• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of an occupant restraint system model and parametric study on equivalent crash pulse in vehicle frontal offset crash

    2012-06-21 01:58:20LIZhigang李志剛ZHANGJinhuan張金換MAChunsheng馬春生
    關鍵詞:李志剛張金春生

    LI Zhi-gang(李志剛), ZHANG Jin-h(huán)uan(張金換), MA Chun-sheng(馬春生)

    (State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China)

    In general,the primary factors affecting occupant injury are crash pulse severity,restraint system,and occupant cabin space under full frontal and frontal offset crash[1].The crash pulse severity represents the total energy absorbed by vehicle structure during vehicle crash.It represents the performance of a vehicle and its safety level.It is known that the crash pulse will vary with different vehicles,including the peak value of the crash pulse and the time duration.Yu et al conducted optimum on the crash pulse of vehicle and occupant restraint system,in which the crash pulses were given three different peak values and two of them varied based on a baseline value,however,the time duration of each peak value was not treated as design variables[2].Grimes and Lee investigated the effects of several different crash pulse shapes on occupant kinematics and response through simulation[3].According to the comparison and observation,most of the vehicles’pulses can be treated as typical dual-trapezoid shapes with two peak values in frontal offset crash.In order to analyze the effect of more equivalent factors fully,including the peak values and time durations,on dummy injury metrics,①a vehicle finite element(FE)model and occupant restraint system (ORS)model in the offset crash were developed and validated against test;②the crash pulse was equivalent to a dual-trapezoid shape pulse and was quantitatively described by six parameters;③parametric studies were conducted to analyze the sensitivities of the parameters of equivalent crash pulse on drive injury metrics.

    1 Model development and validation

    1.1 Two steps of the numerical study in vehicle passive safety

    Two steps were used to conduct numerical study in vehicle crash safety as shown in Fig.1.The whole vehicle FE model used to conduct crash simulation was treated as the first step and the ORS model used to evaluate occupant injury was regarded as the second step.The vehicle crash pulse and the deformation of vehicle primary structures which were treated as the interface of these two levels were put into the ORS model to conduct further simulation.In this study,the ORS model only refers to the driver side restraint system model.

    Fig.1 Two levels for vehicle crash and occupant protection

    1.2 Development of vehicle FE model and validation against test data

    The frontal offset crash FE model was developed based on one physical vehicle using HYPERMESH and LSDYNA and there are 807 462elements in total.Partial model can be seen from levell in Fig.1.Both simulation and test were conducted under the condition of C-NCAP[4]with the crash velocity of 56km/h.The comparison of linear acceleration between test and simulation are shown in Fig.2which shows that the peak acceleration of the simulation is slightly higher than the test.This was probably because the engine was treated as a rigid body and the front bumper was a little stiffer in the simulation model than in the physical vehicle in the test.The biggest difference of crash pulse between simulation and test is the first peak value as shown in Fig.2,however,the peak value of the dummy injury metrics were caused by the second peak value of the crash pulse which can be observed from the time duration.The deformation of primary structures comparison between test and simulation are shown in Fig.3.Results show that the global vehicle deformation and A-pillar deformation corresponded well between simulation and test which errors were less than 10%.The errors of steering wheel rearward displacement and pedal rearward displacement were also controlled within 15%.The upward displacements of steering wheel and pedal are relatively small in both test data and the simulated result,thus leading to larger errors when calculated based on smaller values obtained experimentally.Discrepancies may be due to the connection types used in connecting pedal and steering column in the model.By taking the simulated deformation of primary components and vehicle acceleration collectively into account,it can be considered that the simulation results correlated reasonably with the test.

    Fig.2 Linear acceleration of vehicle

    Fig.3 Deformations of primary structures

    1.3 Development of ORS model and validation against test data

    The ORS model developed using MADYMO included vehicle floor,pedal,the panel board,seat,seatbelt,airbag,50%Hybrid Ⅲ dummy etc.which can be seen from level 2in Fig.1.Contacts between the dummy and components,such as seat,airbag,panel,airbag and windshield,airbag and steering wheel were defined.The linear acceleration(along vehicle longitudinal direction)and deformations of primary components,such as backward and upward displacement of steering column,backward displacement of pedal etc.extracted from the validated vehicle FE model were put into the ORS model.The B-pillar at the rocker which was not deformed during vehicle crash was treated as rigid,thus the parts surrounding B-pillar can be seen as the plane motion of rigid body.According to kinematic theory,the acceleration at any position of the rigid body can be written as a=ao+ε×r- ω2r. (1)

