quantify the material’s micro-defect is called a damage measuring index (DMI).Γis a fuzzy analytical domain for, i.e.,∈Γ.Γmust be defined in a fuzzy spacewhere, andare the fuzziness of physical parameters (includingΩ), loading conditions, and constraint conditions, respectively. The key technological question for damage simulation is which scale ofmeans the material’s damage or howrates damage. The fuzzy mechanism of macro-working behavior has been discussed in many studies. Micro-defects, however, inevitably induce macro-deformation, and this essential mechanism describes the fuzziness ofevolution.Ω, as a fuzzy functional over DMI, represents the magnitude of the membership value ofin domainΓ, and can analyze damage variable development as in Eq. (2):

    whereis a fuzzy membership function, namely,is the fuzzy subset in domainΓand includes three kinds of fuzziness, represented byand;ωis the probabilistic integral of; andωΓis the function of the generalized probabilistic integral variable.

    The key for damage simulation is how to establish themodel and fuzzy functionalΩmodel. After that,ωandωΓcan be obtained .through probabilistic integration. As for most geo-material with elasto-plastic constitution, a structure’s damage is the result of volumetric deformation and deviation deformation. Based on these facts, this study defined DMI as follows:

    where?andcare the internal friction angle and cohesive stress, respectively, andσmandJ3are the hydrostatic pressure and the third invariable of the deviation stress tensor, respectively (Qian 1980).represents the ratio of the volumetric deformation (tan?+c) to the deviation deformation ().

    Three cases were considered in the fuzzification process for-forming fuzzy functional memberships: (1) the deviation deformation is superior to volumetric deformation inmagnitude when material damage is developing; (2) whenvalue reaches 0.5 (gray space of the fuzzy domain), the damage evolution can be revealed by the functional distribution figure. The damage evolution has a decreasing tendency during the early stage due to the neutralization effect, and the increase in the volumetric deformation during the later stage causes damage accumulation; and (3) the damage evolution is almost consistent with the second case, and the primary characteristics are that gray space can be established from decision analysis based on the measured data during the de-fuzzification process for a fuzzy output, and thereby the result of magnitude comparison of two kinds of deformation is always effective over the whole fuzzy span [0,1]. For the three cases, the corresponding fuzzy functional memberships were established: half-depressed distribution (Eq. (4) and Fig. 1(a)), swing distribution (Eq. (5) and Fig. 1(b)), and combined swing distribution (Eq. (6) and Fig. 1(c)):

    Fig. 1 Fuzzy functional memberships

    2.4 Generalized damage variable under double mathematics coverage

    When randomness and fuzziness simultaneously exist in the structure damage evolution process, according to the expansion principle, the single fuzzy spaceand stochastic spaceΨ∶∪α∈XΛα?Ψ(α∈X=(x1,x2,…,xn)T)of the damage variable need to be expanded to a generalized uncertain spaceO:ξ(s,f),Us,f,es,f,σs,f,fs,f?O:ξ(s,f), wheresandfare the stochastic coverage and fuzzy coverage, respectively;ξ(s,f)is the sub-group of generalized uncertain space;Us,fis a global fuzzy-stochastic displacement column matrix;es,fis a generalized uncertain strain tensor;σs,fis a fuzzy-stochastic stress tensor; andfs,fis a generalized body force vector (Wang et al. 2007).

    The cumulative distribution function (CDF) and probability density function (PDF) obtained by the expansion principle and fuzzy-probabilistic integration are functions of fuzzy functional memberships of the generalized damage variableΩ. Taking the combined swing distribution as an example, the generalized CDF and PDF for the classical damage fuzzy set can be established based on the definition of DMI:

    With these governing functions, the fuzzy stochastic damage reliability (FSDR) can be computed using the equivalent-normal differential checking-point theorem (Wang 2004; Wang et al. 2008; Zhu 1993).

    3 Fuzzy stochastic damage finite element method

    The key methodology for FSDM realization is the establishment of the fuzzy stochastic damage finite element method (FSD-FEM). The FSD constitution model was assimilated into FSD-FEM. The constitutional component for the methodology is the damage function gradient?gα*, which can be expressed as follows:

    whereY*is the independent standard normal vector with its element(i= 1, 2, …,n);T–1is the inverse matrix ofT, which is a diagonal matrix of stochastic characteristics; andYis the independent non-standard normal vector.

    Based on the studies in Section 2.4, the checking-point iterative direction, namely, the unit vector in the negative gradient directionα, can be computed by Eq. (10):

    αis the direction cosine of the reliability index along axis. Thus,αis perpendicular to the ultimate status surface against the coordinate system origin.(Y*) will descend the fastest when the checking-point is computed iteratively along this directional cosine.

