• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth curve mixture models

    2012-07-08 02:15:19BenjaminLEIBY
    上海精神醫(yī)學(xué) 2012年6期

    Benjamin E. LEIBY

    · Biostatistics in psychiatry (12) ·

    Growth curve mixture models

    Benjamin E. LEIBY

    Psychiatric studies often collect longitudinal data to characterize the natural history of disease in a cohort or to evaluate the effect of behavioral or pharmaceutical interventions. For example, in a recent partially randomized study comparing escitalopram and nortriptyline in the treatment of depression, several depression scales were measured weekly over the 3-month course of treatment.[1]While the primary outcome measure of such studies may be a binary indicator of improvement at the end of treatment, analysis of the full longitudinal profile that makes optimal use of all available data to model rates of change over time may be more informative. For example, in the escitalopram/nortiptyline study, analysis of dichotomous outcomes adjusted for time participating in the study showed no difference between drugs, while analysis of the longitudinal profiles did indicate different patterns of improvement in the two groups over time.[2]

    1. Mixed effects models

    Mixed effects models[3]have become the standard for analysis of data from longitudinal studies that assess the behavior of a single continuous outcome over time. In general, mixed effects models model the average trend in a single variable over time while allowing for subjectspecific deviations from this trend. As an example, consider a 2-arm clinical trial (active drug vs. placebo) where treatment for depression reduces depressive symptoms as measured by the Hamilton depression rating scale (HAMD). Each subject has a certain level of symptoms when beginning treatment (the intercept), and a rate of change in depressive symptoms over time (the slope). If a treatment is effective, the rate of decline for subjects randomized to active treatment will be different from (greater than) that of those randomized to placebo. The focus of analysis is the comparison of the average slope for those on active treatment to the average slope for those on placebo. Mixed effects models formalize this idea by specifying a subject-level model with subject-level parameters which are then related to population-level parameters. In our example, we might specify the subject-level model as

    whereyijis the HAMD score at timej, β0iand β1iare the intercept and slope for subjecti, andeijis normally (i.e., bell-shaped) distributed random noise. Thus, we assume that each subject’s HAMD scores at the different followup times have a linear relationship (i.e., are on a straight line) over time. We relate each subject’s intercept and slope to a population average intercept and slope:

    whereXi=1 for subjects assigned to treatment,Xi=0 for subjects assigned to placebo,γ0is the average intercept,γ1is the average slope for placebo patients,γ1+γ11is the average slope for treated patients, and αi0and αi1are normally distributed random variables that allow each subject’s intercept and slope to differ from the average. The effectiveness of the treatment is determined by testing the null hypothesis thatγ11=0, in which case the rate of decline is the same in placebo and treated patients.

    The mixed effects model assumes that subjects’intercepts and slopes are relatively homogeneous with variation centered around one central line. However, there are cases where this may not be a reasonable assumption. In a time when ‘personalized medicine’ is the goal, it is becoming increasingly clear that many, if not most, diseases are not homogeneous. Different subpopulations may have distinct natural histories and may respond to treatment in different ways. Thus, models that consider the whole population and average across multiple subtypes may miss important differences in the effects of treatment. Without a prior knowledge of these subtypes it can be difficult to account for them. Models incorporating latent class are one way of investigating this type of unobserved population stratification or clustering. Originally developed for cross-sectional data, classical latent class models are a type of finite mixture model where the focus is to identify a finite number of subgroups based on multiple outcomes.[4,5]

    2. Growth curve mixture models

    In the past two decades, many researchers have focused on extending latent class models to consider grouping subjects based on trajectories or growth curves rather than only on cross-sectional data. Growth curve mixture models (GCMMs[6]) are a type of latent variable model that extend the latent class model to the longitudinal setting where subjects are grouped based on the observed longitudinal trend over time. (For a brief review of latent variable modeling, see Cai[7]). This approach assumes that each subject belongs to a certain unobserved group (the latent class) and subjects in that class have a particular mean trajectory. In essence, each latent class has its own mixed effects model. IfCi=kindicates that subjectibelongs to classk, then we have

    where β0i|(Ci=k) and β1i=|(Ci=k) denote the intercept and slope for subjectigiven that the latent class membership for subjectiis groupk. Estimates are obtained for growth curve parameters (e.g., intercepts, slopes, etc.) for each latent class.

