• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Determination of Inositols and Carbohydrates in Different Citrus Juices by Gas Chromatography with Pre-column Derivatization

    2012-04-06 01:30:18ZHANGYaohaiZHAOQiyangZHANGXuelianWANGLeiJIAOBiningZHOUZhiqin
    食品科學(xué) 2012年10期
    關(guān)鍵詞:肌醇柑桔西南

    ZHANG Yao-hai,ZHAO Qi-yang,ZHANG Xue-lian,WANG Lei,JIAO Bi-ning,,*,ZHOU Zhi-qin

    (1. Institute of Citrus Research, Southwest University, Chongqing 400712, China;2. College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;3. College of Food Science, Southwest University, Chongqing 400716, China)

    Simultaneous Determination of Inositols and Carbohydrates in Different Citrus Juices by Gas Chromatography with Pre-column Derivatization

    ZHANG Yao-hai1,2,ZHAO Qi-yang1,ZHANG Xue-lian3,WANG Lei1,JIAO Bi-ning1,3,*,ZHOU Zhi-qin2

    (1. Institute of Citrus Research, Southwest University, Chongqing 400712, China;2. College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;3. College of Food Science, Southwest University, Chongqing 400716, China)

    A gas chromatographic method using pre-column derivatization was described for the quantitative analysis of fructose, glucose, sucrose, chiro-, scyllo- and myo-inositol in different citrus juices. Juices from different fresh citrus (looseskin mandarin, sweet orange, pummelo, lemon and kumquat) were prepared in the laboratory. Inositols and carbohydrates were analyzed by GC as their oximes derivatives and their identities were confirmed by retention of pure standards. The method was evaluated for precision and recovery using methyl-α-D-glucoside as an internal standard. The recoveries of the method evaluated at two spiked levels were in the range of 98.1%-106.9% with RSDs from 0.6%-6.1%. The limits of detection (LODs) were from 0.29×10-3-0.41×10-3μg/L (RSN=3). The results support the suitability of the method. The method is simple, quick and reproducible, and applicable to confirm inositols and carbohydrates in different kinds of citrus juice.

    gas chromatography (GC);inositol;citrus juice;internal standard

    It is well known that fruit juices are an important source of energy in the form of glucose, fructose and sucrose being the most abundant in fruit and fruit products[1]. At present, analytical methods of sugar can be roughly divided into two groups. One is chromatography and the other is enzymology. As dominating method, chromatography developed to determine sugar includes gas chromatography (GC)[1-6], high performance liquid chromatography (HPLC)[7-8], high performance anion-exchange chromatography (HPAEC)[9-10]and capillary electrophoresis (CE)[11].

    The biochemical meaterials in citrus such as inositols, flavonoids, limonoides, carotenoids and phenolic acids not only have effects of reducing blood sugar level, cholesterollowering, anti-cancer, prevention and treatment of circulatory and psychiatric disorders and so on, but also can be used as the markers of screening species initially and adulteration detection of orange juice[12-13]. Untill now, a few researches on myo-inositol in citrus have been reported, while rarely on chiroand scyllo-inositol. Both the simultaneous determining method of inositols and carbohydrates in citrus juice and the contents in various of citrus are all lace of systematic research. As an important kind of carbohydrates, inositols are present in plants as minor components and some of them have positive physiological effects in humans[14-15]. Myo-inositol is a minor component of fruits[1]. Scyllo-inositol, which has been detected in grapes, has been proposed, along with myo-inositol, to control the genuineness of the concentrated rectified grape[16]. Myoinositol content and myo-inositol/fructose ratio have been found to provide information on the quality and genuineness of citrus juice[2]. The structure of three inositols was shown in Fig.1.

    Fig.1 Structure of inositols

    Analytical methods developed to determine inositols include titrimetry[17], spectrofluorimetry[18], thin-layer chromatography (TLC)[19], GC[1-6], HPLC[20-21], HPAEC[9-10]and CE[22]. Those traditional analytical methods, such as titrimetry, spectrofluorimetry and TLC, are not suitable for multi-carbohydrates analysis. Although carbohydrates are detected using HPLC and HPAEC without derivatization, HPLC is required to combine with refractive index detector (RID) with poor selectivity and limited sensitivity and also HPAEC is in need of special detector and expensive sugar column. CE is a powerful separation technique that can provide high speed and low cost with poor reproducibility, compared with other chromatographic methods. Since inositol is present in citrus juice in very low concentrations compared to the major carbohydrates, GC technique seemed to be more suitable for its accurate determination. Most of GC separation is carried out using FID (flame ionization detector) due to its response to most volatile organic compound. As inositols and carbohydrates have poor volatility, derivatizing becomes a necessary procedure to determine them.