    Then, the iterative step size of the checking-point,d, can be determined by Eq. (12):

    In order to ensure the line connecting the origin ofthekth iterative (Y*)kand the new iterativecoordinate(Y*)k+1along thegradientdirection of the curve, on which(Y*)kis distributed, modification of (Y*)kis the crucial technology for this algorithm and can be expressed as

    where (Y*)k′is the modified (Y*)k.

    Therefore, the controlling iterative function can be deduced as follows:

    Then, the updated checking-point vector1k+Yand the status vector of object system (X*)k+1for the numerical back-substitution algorithm are established:

    Based on Eq. (9), the damage reliability indexβ*, and damage failure probabilitycan be calculated eventually with Eq. (16):

    whereΦis the cumulative distribution function of standard normal distribution.

    The three-dimensional fuzzy stochastic damage (3DFSD) computation program was developed in a Digital Visual Fortran workspace.

    4 Verification and application to engineering project

    The Longtan Dam is one of the great hydraulic rolled-concrete structures in China. Most zones of the dam body are composed of rolled concrete (Wang and Zhang 2008). The numerical model and material zoning are shown in Fig. 2 and Fig. 3.

    Fig. 2 Numerical model of Longtan rolled-concrete dam

    Fig. 3 Material zoning of Longtan rolled-concrete dam

    The four-parameter failure criterion was used for the rolled-concrete dam to simulate damage development of materials (Wang et al. 2011). The four primary parameters during simulation were constant:A= 2.010 8,B= 0.971 4,C= 9.141 2, andD= 0.231 2. This study took into account six random parameters: the Young’s modulus, Poisson ratio, cohesive stress, friction angle, bulk specific gravity, and ultimate compressive strength. The expectation values and variation values of the six random parameters of diverse materials are shown in Table 1 andTable 2. There remains one fuzzy-stochastic parameter, the statistic independent index, i.e., damage variable?.

    Table 1 Expected values of material parameters of Longtan rolled-concrete dam

    Table 2 Variation of material parameters of Longtan rolled-concrete dam

    The development and distribution of a generalized damage field in the Longtan rolled-concrete gravity dam, under gravity conditions, were studied with FSD-FEM.

    Figs. 4 through 6 show the displacement contours of the dam without damage development under gravity conditions. Concrete structures, due to their rigid plastic mechanisms, can easily fail at discontinuous places or transition locations where stress concentration and corresponding damage development occur. Contour distributions of the displacement field and strain field can uncover these failure conditions of structures.

    Fig. 4 Contour ofx-displacement at cross-section before damage (unit: m)

    The concentration of displacement growth occurs more at the dam top than in other places. The maximum magnitude of displacement in thexdirection stays at the dam top where the displacement level reaches 10–2m. Owing to the high compressive strength of concrete, the displacement in theydirection shows gradual diffusion from top to bottom through the wholedam body. The dam abutment is generally not an area of the gravity dam vulnerable to failure. Thus, the magnitude of displacement in thezdirection is not high. It reaches 10–3m. The characteristics described above are in agreement with the objective phenomena, which show that the results of the 3DFSD program are reliable for engineering application.

    Fig. 5 Contour ofy-displacement at cross-section before damage (unit: m)

    Fig. 6 Contour ofz-displacement at cross-section before damage (unit: m)

    According to Fig. 7 and Fig. 8, the expected values of the damage variable diminished evidently after the random parameters were normalized equivalently. Meanwhile, the expected value of the damage variable increased significantly at some sites, including the connecting segment of the dam crest, the upstream dam ankle, the downstream dam toe, and the connecting segments of the dam foundation. These characteristics have been described in previous studies for rigid-plastic concrete structures with discontinuous outlines, where loading accumulated and concentrated (Liu 2007). The studies show that the stress level at these discontinuous sites increases quickly, by which it can be proven that the material is inclined to fracture there and these zones experience abundant damage.

    Fig. 7 Contour of expectation of damage variable at cross-section before equivalent normalization

    Fig. 8 Contour of expectation of damage variable at cross-section after equivalent normalization

    Fig. 9 shows that the level of the mean square deviation of the damage variable is high at the upstream dam ankle, the downstream dam toe, and the connecting segments of the dam foundation, and these zones tend to converge densely. These facts demonstrate that materialsof these zones are vulnerable to yield and fracture due to the development of a generalized damage field (Wang et al. 2011). Based on previous studies (Zhang and Cai 2010), the media would be simulated as macro-homogeneous while the crack evolution showed wide variation during damage field development. It is vitally important, however, that the generalized damage field is heterogeneous (Wang and Zhang 2010).