    It is important to note that although the model assumes that subjects belong to one of the classes, the class membership is unknown and the results of the analysis can only assign subjects to a given class with a certain probability. To do this, after the model is estimated, each subject’s observed data are compared with the resulting class-specific curves. The closer the subject’s data resemble the class-specific curve, the higher the probability of belonging to that class. Based on this probability, subjects can be assigned to their most likely class and factors associated with class membership can be investigated.

    GCMMs can be used in many ways. At their most basic, they can be used to identify subgroups whose observed trajectories look similar to each other but different from the other subgroups. For example, investigators in the aforementioned drug trial categorized subjects based on their pattern of depressive symptoms during a 12-week treatment period[2]and identified two classes –gradual improvers and rapid improvers. Once patterns are discovered, the association of other factors with these patterns may provide insight into risk factors for an outcome or predictors of improvement. In the drug trial, one of the treatments was more prevalent among the rapid improvers than the other.

    In randomized trials, the type of interventions administered can also be taken into consideration when creating the classes. When adding this factor to the longitudinal model, the identified classes may differ not only with respect to the shape of the average trajectory, but also with respect to the magnitude of the treatment effect. In conditions that are very heterogeneous, the results of this analysis may be able to identify the distinct subgroups in which the intervention of interest is effective.[8]

    Originally developed for single continuous outcomes, extensions to the GCMM methodology allow for the analysis of categorical outcomes[9]and of multiple outcomes.[10,11]GCMMs can also be used to jointly model longitudinal processes and distal outcomes, and can be an effective way of modeling the relationship between biomarkers and event times.[12]

    3. Practical considerations for growth curve mixture modeling

    Jung and Wickrama[13]provide a good review of GCMMs and their implementation. GCMMs require specification of the number of latent classes prior to fitting the model. The choice of this number is not easy. Standard likelihood ratio tests for choosing between models cannot be used, but adjustments to the standard test that can help in the decision about the number of latent classes to be used in the model are available in some software packages. Information criteria (e.g., Akaike information criteria, or Bayesian information criteria) can also be used to compare models to choose the number of classes with the best fit. GCMM analysis is usually exploratory; the models can become complex fairly quickly, so to avoid spurious results or generating models with more parameters than the data can support, clinical and scientific knowledge should guide the modeling.

    Software for fitting GCMMs is fairly specialized and generally unavailable in standard statistical packages. Recently, the R-package LCMM has been developed to fit some types of GCMMs including joint models for longitudinal and time-to-event data (http://cran.rproject.org/web/packages/lcmm/). The most widely used software is Mplus[14]which provides modeling capabilities for an extensive array of GCMMs in addition to other latent variable methods such as factor analysis and structural equation modeling.

    A special case of GCMMs is latent class growth analysis (LCGA)[15,16]which does not allow for departure from the average trajectory within each latent class (by setting α0iand α1iequal to zero in equation 1.3). Thus, in contrast to mixed effects models where each subject’s intercept and slope are drawn from a normal distribution or GCMMs where they are drawn from a mixture of normal distributions, LCGAs allow only for a limited set of discrete options (one possibility for each class). LCGA can be implemented using the specialized SAS procedure Proc Traj.[17]

    4. An example

    The following simulated example demonstrates the uses of GCMMs in the analysis of longitudinal data from a clinical trial. The simulated data set contains weekly HAMD scores for 100 patients randomized to placebo or active treatment for 10 weeks. A standard analysis of this data would apply the mixed effects model outlined above. The subject-specific trajectories of HAMD scores and the estimated population curves for placebo and treated patients resulting from this analysis are given in Figure 1. On average, placebo patients’HAMD scores decreased by 0.33 points per week, while the active treatment groups’ scores declined by 0.54 points per week. The difference in rates of decline was not statistically significant (p=0.053). While strict interpretation of the results would conclude that the treatment was not effective, a visual examination of the plots shows a substantial number of patients in the active treatment arm that had much greater decline than average. This suggests that there may be a subset of patients for whom the treatment was effective.