    The acceleration can be decomposed into tangential acceleration along longitudinal direction and vertical acceleration about vertical direction of vehicle as

    whereaAandaBare the linear accelerations of left B-pillar(driver side)and right B-pillar(passenger side)respectively;εistheangularaccelerationaboutleftB-pillar; ωistheangularvelocity,andristhevehicleinnerwidth.TheangularaccelerationεcanbederivedfromEq.(2)as

    The time duration and time step of the ORS model were set as 140ms and 10-6s respectively.Simulation results were validated against the test both in kinematic and dynamic response of the dummy.Fig.4shows the dummy kinematic trajectories between test and simulation at different time points.It can be seen that all the kinematic trajectories of the dummy in the simulation were quite identical to the test except for 40ms at which the dummy kinematics in the simulation displayed a little lag.

    Fig.4 Comparison of dummy trajectories between test and simulation

    The primary dummy injury metrics,such as head acceleration,neck axial force and chest deformation according to C-NCAP[4]were validated against the test,which is shown in Fig.5.The dummy injury metrics are corrected reasonably both in peak values and durations.In global,all the errors of the peak values were less than 20%.

    2 Equivalence of crash pulse and its validation in offset crash

    Fig.6shows a typical crash pulse shape in offset vehicle crash.It can be seen that the original acceleration curve has two peak values and both of them have certain durations.This type crash pulse was simplified as a dual-trapezoid shape curve.The simplified crash pulse had better meet two conditions:①it can be characterized with the smallest number of factors which can represent vehicle dynamic response;②it can adequately evaluate occupant response as the original crash pulse[5-6].In this study,the dummy energy density was also compared between equivalent pulse and original pulse besides the dummy injury metrics.

    Fig.5 Results of major dummy injury metrics

    Fig.6 Original and equivalent accelerations

    2.1 Comparisons of dummy injury metrics among test,simulation with original pulse,and simulation with equivalent pulse

    In order to validate the equivalent crash pulse,comparisons of primary important dummy injury metrics among test,simulation with original pulse,and simulation with equivalent pulse were performed as shown in Fig.5.The primary dummy injury metrics in this study included the head resultant acceleration,neck tensile axial force and chest deformation based on the C-NCAP[4].Re-sults show that the simulation with original pulse and simulation with equivalent pulse corresponded reasonably both in peak values and the time durations.

    2.2 Comparison of occupant energy density between simulations with original pulse and equivalent pulse

    A simplified vehicle-occupant model is used to obtain the occupant energy.The schematic of this model is shown in Fig.7[7-8],in whichMoandMvare the occupant and vehicle masses respectively,δisthegapbetweenseatbeltanddummy,andKandFaretherestraintstiffnessandcrashforce respectively.

    Fig.7 Schematic of vehicle-occupant model

    Theoccupantenergy/energydensitycanbe dividedintotwoparts:restraintsystemenergy(Ers)/energydensity(ers)andride-downenergy(Erd)/energydensity(erd)whichwereexpressed as

    The ride-down efficiency can be seen as

    wherexois occupant displacement during crash;xvis vehicle displacement;xo/v=xo-xv,occupant relative displacement.

    The displacements of the vehicle and occupant can be determined through second integration of dummy acceleration.In this study,the chest acceleration was used to represent the whole dummy acceleration.The displacements of the vehicle and dummy,the ride-down energy density and the restraint energy density of the dummy generated by original pulse and equivalent pulse are shown in Fig.8and Fig.9respectively.The equivalent pulse caused a little lower vehicle displacement and a little higher dummy displacement compared to the original pulse,thus the relative displacement of the dummy caused by equivalent pulse would be greater than the one caused by the original pulse and the corresponding maximum dummy ride-down energy density and restraint energy density became a little lower andhigher respectively.In general,the equivalent crash pulse can reasonably replace the original pulse through the global comparison of dummy energy density in the displacement domain.