    Fig. 9 Contour of mean square deviation of damage variable at cross-section after equivalent normalization

    According to Fig. 10, the level of the reliability index at the sites with concentrated damage development decreases, showing that the failure probability of material at these sites is high (Wang and Zhang 2008, 2009a, 2009b).

    Fig. 11 shows that the variance ofσxreaches 20 kPa2at dam ankle zones and dam toe zones, whereσxis the component of generalized stress tensor in thexdirection of principal axes. Thus, the degree of dispersion of the stress level was significant at these sites and the corresponding safety degree was inclined to be out of control (Qiu et al. 2004).

    Fig. 11 Contour of variance ofxσat cross-section equivalent normalization (unit: kPa2)

    5 Conclusions

    (1) With some primary concepts of FSDM, three primary distributions of the fuzzystochastic damage variable, the half-depressed distribution, swing distribution, and combined swing distribution, were developed based on fuzzy functional memberships.

    (2) The numerical method, FSD-FEM, was developed and applied to the Longtan rolled-concrete dam. The primary output fields, i.e., displacement, stress, damage variable, and damage reliability index, were examined through spatial distribution of their statistical characteristics, and the results conformed to those from previous research.

    (3) Crucial characteristics of FSDM such as statistical correlation, non-normal distribution, and fuzzy extensionality were assimilated into FSD-FEM. The uncertainty of damage variable was improved, and two primary uncertain characteristics, fuzziness and randomness of damage, were incorporated into the fuzzy stochastic damage mechanics theorem.

    Bulleit, W. M. 2004. Stochastic damage models for wood structural elements.Proceedings of the 2001 Structures Congress and Exposition. Washington, D.C.: ASCE. [doi:10.1061/40558(2001)183]

    Dzenis, Y. A., Bogdanovich, A. E., and Pastore, C. M. 1993. Stochastic damage evolution in textile laminates.Composites Manufacturing, 4(4), 187-193. [doi:10.1016/0956-7143(93)90003-Q]

    Dzenis, Y. A. 1996. Stochastic damage evolution modeling in laminates.Journal of Thermoplastic Composite Materials, 9(1), 21-34. [doi:10.1177/089270579600900103]

    Feng, X. T., Wang, C. Y., and Chen, S. L. 2002. Testing study and real-time observation of rock meso-cracking process under chemical erosion.Chinese Journal of Rock Mechanics and Engineering, 21(7), 935-939. (in Chinese)

    Ihara, C., and Tanaka, T. 2000. A stochastic damage accumulation model for crack initiation in high-cycle fatigue.Fatigue and Fracture of Engineering Materials and Structures, 23(5), 375-380. [doi:10.1046/ j.1460-2695.2000.00308.x]

    Ju, J. W., and Tseng, K. H. 1995. An improved two-dimensional micromechanical theory for brittle solids with randomly located interacting microcracks.International Journal of Damage Mechanics, 4(1), 23-57. [doi: 10.1177/105678959500400103]

    Liu, Y. W. 2007. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume.Construction and Building Materials, 21(5), 972-977. [doi:10.1016/j.conbuildmat. 2006.03.001]

    Pierpaolo, D. U., and Elizabeth, A. M. 2009. Autocorrelation-based fuzzy clustering of time series.Fuzzy Sets and Systems, 160(24), 3565-3589. [doi:10.1016/j.fss.2009.04.013]

    Qian, W. C. 1980.Variation Method and Finite Element Method. Beijing: Scientific Press. (in Chinese)

    Qiao, L. P., Liu, J., and Feng, X. T. 2007. Study on damage mechanism of sandstone under hydro-physico-chemical effects.Chinese Journal of Rock Mechanics and Engineering, 26(10), 2117-2124. (in Chinese)

    Qiu, Z. H., Zhang, W. H., and Ren, T. H. 2004. Nonlinear dynamic damage analysis of dam and rock foundation under the action of earthquake.Chinese Journal of Rock Mechanics and Hydraulic Engineering, 36(5), 629-636. (in Chinese)

    Rezaei, M., Monjezi, M., and Varjani, A. Y. 2011. Development of a fuzzy model to predict flyrock in surface mining.Safety Science, 49(2), 298-305. [doi:10.1016/j.ssci.2010.09.004]

    Rigatos, G., and Zhang, Q. 2009. Fuzzy model validation using the local statistical approach.Fuzzy Sets and Systems, 160(7), 882-904. [doi:10.1016/j.fss.2008.07.008]

    Rinaldi, A., Krajcinovic, D., and Mastilovic, S. 2007. Statistical damage mechanics and extreme value theory.International Journal of Damage Mechanics, 16(1), 57-76. [doi:10.1177/1056789507060779]