    Figure 1. Simulated observed HAMD scores by subject and model-estimated curves from the mixed effects model

    A GCMM analysis that allows for differing effects of treatment within each class was fit using Mplus. A model with two classes fit best, and subjects were assigned to their most likely class with 67 subjects assigned to class 1 and 33 assigned to class 2. Results are displayed graphically in Figure 2. Class 1 was categorized by similar minimal rates of decline in treated and placebo subjects (slopes of -0.105 and -0.087, respectively, p=0.53). In Class 2, both treated and placebo subjects declined more than in Class 1, but treated subjects improved about two-fold more quickly than placebo subjects (slopes of -1.545 and -0.754, respectively, p<0.001). Further investigation would be warranted to identify baseline characteristics that differed between the two latent classes; these characteristics would help identify the type of patients for whom the drug would be beneficial.

    Figure 2. Results of a GCMM applied to the same data. Treated subjects in class 2 have greater decline than placebo subjects

    An alternative GCMM analysis could ignore treatment in forming the classes based on the HAMD trajectories. Again, a 2-class model fits best, as depicted in Figure 3. In this analysis, the model identifies a small class of subjects (n=16) whose HAMD scores decline by 1.49 points per week. A cross-tabulation with treatment assignment reveals a significant association between class and treatment assignment (p<0.001) with all 16 improvers being assigned to active treatment. Again, post-hoc comparisons of subjects who did and did not improve with treatment would help identify the demographic and clinical characteristics of patients who are most likely to improve.

    Figure 3. Results of a GCMM ignoring treatment assignment

    5. Conclusion

    Growth curve mixture modeling can be a useful analysis tool when it is desirable to identify subgroups of patients who differ with respect to the trajectory of a longitudinal measurement. GCMMs extend commonly used mixed effects methods to allow for multiple classes, each with its own mixed effects model. These models are useful in observational and experimental studies, and they provide a method for identifying subgroups of patients who respond differently to interventions in randomized trials.

    1. Uher R, Maier W, Hauser J, Marusic A, Schmael C, Mors O, et al. Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression.Br J Psychiatry2009; 194(3): 252-259.

    2. Uher R, Muthen B, Souery D, Mors O, Jaracz J, Placentino A, et al. Trajectories of change in depression severity during treatment with antidepressants.Psychol Med2010; 40(8): 1367-1377.

    3. Laird N, Ware J. Random-effects models for longitudinal data.Biometrics1982; 38: 963-974.

    4. Clogg CC. Latent class models. In: Arminger G, Clogg CC, Sobel ME, eds.Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York: Plenum Publishing Corporation, 1995.

    5. Garrett ES, Zeger SL. Latent class model diagnosis.Biometrics2000; 56: 1055-1067.

    6. Muthén B, Asparouhov T. Growth mixture modeling: Analysis with non-Gaussian random effects. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, eds.Longitudinal Data Analysis. Boca Raton: Chapman Hall/CRC Press, 2008:143-165.

    7. Cai L. Latent variable modeling.Shanghai Arch Psychiatry2012; 24(2): 118-120.

    8. Muthén B, Brown CH, Masyn K, Jo B, Khoo ST, Yang CC, et al. General growth mixture modeling for randomized preventive interventions.Biostatistics2002; 3(4): 459-475.

    9. Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm.Biometrics1999; 55: 463-469.

    10. Elliott MR, Gallo JJ, Ten Have TR, Bogner HR, Katz IR. Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction.Biostatistics2005; 6:119-143.

