• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7(Ⅱ)*

      2012-07-02 03:01:30LIYanmei

      LI Yanmei

      (Department of Mathematics,Chuxiong Normal University,Yunnan Chuxiong,675000,China)

      The phase portraits of planar Zq-equivariant Hamiltonian vector fields of degree 7 are much more complicated than that of degree 5,and only a few vector fields of degree 7 have been discussed[1—5].In this paper,we will classify the phase portraits of a new planar Z2- equivariant Hamiltonian vector field of degree 7

      where k is a parameter with k>0.

      1 Qualitative Analysis of the Singular Points

      Because the system(1)has the property of Z2- equivariant,namely,the phase portrait is the same when it rotates π clockwise,so we only need to study the singular points in the first and second quadrants.

      The Jacobian of this system is

      in which

      Discussing the Jacobians of these singular points,we can obtain the following results without difficulty:

      Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and we can readily obtain

      2 Phase Portraits of the System(1)

      The Hamiltonian of the system(1)is

      H(x,y)= [3x8- (k2+2k+2.36)x6+(0.51k2+1.02k+0.645)x4- 0.0675(k+1)2x2

      Comparing the Hamiltonians of the singular points,we get the following results.

      Theorem 2

      (1)If0<k<0.239066,the phase portrait of the system(1)can be shown as Fig.1(1).

      (2)If k=0.239066,the phase portrait of the system(1)can be shown as Fig.1(2).

      (3)If 0.239066<k<0.255214,the phase portrait of the system(1)can be shown as Fig.1(3).

      (4)If k=0.255214,the phase portrait of the system(1)can be shown as Fig.1(4).

      (5)If 0.255214<k<0.2806248,the phase portrait of the system(1)can be shown as Fig.1(5).

      (6)If k=0.2806248,the phase portrait of the system(1)can be shown as Fig.1(6).

      (7)If 0.2806248<k<0.28217,the phase portrait of the system(1)can be shown as Fig.1(7).

      (8)If k=0.28217,the phase portrait of the system(1)can be shown as Fig.1(8).

      (9)If 0.28217<k<0.282535,the phase portrait of the system(1)can be shown as Fig.1(9).

      (10)If k=0.282535,the phase portrait of the system(1)can be shown as Fig.1(10).

      (11)If k >0.282535,the phase portrait of the system(1)can be shown as Fig.1(11).

      Proof

      We denote H(0,0),H(± a,0),H(± b,0),H(± c,0),H(0,l),H(0,m),H(0,n),H(± a,l),H(± a,m),H(± a,n),H(± b,l),H(± b,m),H(± b,n),H(± c,l),H(± c,m),and H(± c,n)by h00,ha0,hb0,hc0,h0l,h0m,h0n,hal,ham,han,hbl,hbm,hbn,hcl,hcmand hcm,respectively.Obviously,we have hxy=hx0+h0y,h0l=h0n,h0m=0.

      (1)If k=0.229005,then hcl=ha0.Hence,when 0 < k < 0.239066,the Hamiltonians of the singular points satisfy the relations hal=han<ha0=ham≤hcl=hcn<hc0=hcm<hbl=hbn<hb0=hbm<h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(1).

      (2)When k=0.239066,we have hcm=hbl,and the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham<hc0=hcm=hbl=hbn<hb0=hbm<h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(2).

      (3)When 0.239066<k<0.255214,the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham<hbl=hbn<hc0=hcm<hb0=hbm≤h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(3).

      (4)When k=0.255214,we get ha0=hbl,and the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham=hbl=hbn<hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(4).

      (5)When0.255214<k<0.2806248,the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<hbl=hbn<ha0=ham<hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(5).

      (6)When k=0.2806248,we obtain aa0=hc0,and the Hamiltonians of the singular points satisfy the relations hal=han=hcl=hcn<hbl=hbn<ha0=ham=hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(6).

      (7)When 0.2806248<k<0.28217,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<ha0=ham<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(7).

      (8)When k=0.28217,we obtain ha0=hol,and the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<ha0=ham=h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(8).

      (9)If 0.28217<k<0.282535,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<h0l=h0n<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(9).

      (10)If k=0.282535,we get h0n=hc0,and the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm=h0l=h0n<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(10).

      (11)If k >0.282535,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<h0l=h0n<hc0=hcm<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(11).

      Fig.1(1)~(11)The phase portraits of system(1)

      [1]Wu Kaiteng,Cao Hongjun.Classification of phase portraits about planar quintic Z4- equivariant vector fields.Proceedings of the third international conference on nonlinear mechanics[M].Shanghai:Shanghai University press,1998:873—877.

      [2]Li Yanmei.The classification of phase portraits about some Hamiltonian vector field with Z3- equivariant property [J].Journal of Yunnan Normal University,2003,23(6):5—7.

      [3]Li Yanmei.The General Form and Phase Portraits of Planar Septic Hamiltonian Vector Field with Z8- Equivariant Property [J].Journal of Chuxiong Normal University,2010,25(12):32—35.

      [4]Li Yanmei.The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2- Equivariant Property [J].Journal of Chuxiong Normal University,2011,26(9):47—50.

      [5]Li Yanmei,Hu Zhao.Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian Vector Fields of degree 7(Ⅰ)[J].Journal of Chuxiong Normal University,2012,27(6):1—4.

      鄂尔多斯市| 湘西| 永和县| 晋州市| 合水县| 九江市| 郁南县| 隆子县| 府谷县| 大石桥市| 昭觉县| 临西县| 平武县| 景东| 凌源市| 东光县| 余干县| 大余县| 兰西县| 潞城市| 喀喇沁旗| 博爱县| 东丰县| 大宁县| 沙湾县| 万源市| 应城市| 阿尔山市| 博客| 河源市| 泰顺县| 朝阳区| 娱乐| 汕尾市| 道孚县| 黑龙江省| 广南县| 双城市| 建阳市| 高陵县| 黑河市|