    Silberschmidt, V. V., and Chaboche, J. L. 1994. Effect of stochasticity on the damage accumulation in solids.International Journal of Damage Mechanics, 3(1), 57-70. [doi:10.1177/105678959400300103]

    Silberschmidt, V. V. 1998. Dynamics of stochastic damage evolution.International Journal of Damage Mechanics, 7(1), 84-98. [doi:10.1177/105678959800700104]

    Wang, J. C., Chang, L. S., and Chen, Y. J. 2006. Study on probability damage evolutionary rule of joined rock mass slope.Chinese Journal of Rock Mechanics and Engineering, 25(7), 1396-1401. (in Chinese)

    Wang, Y. J. 2004.Fuzzy-random Theory Application on Geo-engineering Uncertain Analysis. M. E. Dissertation. Wuhan: Yangtze River Scientific Research Institute. (in Chinese)

    Wang, Y. J., Zhang, W. H., and Jin, W. L. 2007. Stochastic finite element analysis for fuzzy probability of embankment system failure by first-order approximation theorem.Journal of Zhejiang University(Engineering Science), 41(1), 52-56. (in Chinese)

    Wang, Y. J., and Zhang, W. H. 2008. Research on fuzzy self-adapting finite element in stochastic damage mechanics analysis for Longtan rolled-concrete dam.Chinese Journal of Rock Mechanics and Engineering, 27(6), 1251-1259. (in Chinese)

    Wang, Y. J., Zhang, W. H., Jin, W. L., Wu, C. Y., and Ren, D. C. 2008. Fuzzy stochastic generalized reliability studies on embankment systems based on first-order approximation theorem.Water Science and Engineering, 1(4), 36-46. [doi:10.3882/j.issn.1674-2370.2008.04.004]

    Wang, Y. J., and Zhang, W. H. 2009a. Rock slope reliability studies based on fuzzy stochastic damage theory.Journal of Shengyang Jianzhu University(Natural Science), 25(3), 421-425. (in Chinese)

    Wang, Y. J., and Zhang, W. H. 2009b. Fuzzy self-adapting stochastic damage mechanism for Jingnan main dike of Yangtse Rive.Journal of Zhejiang University(Engineering Science), 43(4), 743-749, 776. (in Chinese) [doi:10.3785/j.issn.1008-973X.2009.04.026]

    Wang, Y. J., Zhang, W. H., Wu, C. Y., and Ren, D. C. 2009. Three-dimensional stochastic seepage field for embankment engineering.Water Science and Engineering, 2(1), 58-71. [doi:10.3882/j.issn.1674-2370. 2009.01.006]

    Wang, Y. J., and Zhang, W. H. 2010. Studies on non-linear fuzzy stochastic damage field.Journal of Hydraulic Engineering, 41(2), 189-197. (in Chinese)

    Wang, Y. J., Zhang, W. H., Zhang, C. H., and Jin, F. 2011. Generalized damage reliability and sensitivity analysis on rolled-concrete gravity dam.Journal of Civil,Architectural and Environmental Engineering, 33(1), 77-86. (in Chinese)

    Wang, Y. J., and Zhang, W. H. 2012. Super gravity dam generalized damage study.Advanced Materials Research, 479-481, 421-425. [doi:10.4028/www.scientific.net/AMR.479-481.421]

    Wu, H. C., and Li, V. C. 1995. Stochastic process of multiple cracking in discontinuous random fiber reinforced brittle matrix composites.International Journal of Damage Mechanics, 4(1), 83-102. [doi: 10.1177/105678959500400105]

    Zhang, W. H., and Valliappan, S. 1990a. Analysis of random anisotropic damage mechanics problems of rock mass, part I: Probabilistic simulation.Rock Mechanics and Rock Engineering, 23(2), 91-112. [doi: 10.1007/BF01020395]

    Zhang, W. H., and Valliappan, S. 1990b. Analysis of random anisotropic damage mechanics problems of rock mass, part II: Statistical estimation.Rock Mechanics and Rock Engineering, 23(4), 241-259. [doi: 10.1007/BF01043306]

    Zhang, W. H., and Valliappan, S. 1998a. Continuum damage mechanics theory and application, part I: Theory.International Journal of Damage Mechanics, 7(3), 250-273. [doi:10.1177/105678959800700303]

    Zhang, W. H., and Valliappan, S. 1998b. Continuum damage mechanics theory and application, part II: Application.International Journal of Damage Mechanics, 7(3), 274-297. [doi:10.1177/ 105678959800700304]

    Zhang, W. H., Jin, W. L., and Li, H. B. 2005. Stability analysis of rock slope based on random damage mechanics.Journal of Hydraulic Engineering, 36(4), 413-419. (in Chinese)

    Zhang, W. H., and Cai, Y. Q. 2010.Continuum Damage Mechanics and Numerical Applications (Advanced Topics in Science and Technology in China). Hangzhou: Zhejiang University Press. (in Chinese)

    Zhu, Y. X. 1993.Slope Reliability Analysis. Beijing: China Metallurgical Industry Press. (in Chinese)

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grant No. 51109118), the China Postdoctoral Science Foundation (Grant No. 20100470344), the Fundamental Project Fund of Zhejiang Ocean University (Grant No. 21045032610), and the Initiating Project Fund for Doctors of Zhejiang Ocean University (Grant No. 21045011909).