    11. Leiby BE, Sammel MD, Ten Have TR, Lynch KG. Identification of multivariate responders/non-responders using Bayesian growth curve latent class models.J R Stat Soc Ser C Appl Stat2009; 58: 505-524.

    12. Lin H, Turnbull B, McCulloch C, Slate E. Latent class models for joint analysis of longitudinal biomarker and event process data.J Am Stat Assoc2002; 97: 53-65.

    13. Jung T, Wickrama K. An introduction to latent class growth analysis and growth mixture modeling.Soc Personal Psychol Compass2008; 2: 302-317.

    14. Muthén LK, Muthén BO.Mplus User's Guide (Seventh Edition). Los Angeles, CA: Muthén and Muthén, 1998-2012.

    15. Nagin DS, Land KC. Age, Criminal careers, and population heterogeneity specification and estimation of a nonparametric mixed poisson model.Criminology1993; 31: 327-362.

    16. Roeder K, Lynch KG, Nagin DS. Modeling uncertainty in latent class membership: A case study in criminology.J Am Stat Assoc1999; 94: 766-776.

    17. Jones BL, Nagin DS. Advances in group-based trajectory modeling and an SAS procedure for estimating them.Sociol Method Res2007; 35: 542-571.

    Benjamin Leiby is assistant professor in the Division of Biostatistics of Thomas Jefferson University, Philadelphia, Pennsylvania, USA and an associate member of the Kimmel Cancer Center. He collaborates with researchers in a diverse set of fields including cancer, psychiatry, ophthalmology, and rehabilitative medicine. His methodological interests are in the area of latent variable and latent class models with special focus on applications in psychiatry and cancer.