    Fig.8 Displacements of vehicle and dummy

    Fig.9 Dummy ride-down and restraint energy density

    3 Parametric studies on vehicle crash equivalent pulse

    Linear acceleration-time history curve is the most important factor affecting dummy injury criteria and mainly determined by the whole vehicle structures.In order to investigate the influence of linear acceleration on occupant injuries,parametric studies were conducted on vehicle equivalent pulse.In general,the linear accelerations varies from vehicle to vehicle,thus four types of vehicle acceleration-time curves obtained from our test database and literatures were used to determine the ranges of equivalent pulse parameters[9,10].The four types of crash pulse were marked as type-A,type-B,type-C,and type-D as shown in Fig.10.All of these pulses were collected under the test condition of C-NCAP[4]except for type-D which was obtained under the test condition of Euro-NCAP[11].

    Fig.10 Four types of vehicle crash pulse

    The deformations of primary components,especially the deformation of instrument panel varies with the type of vehicle,therefore they would especially affect the injury metrics of femur,knee and tibia due to direct contact during crash.However,collecting the specific deformations of primary components of all the vehicles are time-consuming and unpractical,thus only the injuries of dummy regions above knee were analyzed to try to eliminate these influences brought by different de-formations of primary components.

    Six parameters were used to describe the equivalent crash pulse,as shown in Fig.6:t1is the time-point corresponding to first peak value of pulse;h1is the first peak value;w1is the duration of the first peak value;t2is the time-point corresponding to second peak value of pulse;h2is the second peak value;w2is the duration of second peak value.The ranges of these six parameters were determined based on Fig.10and they also needed to meet the constraint conditions of timepoint:t1+w1<t2andt2+w2<140 (the 140ms can be treated as the end of the crash).The ranges of parameters and levels corresponding to the factors are shown in Tab.1.These levels and factors were arrayed based on a Taguchi Orthogonal standard table L27(313),in which the first 6factors of 13in this standard table were used and combined to 27combinations,therefore the twenty seven equivalent pulses were put into the model respectively to conduct simulations.The results of peak values of head resultant acceleration(Head_Acc),HIC,neck axial force (Neck_Frc),and chest deformation(Chest_Def)were output to conduct sensitivity analysis.

    Tab.1 Levels of factors

    Results show that factorh2was statistically significant on all the injury metrics aforementioned in this study(P=0.001,P=0.000,P=0.000,andP=0.000respectively).Factorh1was significant on peaks of head resultant acceleration,HIC,neck axial force(P=0.011,0.038,and 0.033respectively).The interactive factors oft1andt2were also significant on peak of head resultant acceleration(P=0.03).The effect sizes of all the factors on each injury criterion was normalized which means the maximum effect size on each injury criterion regarded as 1as shown in Fig.11.All the effects generated by factorh1were negative which means the largerh1,the lower injury metrics.Therefore,a higherh1and lowerh2would bring deeply lower injury metrics and decreasing second peak value of the pulse was the most effective way to reduce the human injury criteria.Besides factorsh1andh2,factorst1,t2,w1,andw2also had some effects on HIC,head resultant acceleration,HIC and neck axial force respectively.According to the analysis above,the initial energy of a vehicle was constant.In order to lower the second peak value of the crash pulse,the first peak value should be increased.Another point needed to be pointed out is that the first peak value of crash pulse didn’t have any effect on the maximum chest deformation,because the chest deformation was mainly caused by the constraint force of the seatbelt.The force increased with increasing the dummy relative displacement with seatbelt.When the first peak value of the crash pulse occurred,the dummy just began to move with a smaller displacement,thus the seatbelt force would be very low and the maximum chest deformation would not be influenced.

    Fig.11 Normalized effect sizes of all the factors

    4 Conclusion

    A vehicle FE model and ORS model were developed and validated against test data.Parametric studies were performed to analyze the sensitivities of parameters of the equivalent dual-trapezoid shape pulse on head resultant acceleration,HIC,neck axial force and chest deformation.Three primary conclusions were obtained:①the equivalent dual-trapezoid crash pulse is accurate enough to replace the original pulse;②the first and second peak values of the pulse were statistically significant on most injury criteria above and the interaction of the time-points of first peak value and second peak value also had a significant influence on head resultant acceleration(P=0.03);③a higher first peak value and a lower second peak value of the crash pulse would bring lower injury metrics.In this study,the ranges of the factors used to conduct parametric studies were limited by four types of vehicle tests,more crash pulses in frontal offset crash are needed to further obtain more accurate and wider ranges.