    *Corresponding author (e-mail:aegis68004@yahoo.com.cn)

    Received May 24, 2011; accepted Jul. 7, 2011

    天堂动漫精品| 国产成人精品无人区| 久久香蕉激情| 久久ye,这里只有精品| www日本在线高清视频| 久久久久久久大尺度免费视频| 人妻 亚洲 视频| 精品免费久久久久久久清纯 | 免费在线观看黄色视频的| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av欧美aⅴ国产| 操出白浆在线播放| 男男h啪啪无遮挡| 丝袜在线中文字幕| 一本一本久久a久久精品综合妖精| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 色播在线永久视频| 亚洲少妇的诱惑av| 午夜福利在线免费观看网站| 少妇的丰满在线观看| 一区二区三区乱码不卡18| 亚洲 国产 在线| 91精品三级在线观看| 最新的欧美精品一区二区| 美女扒开内裤让男人捅视频| 午夜激情av网站| 国产真人三级小视频在线观看| 免费观看av网站的网址| 2018国产大陆天天弄谢| 热99国产精品久久久久久7| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 一进一出抽搐动态| 色播在线永久视频| 新久久久久国产一级毛片| 老司机影院毛片| 日韩有码中文字幕| 精品国产国语对白av| 黑人巨大精品欧美一区二区蜜桃| 国产精品av久久久久免费| av福利片在线| 看免费av毛片| 999精品在线视频| 久久av网站| 91国产中文字幕| 中文字幕最新亚洲高清| 国产一区二区三区视频了| 男女床上黄色一级片免费看| 欧美乱妇无乱码| 成人影院久久| 久久国产精品影院| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 亚洲自偷自拍图片 自拍| 少妇精品久久久久久久| 啪啪无遮挡十八禁网站| 欧美另类亚洲清纯唯美| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 国产成人精品无人区| 国产亚洲欧美精品永久| 又紧又爽又黄一区二区| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美一区二区三区| 蜜桃国产av成人99| 国产av精品麻豆| 国产区一区二久久| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 麻豆国产av国片精品| 91精品国产国语对白视频| 久久精品国产综合久久久| 五月开心婷婷网| 精品国产一区二区三区四区第35| h视频一区二区三区| 免费观看av网站的网址| 操出白浆在线播放| av一本久久久久| 成人永久免费在线观看视频 | 国产在线观看jvid| 天堂动漫精品| 大香蕉久久成人网| 国产精品久久电影中文字幕 | 母亲3免费完整高清在线观看| 高清毛片免费观看视频网站 | 精品少妇一区二区三区视频日本电影| 美女视频免费永久观看网站| 99久久人妻综合| 亚洲精品一二三| 99精国产麻豆久久婷婷| 一区二区三区精品91| 少妇的丰满在线观看| 91精品国产国语对白视频| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 欧美黄色淫秽网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品一区二区www | 久久久久国内视频| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 国产精品av久久久久免费| av又黄又爽大尺度在线免费看| 老司机在亚洲福利影院| 1024香蕉在线观看| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 国产一区有黄有色的免费视频| 国产精品久久久久久人妻精品电影 | 乱人伦中国视频| 黑丝袜美女国产一区| 久久久久久亚洲精品国产蜜桃av| 国产精品1区2区在线观看. | 亚洲性夜色夜夜综合| 最新在线观看一区二区三区| 曰老女人黄片| 人人妻人人爽人人添夜夜欢视频| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| 久久久精品免费免费高清| 久久精品亚洲av国产电影网| 一本久久精品| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 免费日韩欧美在线观看| 久久精品国产亚洲av香蕉五月 | 久久99热这里只频精品6学生| 18禁观看日本| 一夜夜www| 免费久久久久久久精品成人欧美视频| 精品一区二区三区视频在线观看免费 | 搡老熟女国产l中国老女人| 少妇精品久久久久久久| 青草久久国产| 午夜福利视频精品| 在线观看免费视频网站a站| 日韩大码丰满熟妇| 搡老熟女国产l中国老女人| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 