    10.3969/j.issn.1002-0829.2012.06.009

    Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

    *Correspondence: benjamin.leiby@jefferson.edu

    成人av在线播放网站| 婷婷精品国产亚洲av在线| 精品国内亚洲2022精品成人| 99久久99久久久精品蜜桃| 丰满人妻熟妇乱又伦精品不卡| 国产高清三级在线| 高清在线国产一区| 国产视频一区二区在线看| 男女午夜视频在线观看| 亚洲av日韩精品久久久久久密| 欧美色视频一区免费| 国产久久久一区二区三区| 亚洲国产日韩欧美精品在线观看 | 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 99视频精品全部免费 在线| 中文字幕人成人乱码亚洲影| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 日韩欧美在线乱码| 久久人人精品亚洲av| 一二三四社区在线视频社区8| 午夜老司机福利剧场| 亚洲久久久久久中文字幕| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看| 久久久成人免费电影| 欧美在线一区亚洲| 一本精品99久久精品77| 色哟哟哟哟哟哟| 深夜精品福利| 国产伦人伦偷精品视频| 19禁男女啪啪无遮挡网站| av天堂中文字幕网| 亚洲 欧美 日韩 在线 免费| 国产蜜桃级精品一区二区三区| ponron亚洲| 97人妻精品一区二区三区麻豆| 丁香欧美五月| 99精品欧美一区二区三区四区| 国产伦人伦偷精品视频| 午夜福利在线观看吧| 少妇人妻精品综合一区二区 | 岛国在线观看网站| 日本成人三级电影网站| 亚洲专区中文字幕在线| 伊人久久大香线蕉亚洲五| 成人三级黄色视频| 丰满人妻一区二区三区视频av | 无人区码免费观看不卡| 国产单亲对白刺激| 可以在线观看毛片的网站| 免费看光身美女| 亚洲电影在线观看av| 国产一级毛片七仙女欲春2| 国产一级毛片七仙女欲春2| 国产男靠女视频免费网站| 丁香欧美五月| 国产高清视频在线观看网站| 淫秽高清视频在线观看| 91在线精品国自产拍蜜月 | 日本成人三级电影网站| 午夜免费成人在线视频| av国产免费在线观看| 午夜免费观看网址| 欧美日韩中文字幕国产精品一区二区三区| 日本 欧美在线| 免费在线观看成人毛片| 两个人看的免费小视频| 啦啦啦韩国在线观看视频| 少妇熟女aⅴ在线视频| 成年女人看的毛片在线观看| 首页视频小说图片口味搜索| 免费看日本二区| 国产成人a区在线观看| 亚洲色图av天堂| 人人妻人人澡欧美一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品成人综合色| 热99re8久久精品国产| 国产精品永久免费网站| 在线十欧美十亚洲十日本专区| 伊人久久大香线蕉亚洲五| 亚洲18禁久久av| 国模一区二区三区四区视频| 又爽又黄无遮挡网站| 人人妻人人看人人澡| 1000部很黄的大片| 国产一区二区在线观看日韩 | 嫩草影院精品99| 亚洲七黄色美女视频| 成人性生交大片免费视频hd| 内地一区二区视频在线| netflix在线观看网站| 在线观看免费视频日本深夜| 亚洲精品在线观看二区| 色吧在线观看| 俄罗斯特黄特色一大片| 免费观看的影片在线观看| 亚洲av不卡在线观看| 真人做人爱边吃奶动态| 在线a可以看的网站| 国产成人系列免费观看| 有码 亚洲区| 午夜老司机福利剧场| 亚洲第一电影网av| 国产三级中文精品| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面| 欧美最新免费一区二区三区 | 亚洲狠狠婷婷综合久久图片| 亚洲精品乱码久久久v下载方式 | 首页视频小说图片口味搜索| av天堂中文字幕网| 国产一区二区三区在线臀色熟女| 亚洲国产精品久久男人天堂| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 成人一区二区视频在线观看| www日本黄色视频网| 一个人观看的视频www高清免费观看| 国产久久久一区二区三区| 熟女电影av网| or卡值多少钱| 国产在视频线在精品| 身体一侧抽搐| 欧美zozozo另类| 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 欧美性猛交黑人性爽| 狂野欧美激情性xxxx| 精品福利观看| 久久久久久久午夜电影| 日韩欧美在线二视频| 全区人妻精品视频| 免费大片18禁| 丰满人妻熟妇乱又伦精品不卡| 老汉色∧v一级毛片| 综合色av麻豆| 久久伊人香网站| 人妻夜夜爽99麻豆av| 天天添夜夜摸| 内地一区二区视频在线| 久久欧美精品欧美久久欧美| 亚洲精华国产精华精| 免费观看精品视频网站| 