    [1]Bo P S,Sung J H,Won C K,et al.Performance analysis methodology based on crash pulse severity and vehicle occupant packaging for full frontal crash event[C]∥Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles.Stuttgart,Germany:[s.n.],2009:Seo1-Seo6.

    [2]Qiang Y,Naoya K,Hideoki Y,et al.Optimum design of vehicle frontal structure and occupant restraint system for crashworthiness[J].JSME International Journal Series A,2001,44(4):594-601.

    [3]Grimes W D,Lee F D.The effect of crash pulse shape on occupant simulations[C]∥SAE 2000World Congress,Session:Accident Reconstruction:Simulation& Animation.Detroit,MI,USA:[s.n.],2000:1-10.

    [4]China Automotive Technology and Research Center(CATARC).China-New Car Assessment Program(C-NCAP)[R],2009.(in Chinese)

    [5]Liu Zhixin,Shi Yongwan,Chen Hong.Modeling and analysis of crash pulse of vehicle body based on tipped equivalent square wave method[J].Advanced Materials Research,2011,211-212:1007-1011.

    [6]Huang M.Vehicle crash mechanics[M].Boca Raton,Fla:CRC Press,2002.

    [7]Bois P D,Chou C C,Fileta B B,et al.Vehicle crashworthiness and occupant protection[R].Michigan:Automotive Applications Committee,American Iron and Steel Institute Southfield,2004:214-219.

    [8]Huang M,Laya J,Loo M.A study on ride-down efficiency and occupant responses in high speed crash tests[C]∥International Congress & Exposition.Detroit,MI,USA:[s.n.],1995:29-36.

    [9]Qi Licheng,Wu Xiuchun,Wang Chao,et al.Simulating crashworthiness of car in offset impact[J].Journal of Liaoning Institute of Technology,2006,26(4):252-254.(in Chinese)

    [10]Chul K H,Dong S K.Enhancement of offset crash performance in a short carrier front suspension vehicle[C]∥International Body Engineering Conference and Exhibition.Detroit,Michigan,USA:[s.n.],2001.

    [11]Hobbs C A,McDonough P J.Development of the european new car assessment programme(Euro NCAP)[C]∥Proceedings of the 16th International Technical Conference on the Enhanced Safety of Vehicles(ESV).Windsor,England:[s.n.],1998:2439-2453.

    (Edited byCai Jianying)