久久精品亚洲熟妇少妇任你| 深夜精品福利| 免费在线观看黄色视频的| 一本大道久久a久久精品| 人妻 亚洲 视频| 男人操女人黄网站| 曰老女人黄片| 精品少妇黑人巨大在线播放| 亚洲第一欧美日韩一区二区三区 | 最近最新中文字幕大全免费视频| 日本av手机在线免费观看| 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清 | 久久精品成人免费网站| 在线观看免费高清a一片| 国产成人系列免费观看| 欧美精品一区二区免费开放| 岛国在线观看网站| 亚洲精品粉嫩美女一区| 高清在线国产一区| 免费黄频网站在线观看国产| 欧美人与性动交α欧美精品济南到| 色播在线永久视频| 欧美黄色片欧美黄色片| 国产成人一区二区三区免费视频网站| 国产日韩欧美视频二区| 久久中文字幕一级| 两个人看的免费小视频| 国产又色又爽无遮挡免费看| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 18禁裸乳无遮挡动漫免费视频| 国产精品99久久99久久久不卡| 亚洲成av片中文字幕在线观看| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 五月开心婷婷网| 成人三级做爰电影| 悠悠久久av| 91av网站免费观看| 色视频在线一区二区三区| 精品人妻1区二区| 亚洲精品自拍成人| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看 | 亚洲精品国产一区二区精华液| 999精品在线视频| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 国产成+人综合+亚洲专区| 国产精品免费一区二区三区在线 | 法律面前人人平等表现在哪些方面| 熟女少妇亚洲综合色aaa.| 精品一区二区三区视频在线观看免费 | 香蕉久久夜色| 亚洲第一青青草原| 亚洲avbb在线观看| 亚洲少妇的诱惑av| 午夜精品久久久久久毛片777| 99国产精品一区二区三区| 美女高潮喷水抽搐中文字幕| 成年女人毛片免费观看观看9 | 女人被躁到高潮嗷嗷叫费观| 肉色欧美久久久久久久蜜桃| 窝窝影院91人妻| 午夜福利欧美成人| tocl精华| 91老司机精品| 亚洲美女黄片视频| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 三上悠亚av全集在线观看| 亚洲七黄色美女视频| 怎么达到女性高潮| 一区二区日韩欧美中文字幕| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 精品免费久久久久久久清纯 | 欧美亚洲日本最大视频资源| 国产精品 国内视频| 大片免费播放器 马上看| 人妻 亚洲 视频| 久久这里只有精品19| 女同久久另类99精品国产91| 国产精品av久久久久免费| 欧美久久黑人一区二区| 国产又色又爽无遮挡免费看| 女人精品久久久久毛片| 大型黄色视频在线免费观看| 一区二区三区精品91| 国产亚洲精品一区二区www | 99久久精品国产亚洲精品| 久久国产精品影院| 99国产精品一区二区蜜桃av | 欧美+亚洲+日韩+国产| 中国美女看黄片| 午夜91福利影院| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 大型黄色视频在线免费观看| 成人黄色视频免费在线看| 欧美精品啪啪一区二区三区| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲国产一区二区在线观看 | 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 50天的宝宝边吃奶边哭怎么回事| 亚洲视频免费观看视频| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 亚洲五月婷婷丁香| 亚洲一区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费高清a一片| 1024香蕉在线观看| 高清av免费在线| 久久人人97超碰香蕉20202| 国产黄色免费在线视频| 九色亚洲精品在线播放| 亚洲精品中文字幕一二三四区 | 亚洲七黄色美女视频| 久久 成人 亚洲| 国产91精品成人一区二区三区 | 午夜福利,免费看| av网站在线播放免费| 好男人电影高清在线观看| 这个男人来自地球电影免费观看| 欧美激情久久久久久爽电影 | 国产精品99久久99久久久不卡| 大陆偷拍与自拍| 精品国内亚洲2022精品成人 | 国产成人精品在线电影| 免费一级毛片在线播放高清视频 | 精品少妇内射三级| 日本黄色日本黄色录像| 精品国产乱子伦一区二区三区| 精品一品国产午夜福利视频| 老司机午夜福利在线观看视频 | 一区在线观看完整版| 97人妻天天添夜夜摸| 少妇裸体淫交视频免费看高清 | 桃花免费在线播放| 亚洲精品在线观看二区| 国产麻豆69| 亚洲国产欧美日韩在线播放| 成人手机av| 手机成人av网站| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区乱码不卡18| 