久久国产乱子伦精品免费另类| 狠狠狠狠99中文字幕| 欧美大码av| 又粗又爽又猛毛片免费看| 国产伦人伦偷精品视频| 国产探花在线观看一区二区| 日本 av在线| 好男人在线观看高清免费视频| 欧美高清成人免费视频www| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 午夜精品一区二区三区免费看| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清| 亚洲国产中文字幕在线视频| ponron亚洲| 一夜夜www| 欧美另类亚洲清纯唯美| 国产探花极品一区二区| 欧美日韩综合久久久久久 | 国产午夜精品久久久久久一区二区三区 | 久久精品91无色码中文字幕| svipshipincom国产片| 小说图片视频综合网站| 精品国产亚洲在线| 久久久久久久久久黄片| 久久久色成人| 日本一本二区三区精品| 全区人妻精品视频| 一进一出好大好爽视频| 一区二区三区免费毛片| 日本在线视频免费播放| 在线观看免费视频日本深夜| 国内揄拍国产精品人妻在线| 日韩av在线大香蕉| 日本黄色片子视频| a级一级毛片免费在线观看| 一级黄色大片毛片| avwww免费| 亚洲av熟女| 人妻久久中文字幕网| 欧美乱色亚洲激情| av中文乱码字幕在线| 中文字幕熟女人妻在线| 两人在一起打扑克的视频| 色综合婷婷激情| 男人舔奶头视频| 90打野战视频偷拍视频| 一进一出抽搐动态| 亚洲中文日韩欧美视频| 成人国产一区最新在线观看| 国产一区二区亚洲精品在线观看| 欧美又色又爽又黄视频| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区视频在线 | 啪啪无遮挡十八禁网站| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 久9热在线精品视频| 韩国av一区二区三区四区| 久久婷婷人人爽人人干人人爱| 成人性生交大片免费视频hd| 在线天堂最新版资源| 99国产综合亚洲精品| 国产色爽女视频免费观看| 99国产极品粉嫩在线观看| 久久精品91无色码中文字幕| 天天一区二区日本电影三级| 亚洲精品色激情综合| 成年女人毛片免费观看观看9| 午夜福利在线观看免费完整高清在 | 一个人观看的视频www高清免费观看| 国产精品电影一区二区三区| 宅男免费午夜| 欧美极品一区二区三区四区| 国产精品影院久久| 久久久国产成人免费| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 午夜福利在线在线| 亚洲国产色片| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 亚洲在线观看片| 成人三级黄色视频| aaaaa片日本免费| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 欧美日韩国产亚洲二区| 欧美性猛交黑人性爽| 亚洲天堂国产精品一区在线| av欧美777| 在线免费观看不下载黄p国产 | 欧美绝顶高潮抽搐喷水| 国产一区二区亚洲精品在线观看| 亚洲在线观看片| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av | 少妇丰满av| 成人午夜高清在线视频| 午夜福利成人在线免费观看| 国产亚洲精品一区二区www| 在线视频色国产色| 欧美成人性av电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 久久久久久久久大av| 亚洲成av人片免费观看| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 久久精品综合一区二区三区| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 最新中文字幕久久久久| www.www免费av| 啦啦啦韩国在线观看视频| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 波野结衣二区三区在线 | 99热这里只有是精品50| 国产欧美日韩一区二区三| 久久草成人影院| 嫩草影视91久久| 午夜免费激情av| 少妇熟女aⅴ在线视频| 综合色av麻豆| 少妇的逼水好多| 天堂动漫精品| 日本一本二区三区精品| 久久中文看片网| 99热这里只有精品一区| 欧美在线黄色| 国产成人欧美在线观看| 国产午夜精品久久久久久一区二区三区 | 久久人妻av系列| 美女免费视频网站| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 给我免费播放毛片高清在线观看| 国产精品久久久久久久电影 | 一进一出抽搐gif免费好疼| 男女视频在线观看网站免费| 免费无遮挡裸体视频| 极品教师在线免费播放| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 