    猜你喜歡
    李志剛張金春生
    基于OBE教育理念的醫(yī)用化學課程改革與實踐
    智慧教育背景下民辦高校醫(yī)用化學混合式教學研究
    曹春生作品
    口頭戀人
    現代婦女(2019年11期)2019-11-25 16:55:18
    A numerical model for pipelaying on nonlinear soil stiffness seabed*
    只知其一
    小說月刊(2016年5期)2016-05-06 16:47:52
    曹春生
    Beamforming of Whole Airspace Phased Array TT&C System Based on Linear Subarrays
    不認賬
    雜文選刊(2014年12期)2014-11-17 03:53:48
    《過中國年》
    海峽影藝(2013年3期)2013-11-30 08:15:58
    亚洲精品aⅴ在线观看| 日本欧美视频一区| 日韩电影二区| 色94色欧美一区二区| 99精国产麻豆久久婷婷| 边亲边吃奶的免费视频| 亚洲美女视频黄频| 国产精品欧美亚洲77777| 91aial.com中文字幕在线观看| 美女国产视频在线观看| 国产视频首页在线观看| 日日爽夜夜爽网站| 亚洲欧美日韩另类电影网站| 久久久国产欧美日韩av| 麻豆成人av视频| 成人亚洲欧美一区二区av| 午夜福利在线观看免费完整高清在| 91久久精品电影网| 亚洲国产av影院在线观看| 国产精品免费大片| 国模一区二区三区四区视频| 久热久热在线精品观看| 欧美激情 高清一区二区三区| 国产精品一区二区在线观看99| 日韩一本色道免费dvd| 最黄视频免费看| 欧美精品国产亚洲| 99久久综合免费| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久| 免费看不卡的av| 久久国产精品大桥未久av| 男女边摸边吃奶| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 国产黄片视频在线免费观看| 在线免费观看不下载黄p国产| 亚洲不卡免费看| 免费少妇av软件| 天堂俺去俺来也www色官网| 美女内射精品一级片tv| 黑人猛操日本美女一级片| 天天躁夜夜躁狠狠久久av| 国产av一区二区精品久久| 性色av一级| 国产精品99久久99久久久不卡 | 国产av精品麻豆| 精品人妻在线不人妻| av在线老鸭窝| 91精品国产九色| 亚洲欧美中文字幕日韩二区| 亚洲精品日本国产第一区| 老司机亚洲免费影院| 国产老妇伦熟女老妇高清| 亚洲精品一区蜜桃| 国产精品人妻久久久久久| 99视频精品全部免费 在线| 国产伦精品一区二区三区视频9| 久久影院123| 99久久精品国产国产毛片| 晚上一个人看的免费电影| 国产又色又爽无遮挡免| 久久久久久久久久久久大奶| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 秋霞在线观看毛片| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 日韩av在线免费看完整版不卡| 国产成人精品久久久久久| 日本av免费视频播放| xxx大片免费视频| 高清不卡的av网站| av在线app专区| 亚洲精品美女久久av网站| 久久久国产精品麻豆| 精品人妻熟女毛片av久久网站| 99视频精品全部免费 在线| 最黄视频免费看| 亚洲美女黄色视频免费看| 男女免费视频国产| 日本wwww免费看| 男女边吃奶边做爰视频| a级毛片黄视频| 久久久国产欧美日韩av| 男女免费视频国产| 成人国语在线视频| 精品少妇内射三级| 欧美成人午夜免费资源| 亚洲中文av在线| 午夜福利网站1000一区二区三区| av一本久久久久| 热99国产精品久久久久久7| 成年av动漫网址| 91精品一卡2卡3卡4卡| 美女大奶头黄色视频| 亚洲国产av新网站| 美女cb高潮喷水在线观看| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三| 欧美日韩在线观看h| 观看av在线不卡| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 久久久久久久大尺度免费视频| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 99九九在线精品视频| 麻豆精品久久久久久蜜桃| 欧美97在线视频| 亚洲第一区二区三区不卡| 亚洲av成人精品一二三区| 天美传媒精品一区二区| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 日韩中字成人| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 精品酒店卫生间| 日本色播在线视频| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 