国产午夜精品久久久久久| 久久ye,这里只有精品| 精品国产一区二区三区四区第35| 大码成人一级视频| 搡老岳熟女国产| 性少妇av在线| 中文字幕制服av| 青草久久国产| 一边摸一边做爽爽视频免费| 丝袜人妻中文字幕| 久热爱精品视频在线9| 免费观看人在逋| 亚洲色图综合在线观看| 国产又爽黄色视频| 亚洲av日韩精品久久久久久密| 欧美黄色片欧美黄色片| tocl精华| 黄片播放在线免费| 亚洲成人免费av在线播放| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 亚洲欧美一区二区三区久久| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 夫妻午夜视频| 丰满饥渴人妻一区二区三| 一个人免费在线观看的高清视频| 国产单亲对白刺激| 欧美成人午夜精品| 啦啦啦 在线观看视频| 桃花免费在线播放| 亚洲欧美精品综合一区二区三区| 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 美女国产高潮福利片在线看| 亚洲第一青青草原| 极品人妻少妇av视频| 色老头精品视频在线观看| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 欧美黑人精品巨大| www.熟女人妻精品国产| 亚洲精品一二三| 黑人猛操日本美女一级片| 国产淫语在线视频| svipshipincom国产片| 日韩一区二区三区影片| 久久免费观看电影| 手机成人av网站| 国产福利在线免费观看视频| 亚洲色图av天堂| 亚洲av第一区精品v没综合| 国产成+人综合+亚洲专区| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 露出奶头的视频| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 黄片小视频在线播放| www.精华液| 无遮挡黄片免费观看| 热99re8久久精品国产| 欧美日韩亚洲高清精品| 亚洲人成电影免费在线| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 男人舔女人的私密视频| 色婷婷av一区二区三区视频| 国产在线观看jvid| 法律面前人人平等表现在哪些方面| 成年动漫av网址| 午夜久久久在线观看| 欧美黑人精品巨大| 91大片在线观看| 亚洲第一青青草原| 脱女人内裤的视频| 91成年电影在线观看| 少妇猛男粗大的猛烈进出视频| 国产精品九九99| 久久 成人 亚洲| 女性生殖器流出的白浆| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| 午夜91福利影院| 久久中文字幕人妻熟女| 国产老妇伦熟女老妇高清| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 日韩大码丰满熟妇| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 免费看a级黄色片| 免费不卡黄色视频| 欧美精品高潮呻吟av久久| 成人国语在线视频| avwww免费| 午夜久久久在线观看| 久久精品国产亚洲av香蕉五月 | 精品卡一卡二卡四卡免费| 精品久久久久久久毛片微露脸| 黑人操中国人逼视频| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 狠狠狠狠99中文字幕| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 飞空精品影院首页| 99热网站在线观看| 国产淫语在线视频| 最近最新中文字幕大全电影3 | 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 交换朋友夫妻互换小说| 亚洲中文字幕日韩| 99热国产这里只有精品6| 国产精品影院久久| 老司机福利观看| 久久精品国产亚洲av香蕉五月 | 国产精品久久久久久精品古装| 最黄视频免费看| 亚洲伊人色综图| 桃花免费在线播放| 欧美黑人精品巨大| 最新美女视频免费是黄的| 91精品三级在线观看| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 亚洲av成人一区二区三| 黄频高清免费视频| 一本大道久久a久久精品| 国产免费现黄频在线看| 精品第一国产精品| 国产亚洲精品第一综合不卡| 国产精品 国内视频| 大片免费播放器 马上看| 免费在线观看完整版高清| 国产麻豆69| 999精品在线视频| 亚洲人成电影观看| 亚洲色图av天堂| 久久精品人人爽人人爽视色| 高清在线国产一区| 国产在线观看jvid| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久 | 午夜久久久在线观看| 91成人精品电影| 免费观看a级毛片全部| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩高清在线视频 | av不卡在线播放| 日韩人妻精品一区2区三区| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 亚洲国产欧美在线一区| 精品乱码久久久久久99久播| 免费一级毛片在线播放高清视频 | 午夜两性在线视频| 欧美日韩福利视频一区二区| 国产成人系列免费观看| 91大片在线观看| 国产一区二区激情短视频| 无限看片的www在线观看| 日韩人妻精品一区2区三区| 不卡一级毛片| 欧美黄色淫秽网站| 蜜桃在线观看..