久久国产乱子伦精品免费另类| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区人妻视频| 久久久色成人| 精品一区二区三区人妻视频| 久久久色成人| 我的老师免费观看完整版| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看| 九九久久精品国产亚洲av麻豆| 欧美中文日本在线观看视频| 亚洲自拍偷在线| 国产中年淑女户外野战色| 国产高清视频在线播放一区| 欧美成狂野欧美在线观看| 亚洲av二区三区四区| 精品免费久久久久久久清纯| 搞女人的毛片| а√天堂www在线а√下载| 9191精品国产免费久久| 淫秽高清视频在线观看| 级片在线观看| 91久久精品电影网| av在线天堂中文字幕| 少妇的逼水好多| 亚洲精品粉嫩美女一区| av专区在线播放| 欧美黑人欧美精品刺激| 国产色婷婷99| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 国内久久婷婷六月综合欲色啪| 欧美bdsm另类| 法律面前人人平等表现在哪些方面| av国产免费在线观看| 免费看日本二区| 色在线成人网| 性欧美人与动物交配| av中文乱码字幕在线| 一级黄片播放器| 国产精品综合久久久久久久免费| bbb黄色大片| 精品电影一区二区在线| 非洲黑人性xxxx精品又粗又长| 亚洲专区中文字幕在线| 99热6这里只有精品| 久久精品人妻少妇| 美女 人体艺术 gogo| 91久久精品电影网| 在线免费观看不下载黄p国产 | 午夜两性在线视频| 一本久久中文字幕| av在线蜜桃| 一本一本综合久久| 精品电影一区二区在线| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看 | 99久久精品热视频| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 色综合欧美亚洲国产小说| 亚洲精品成人久久久久久| 蜜桃亚洲精品一区二区三区| 一区福利在线观看| 日韩欧美国产在线观看| 日韩欧美三级三区| 国产探花在线观看一区二区| 久久久国产精品麻豆| 一区二区三区国产精品乱码| 精品久久久久久久毛片微露脸| 亚洲国产欧美网| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 亚洲av第一区精品v没综合| 757午夜福利合集在线观看| 欧美成人性av电影在线观看| 黄色成人免费大全| 丝袜美腿在线中文| 在线观看舔阴道视频| 亚洲18禁久久av| 国内精品久久久久精免费| 国产国拍精品亚洲av在线观看 | 99热只有精品国产| 脱女人内裤的视频| 露出奶头的视频| 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 亚洲欧美日韩东京热| 亚洲aⅴ乱码一区二区在线播放| 激情在线观看视频在线高清| 最后的刺客免费高清国语| 久久精品91蜜桃| 毛片女人毛片| 91久久精品电影网| av片东京热男人的天堂| 在线视频色国产色| 日本三级黄在线观看| 国产免费av片在线观看野外av| 中文在线观看免费www的网站| 亚洲,欧美精品.| 亚洲在线观看片| 床上黄色一级片| 小蜜桃在线观看免费完整版高清| 噜噜噜噜噜久久久久久91| 搡老熟女国产l中国老女人| 一个人免费在线观看电影| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 我的老师免费观看完整版| 国产麻豆成人av免费视频| av中文乱码字幕在线| 少妇的丰满在线观看| avwww免费| 欧美大码av| АⅤ资源中文在线天堂| 在线播放无遮挡| 男女之事视频高清在线观看| 国语自产精品视频在线第100页| 日韩欧美精品免费久久 | 十八禁网站免费在线| 脱女人内裤的视频| 欧美性感艳星| 色老头精品视频在线观看| 男女视频在线观看网站免费| 999久久久精品免费观看国产| 国产精品美女特级片免费视频播放器| 无遮挡黄片免费观看| 欧美一级毛片孕妇| 国产精品久久久久久精品电影| 久久国产精品人妻蜜桃| 亚洲精品粉嫩美女一区| 国产精品99久久久久久久久| 午夜福利在线观看吧| 身体一侧抽搐| 很黄的视频免费| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 91麻豆精品激情在线观看国产| 亚洲av成人精品一区久久| 国产一区二区激情短视频| 久久精品国产综合久久久| 亚洲av第一区精品v没综合| 国产精品1区2区在线观看.