亚洲性久久影院| av免费观看日本| 视频中文字幕在线观看| 纯流量卡能插随身wifi吗| 亚洲经典国产精华液单| 精品久久久久久久久亚洲| 国产日韩一区二区三区精品不卡 | 免费看av在线观看网站| 精品亚洲成a人片在线观看| 日韩电影二区| 交换朋友夫妻互换小说| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 亚洲第一av免费看| 欧美三级亚洲精品| 26uuu在线亚洲综合色| 黄片播放在线免费| 91精品国产九色| 高清视频免费观看一区二区| 免费高清在线观看视频在线观看| 一级二级三级毛片免费看| 午夜激情av网站| 成人综合一区亚洲| 在线天堂最新版资源| 久久久久精品久久久久真实原创| 国产成人a∨麻豆精品| 国产精品久久久久久精品古装| 成人午夜精彩视频在线观看| 日韩av不卡免费在线播放| 日韩中文字幕视频在线看片| 久久精品夜色国产| 日韩电影二区| 一区二区三区精品91| av国产久精品久网站免费入址| 国产在线一区二区三区精| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品456在线播放app| 伊人久久国产一区二区| 日本黄大片高清| 精品午夜福利在线看| 午夜福利影视在线免费观看| 亚洲av成人精品一区久久| 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| 久久韩国三级中文字幕| 久久久久久久国产电影| 欧美日韩综合久久久久久| 精品亚洲成国产av| 亚洲精品成人av观看孕妇| 少妇 在线观看| 日韩成人av中文字幕在线观看| 狠狠婷婷综合久久久久久88av| 国产成人一区二区在线| 精品国产一区二区三区久久久樱花| 国产亚洲av片在线观看秒播厂| 精品亚洲乱码少妇综合久久| 九色亚洲精品在线播放| 亚洲综合精品二区| 能在线免费看毛片的网站| 精品少妇内射三级| 中文字幕av电影在线播放| 国精品久久久久久国模美| 免费av中文字幕在线| 久久久精品94久久精品| 中国国产av一级| 免费观看性生交大片5| av卡一久久| 亚洲四区av| 一级黄片播放器| 亚洲av综合色区一区| 国产日韩欧美视频二区| 简卡轻食公司| 久久人人爽人人片av| 狠狠精品人妻久久久久久综合| 三上悠亚av全集在线观看| 纯流量卡能插随身wifi吗| 丝袜在线中文字幕| 精品一区在线观看国产| 免费播放大片免费观看视频在线观看| 久久精品久久久久久噜噜老黄| 少妇人妻 视频| 国产亚洲欧美精品永久| 爱豆传媒免费全集在线观看| 哪个播放器可以免费观看大片| 午夜av观看不卡| 国产熟女午夜一区二区三区 | 亚洲精品久久午夜乱码| 人人妻人人添人人爽欧美一区卜| 久久ye,这里只有精品| 男女高潮啪啪啪动态图| 免费久久久久久久精品成人欧美视频 | 如日韩欧美国产精品一区二区三区 | 亚洲国产毛片av蜜桃av| 免费黄网站久久成人精品| 欧美97在线视频| 女人久久www免费人成看片| 亚洲,欧美,日韩| 亚洲性久久影院| 在线播放无遮挡| 欧美日本中文国产一区发布| 精品人妻在线不人妻| 日韩在线高清观看一区二区三区| 不卡视频在线观看欧美| 亚洲欧美精品自产自拍| 久久免费观看电影| 一区二区三区精品91| 国产一区二区在线观看日韩| 国产熟女午夜一区二区三区 | 在线观看三级黄色| 国产亚洲最大av| 免费观看性生交大片5| 成人毛片a级毛片在线播放| 国产精品无大码| 国产国拍精品亚洲av在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产av影院在线观看| 亚洲精品,欧美精品| 免费不卡的大黄色大毛片视频在线观看| 女人精品久久久久毛片| 又粗又硬又长又爽又黄的视频| 午夜久久久在线观看| 国产精品三级大全| 免费久久久久久久精品成人欧美视频 | 日韩中文字幕视频在线看片| 欧美少妇被猛烈插入视频| 欧美性感艳星| 黄色怎么调成土黄色| 亚洲,一卡二卡三卡| 午夜老司机福利剧场| 大香蕉97超碰在线| 亚洲国产色片| 九色亚洲精品在线播放| 亚洲人与动物交配视频| 久久国内精品自在自线图片| 日本欧美国产在线视频| 国产成人免费无遮挡视频| 中文字幕精品免费在线观看视频 | 欧美人与善性xxx| 精品久久久久久久久亚洲| 久久精品国产自在天天线| 亚洲美女视频黄频| 九九久久精品国产亚洲av麻豆| 日产精品乱码卡一卡2卡三| 欧美精品一区二区免费开放| av福利片在线| 伊人亚洲综合成人网| 成年美女黄网站色视频大全免费 | 国产精品秋霞免费鲁丝片| 一级毛片 在线播放| 国产国拍精品亚洲av在线观看| 男女高潮啪啪啪动态图| 精品少妇久久久久久888优播| 亚洲国产最新在线播放| 插阴视频在线观看视频| av女优亚洲男人天堂| 丰满饥渴人妻一区二区三| 亚洲av不卡在线观看| 丁香六月天网| h视频一区二区三区| 99国产精品免费福利视频| 波野结衣二区三区在线| 性高湖久久久久久久久免费观看| 