| 黄色毛片三级朝国网站| 亚洲av日韩在线播放| 中文亚洲av片在线观看爽 | 亚洲 欧美一区二区三区| 国产av精品麻豆| 老熟妇乱子伦视频在线观看| 国产精品偷伦视频观看了| 丝瓜视频免费看黄片| 亚洲综合色网址| 一进一出好大好爽视频| 男男h啪啪无遮挡| 在线看a的网站| 欧美国产精品va在线观看不卡| 性色av乱码一区二区三区2| 在线观看免费高清a一片| a级片在线免费高清观看视频| 国产精品久久电影中文字幕 | 777久久人妻少妇嫩草av网站| 国产色视频综合| 91字幕亚洲| 亚洲精品乱久久久久久| 宅男免费午夜| 久久精品国产综合久久久| 亚洲黑人精品在线| 蜜桃国产av成人99| 国产单亲对白刺激| 人妻一区二区av| 咕卡用的链子| 亚洲av国产av综合av卡| 日韩欧美国产一区二区入口| 首页视频小说图片口味搜索| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 啪啪无遮挡十八禁网站| 中文字幕制服av| 91麻豆av在线| 一本一本久久a久久精品综合妖精| 亚洲国产欧美网| 亚洲国产欧美一区二区综合| 18禁观看日本| 亚洲国产中文字幕在线视频| 国产三级黄色录像| 国产精品国产高清国产av | 亚洲 欧美一区二区三区| 天堂中文最新版在线下载| 日韩中文字幕欧美一区二区| e午夜精品久久久久久久| 日韩欧美一区视频在线观看| 久久国产亚洲av麻豆专区| 久久久久久久精品吃奶| 久久久久久久大尺度免费视频| 大码成人一级视频| 久久久久精品人妻al黑| 色婷婷久久久亚洲欧美| 美女主播在线视频| 久久精品熟女亚洲av麻豆精品| 免费在线观看日本一区| 国产福利在线免费观看视频| 悠悠久久av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲久久久国产精品| 高清欧美精品videossex| 国产精品偷伦视频观看了| 国产亚洲精品第一综合不卡| 色精品久久人妻99蜜桃| 日韩制服丝袜自拍偷拍| 欧美国产精品一级二级三级| 91成年电影在线观看| 欧美精品亚洲一区二区| 久久久精品国产亚洲av高清涩受| 国产精品久久久人人做人人爽| 我的亚洲天堂| 欧美激情高清一区二区三区| 热re99久久精品国产66热6| 一本色道久久久久久精品综合| 久久av网站| 高清欧美精品videossex| 男女边摸边吃奶| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 老司机在亚洲福利影院| 久久精品成人免费网站| 美女视频免费永久观看网站| 国产成人av教育| 国产野战对白在线观看| 国产在线精品亚洲第一网站| 精品免费久久久久久久清纯 | 国产欧美亚洲国产| 激情在线观看视频在线高清 | 99久久99久久久精品蜜桃| a级毛片在线看网站| av线在线观看网站| 最近最新中文字幕大全电影3 | 亚洲五月婷婷丁香| 国产成人系列免费观看| 日日夜夜操网爽| 电影成人av| 亚洲 国产 在线| 伦理电影免费视频| 丝袜美腿诱惑在线| 在线观看www视频免费| av又黄又爽大尺度在线免费看| 99在线人妻在线中文字幕 | 热99久久久久精品小说推荐| 一区二区三区乱码不卡18| 欧美精品一区二区免费开放| 日韩视频在线欧美| 国精品久久久久久国模美| 日韩人妻精品一区2区三区| 精品人妻1区二区| 国产在线精品亚洲第一网站| 国产福利在线免费观看视频| 成人国产一区最新在线观看| 高清在线国产一区| 欧美激情高清一区二区三区| 久久婷婷成人综合色麻豆| 国产精品免费大片| 亚洲av日韩精品久久久久久密| 亚洲五月色婷婷综合| 一本色道久久久久久精品综合| 日本黄色日本黄色录像| 国产精品98久久久久久宅男小说| av片东京热男人的天堂| 一二三四社区在线视频社区8| 五月天丁香电影| 国产成人一区二区三区免费视频网站| a级片在线免费高清观看视频| av不卡在线播放| bbb黄色大片| 国产精品免费一区二区三区在线 | 亚洲精品在线美女| av又黄又爽大尺度在线免费看| 国产一区二区激情短视频| 黑人巨大精品欧美一区二区mp4| 国产单亲对白刺激| 亚洲中文av在线| 亚洲三区欧美一区| 老司机午夜福利在线观看视频 | 青青草视频在线视频观看| 纵有疾风起免费观看全集完整版| 久久人人97超碰香蕉20202| 久久人妻av系列| 男女下面插进去视频免费观看| 国产在线一区二区三区精| 50天的宝宝边吃奶边哭怎么回事| av网站免费在线观看视频| 国产男靠女视频免费网站| 亚洲精品久久午夜乱码| 亚洲av欧美aⅴ国产| 国产野战对白在线观看| 亚洲色图综合在线观看| 十八禁人妻一区二区|