| 青草久久国产| 精品人妻1区二区| 精品午夜福利视频在线观看一区| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 男女视频在线观看网站免费| av在线蜜桃| 美女 人体艺术 gogo| 色在线成人网| 尤物成人国产欧美一区二区三区| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 女人十人毛片免费观看3o分钟| 国产精品亚洲一级av第二区| 51国产日韩欧美| 美女免费视频网站| 观看免费一级毛片| 天天添夜夜摸| 欧美最新免费一区二区三区 | 性欧美人与动物交配| 国产精品av视频在线免费观看| 真实男女啪啪啪动态图| 国产一区二区亚洲精品在线观看| www日本在线高清视频| 在线观看午夜福利视频| 伊人久久大香线蕉亚洲五| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 91九色精品人成在线观看| 久久亚洲真实| 国产爱豆传媒在线观看| 色av中文字幕| 亚洲av免费在线观看| 色综合婷婷激情| 丝袜美腿在线中文| 日韩欧美 国产精品| 两人在一起打扑克的视频| 草草在线视频免费看| 成人一区二区视频在线观看| 狠狠狠狠99中文字幕| 精品国产亚洲在线| 国产亚洲欧美98| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 91在线精品国自产拍蜜月 | e午夜精品久久久久久久| 丁香欧美五月| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看| 男人和女人高潮做爰伦理| 丰满人妻熟妇乱又伦精品不卡| 免费av毛片视频| 高潮久久久久久久久久久不卡| 有码 亚洲区| 欧美日本视频| 观看美女的网站| 国产伦在线观看视频一区| 欧美性猛交╳xxx乱大交人| 久久精品国产综合久久久| 亚洲av一区综合| 国产毛片a区久久久久| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| 国产精品 国内视频| 在线观看免费视频日本深夜| 日本一二三区视频观看| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 日韩免费av在线播放| a在线观看视频网站| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 欧美区成人在线视频| 亚洲精华国产精华精| 国产老妇女一区| 青草久久国产| 99久久久亚洲精品蜜臀av| 日韩有码中文字幕| 精品人妻偷拍中文字幕| 最近在线观看免费完整版| 好男人电影高清在线观看| 夜夜夜夜夜久久久久| 日韩成人在线观看一区二区三区| 老司机午夜福利在线观看视频| 久久精品国产自在天天线| 日韩欧美在线二视频| 午夜免费观看网址| 亚洲av成人精品一区久久| 国产黄a三级三级三级人| 真人做人爱边吃奶动态| 久久久精品欧美日韩精品| 欧美乱色亚洲激情| 久久6这里有精品| 在线观看66精品国产| 久久性视频一级片| 国产一级毛片七仙女欲春2| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 最新在线观看一区二区三区| 亚洲成人精品中文字幕电影| 国产97色在线日韩免费| 他把我摸到了高潮在线观看| 亚洲无线观看免费| 国产精品嫩草影院av在线观看 | 亚洲av成人不卡在线观看播放网| 国产精品 欧美亚洲| 精品久久久久久久毛片微露脸| 在线观看免费视频日本深夜| 首页视频小说图片口味搜索| www.999成人在线观看| 伊人久久精品亚洲午夜| 成人性生交大片免费视频hd| 热99在线观看视频| 18+在线观看网站| 男人的好看免费观看在线视频| 久久国产乱子伦精品免费另类| 亚洲欧美日韩高清在线视频| 亚洲黑人精品在线| 亚洲精品在线观看二区| 亚洲人成网站高清观看| 久久6这里有精品| 伊人久久大香线蕉亚洲五| 天堂影院成人在线观看| 日本免费a在线| 成人av一区二区三区在线看| 国产精品 欧美亚洲| 18禁在线播放成人免费| 三级国产精品欧美在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产精品麻豆| 亚洲人成网站在线播放欧美日韩| 色视频www国产| 五月玫瑰六月丁香| 757午夜福利合集在线观看| 亚洲人与动物交配视频| 黄片小视频在线播放| 欧美精品啪啪一区二区三区| 国产成人av教育| 精品乱码久久久久久99久播| 日韩国内少妇激情av| 麻豆成人午夜福利视频| 热99在线观看视频| 国产午夜精品论理片| 久久久国产成人免费| 日韩欧美一区二区三区在线观看| 欧美日本视频| 99在线视频只有这里精品首页| av欧美777| 亚洲无线观看免费| 久久久国产成人免费| 久久精品国产亚洲av香蕉五月| 香蕉久久夜色| 欧美日韩一级在线毛片| 久久久久久久久大av| 伊人久久精品亚洲午夜| 亚洲人与动物交配视频| 香蕉av资源在线| 欧美绝顶高潮抽搐喷水| 熟女人妻精品中文字幕| 精品乱码久久久久久99久播| 少妇高潮的动态图| 亚洲欧美激情综合另类| 国产av不卡久久| 99视频精品全部免费 在线|