色网站视频免费| 人妻夜夜爽99麻豆av| 欧美精品一区二区大全| 天天躁夜夜躁狠狠久久av| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 亚洲精品亚洲一区二区| 国产高清不卡午夜福利| 日本-黄色视频高清免费观看| 午夜福利在线观看免费完整高清在| av网站免费在线观看视频| 国产精品国产三级专区第一集| 69精品国产乱码久久久| 99久久中文字幕三级久久日本| 国产一区亚洲一区在线观看| 久久人人爽人人爽人人片va| 丰满乱子伦码专区| 搡老乐熟女国产| 精品少妇久久久久久888优播| 国产 精品1| 亚洲国产毛片av蜜桃av| 免费av不卡在线播放| 久久精品国产自在天天线| 丰满少妇做爰视频| 高清在线视频一区二区三区| 国产在线免费精品| 亚洲精品日韩在线中文字幕| av又黄又爽大尺度在线免费看| 国产精品久久久久久av不卡| 曰老女人黄片| 国产69精品久久久久777片| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 午夜av观看不卡| 免费观看无遮挡的男女| 亚洲五月色婷婷综合| 国产日韩欧美在线精品| 国产精品99久久久久久久久| 最近中文字幕2019免费版| 最近中文字幕2019免费版| 视频在线观看一区二区三区| 日韩制服骚丝袜av| 国产精品三级大全| 精品少妇内射三级| 亚洲人与动物交配视频| 老熟女久久久| 国产伦理片在线播放av一区| 免费观看在线日韩| 日本午夜av视频| 亚洲av.av天堂| 亚洲国产精品一区三区| 精品少妇内射三级| 韩国av在线不卡| 丁香六月天网| 国产毛片在线视频| 成年女人在线观看亚洲视频| 波野结衣二区三区在线| 91aial.com中文字幕在线观看| 午夜久久久在线观看| 国产黄片视频在线免费观看| 亚洲av免费高清在线观看| 999精品在线视频| 夜夜爽夜夜爽视频| a级片在线免费高清观看视频| 人人妻人人澡人人爽人人夜夜| 汤姆久久久久久久影院中文字幕| 最新中文字幕久久久久| 99热网站在线观看| 极品人妻少妇av视频| 2018国产大陆天天弄谢| 啦啦啦在线观看免费高清www| 18禁在线播放成人免费| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| 全区人妻精品视频| 国产午夜精品久久久久久一区二区三区| 我的女老师完整版在线观看| 免费大片18禁| 国产亚洲精品久久久com| 亚洲五月色婷婷综合| 久久精品国产亚洲av天美| 少妇被粗大的猛进出69影院 | 婷婷色综合www| a级毛色黄片| 亚洲精品中文字幕在线视频| 男女无遮挡免费网站观看| 尾随美女入室| 国产有黄有色有爽视频| 国产永久视频网站| 一级毛片 在线播放| 一区二区三区乱码不卡18| 久久99热6这里只有精品| 男人添女人高潮全过程视频| 女性生殖器流出的白浆| 色吧在线观看| 少妇人妻精品综合一区二区| 女性生殖器流出的白浆| 91午夜精品亚洲一区二区三区| 亚洲国产av影院在线观看| 日韩强制内射视频| 亚洲欧美中文字幕日韩二区| 亚洲图色成人| 一个人看视频在线观看www免费| 男女边摸边吃奶| 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频| 狂野欧美白嫩少妇大欣赏| videos熟女内射| 一个人看视频在线观看www免费| 永久网站在线| 99热国产这里只有精品6| 男女高潮啪啪啪动态图| 老司机影院成人| 蜜桃国产av成人99| 丝袜喷水一区| 国产成人一区二区在线| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区黑人 | 热99国产精品久久久久久7| 内地一区二区视频在线| www.av在线官网国产| 国产男女超爽视频在线观看| 在线观看免费日韩欧美大片 | 一区二区三区精品91| 亚洲美女黄色视频免费看| 哪个播放器可以免费观看大片| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 中文字幕精品免费在线观看视频 | 一区二区三区免费毛片| 最近的中文字幕免费完整| 中文字幕免费在线视频6| 欧美激情极品国产一区二区三区 | 欧美97在线视频| 一级,二级,三级黄色视频| 久久人人爽人人爽人人片va| 精品一区二区三区视频在线| 少妇被粗大的猛进出69影院 | 丰满少妇做爰视频| av黄色大香蕉| 久久久久久久久久成人| 国产午夜精品久久久久久一区二区三区| 91精品伊人久久大香线蕉| 中文字幕免费在线视频6| 久久亚洲国产成人精品v| av网站免费在线观看视频| 国产男女内射视频| 久久久久网色| 成人综合一区亚洲| 精品人妻偷拍中文字幕| 有码 亚洲区| 麻豆乱淫一区二区| 欧美老熟妇乱子伦牲交| 街头女战士在线观看网站| 国产av国产精品国产| 亚洲av在线观看美女高潮| 成年美女黄网站色视频大全免费 | 97精品久久久久久久久久精品| 欧美人与善性xxx| 亚洲美女视频黄频| 久久久久久久国产电影| 伦理电影大哥的女人| 国产成人免费观看mmmm| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| 性高湖久久久久久久久免费观看| 亚洲精品色激情综合| 97精品久久久久久久久久精品| 久久久久久久久久成人| 国产一区二区在线观看av| 老司机亚洲免费影院| 日韩一区二区视频免费看| 中文欧美无线码| 国产在视频线精品| 国产不卡av网站在线观看| 日韩精品有码人妻一区| 女性被躁到高潮视频| 久久久久人妻精品一区果冻| 亚洲人成网站在线播| 永久网站在线| 青青草视频在线视频观看| 国产乱人偷精品视频| 亚洲精品视频女| 久久韩国三级中文字幕| 久久狼人影院| 国产午夜精品久久久久久一区二区三区| 大片免费播放器 马上看| 人妻 亚洲 视频| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产专区5o| 亚洲av欧美aⅴ国产| 毛片一级片免费看久久久久| 中文字幕久久专区| 亚洲欧洲国产日韩| 精品人妻熟女av久视频| 十八禁网站网址无遮挡| 国产欧美另类精品又又久久亚洲欧美| 中文字幕亚洲精品专区| 母亲3免费完整高清在线观看 | 99久久综合免费| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看 | 一级毛片电影观看| 高清在线视频一区二区三区| 亚洲天堂av无毛| 女性被躁到高潮视频| 大香蕉久久网| 日韩强制内射视频| 成人综合一区亚洲| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 两个人的视频大全免费| 99久久综合免费| 高清视频免费观看一区二区| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 综合色丁香网| 熟女av电影| 搡老乐熟女国产| 少妇被粗大的猛进出69影院 | 免费看光身美女| 又粗又硬又长又爽又黄的视频| 内地一区二区视频在线| 只有这里有精品99| 99久久精品国产国产毛片| 一个人看视频在线观看www免费| 久久久精品94久久精品| 欧美精品高潮呻吟av久久| 99热网站在线观看| videos熟女内射| 中国三级夫妇交换| 免费黄频网站在线观看国产| 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| 日本av免费视频播放| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 一二三四中文在线观看免费高清| 亚洲久久久国产精品| 搡老乐熟女国产| 国产av一区二区精品久久| 久久人人爽人人爽人人片va| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 最近2019中文字幕mv第一页| 人成视频在线观看免费观看| 一区二区三区四区激情视频| 麻豆成人av视频| 欧美性感艳星| 国产又色又爽无遮挡免| 一级片'在线观看视频| 午夜福利视频在线观看免费| 国产精品国产三级国产av玫瑰| 日本91视频免费播放| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 少妇人妻久久综合中文| 中文字幕免费在线视频6| 国产一区二区在线观看日韩| 日本黄色片子视频| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| 欧美日韩综合久久久久久| 久久青草综合色| 在线播放无遮挡| 免费久久久久久久精品成人欧美视频 | 一级,二级,三级黄色视频| 麻豆精品久久久久久蜜桃| 欧美日韩在线观看h| 欧美成人精品欧美一级黄| 美女主播在线视频| 欧美 日韩 精品 国产| 美女主播在线视频| 如何舔出高潮| 日韩精品有码人妻一区| 三上悠亚av全集在线观看| 国产精品秋霞免费鲁丝片| 丁香六月天网| 免费不卡的大黄色大毛片视频在线观看| 午夜影院在线不卡| 久久人人爽人人爽人人片va| 少妇的逼水好多| 丰满迷人的少妇在线观看| 日本黄色日本黄色录像| 王馨瑶露胸无遮挡在线观看| 三级国产精品欧美在线观看| 简卡轻食公司| 国产精品 国内视频| 久久精品国产亚洲网站| 中文欧美无线码| 亚洲少妇的诱惑av| 精品一区在线观看国产| 国产成人freesex在线| 热re99久久国产66热| 高清午夜精品一区二区三区| 亚洲四区av| 婷婷色麻豆天堂久久| 特大巨黑吊av在线直播| 99热网站在线观看| 日韩电影二区| 黄片播放在线免费| 久久久国产精品麻豆| 美女福利国产在线| 波野结衣二区三区在线| 日本欧美国产在线视频| 午夜福利网站1000一区二区三区| 99热全是精品| 精品国产乱码久久久久久小说| av在线app专区| 精品久久国产蜜桃| 久久久久久久久久成人| 一区二区三区四区激情视频| 国产不卡av网站在线观看| 丰满乱子伦码专区| 亚洲性久久影院| 欧美日韩视频高清一区二区三区二| 91精品一卡2卡3卡4卡|