    In the present paper, we have reported a quantitative GC method for the occurrence and contents of inositols in fresh juices from different citrus (loose-skin mandarin, sweet orange, pummelo, lemon and kumquat) in an attempt to establish if these parameters can be used as indicators of the quality and genuineness of citrus juice. Major carbohydrates have also been determined.

    1 Materials and Methods

    1.1 Meterials, reagents and apparatus

    Methanol, hexamethyldisilazane (HMDS) and trifluoroacetic acid (TFA) were analytical reagent (Sinopharm Chemcial Reagent Co. Ltd., Shanghai, China). D-fructose (CAS No. 57-48-7), glucose (CAS No. 50-99-7) and sucrose (CAS No. 57-50-1) were of chromatographic grade. Methylα-D-glucoside, Myo-inositol (CAS No. 87-89-8, ≥99.0%) were obtained from Fluka Company (CAS No. 97-30-3, ≥99.0%, sum of enantimers, Lithuania). D-chiro-inositol (CAS No. 643-12-9), L-chiro-inositol (CAS No. 551-72-4) and scylloinositol (CAS No. 488-59-5) were purchased from Tokyo Chemical Industry Co. Ltd. (EP, Japan).

    All other reagents were of analytical grade and deionized water purified by a Milli-Q system (Millipore, Bedford, MA, USA) was used throughout.

    The GC analyses were performed on Agilent gas chromatograhy (model 6890, USA) equipped with FID. Three different capillary columns, including HP-1701 (30 m×0.32 mm, 0.25 μm film), HP-1(30 m×0.25 mm, 0.25 μm film) and HP-5MS (30m×0.32mm, 0.25 μm film) were used for the optimization of the experimental conditions.

    1.2 Methods

    1.2.1 Samples and sampling

    Citrus samples were supplied by National Citrus Germplasm Repository officially established in Citrus Research Institute of Chinese Academy of Agricultural Sciences. Citrus juices were crushed after removing skins (and seeds when necessary) and centrifuged at 12000 r/min during 10 min at 5 ℃. 1.00 mL supernatant and 1.00 mL internalstandard solution were mixed in a 25.00 mL volumetric flask and diluted to the mark with methanol/water mixture (70∶30, V/V). Out of the above solution, one portion of 0.40 mL was transferred to a 10 mL colorimetric tube and stored in an oven at 60 ℃ for at least 12 h.

    1.2.2 Derivatization procedure

    To the above colorimetric tube containing sample and internal standard, 0.75 mL of 1.25% hydroxylaminechloride in pyridine was added. The mixture was kept for 20 min at 50 ℃. After oximation reaction, 0.35 mL hexamethyldisilazane (HMDS) and 0.035 mL trifluoroacetic acid (TFA) were carefully added to the tube parked in ice-bath. Then samples were persilylated at 60 ℃ for 25 min and centrifuged at 12000 r/min for 5 min.

    1.2.3 Chromatographic conditions

    Gas chromatographic separation was carried out using a HP-1701 fused silica capillary column. All injections were split, the ratio was 9∶1 and the volume was 1 μL. The flow rates of carrier gas (N2, ≥99.999%), fuel gas (H2, ≥99.999%) and combustion-supporting gas (air, ≥99.999%) were 0.8 mL/ min, 40.0 mL/min and 450.0 mL/min respectively. The injector temperature was 250 ℃. FID detector temperature was 300 ℃. The column temperature program was from 200 ℃ (200℃ for 12 min) to 280 ℃ at 25 ℃/min, then 250 ℃ for 5 min.

    2 Results and Analyses

    2.1 Optimization of derivation reaction

    In order to be detected using GC, those compounds with hydroxyl group, such as carbohydrates, are required of derivation treatment. It has been well documented that HMDS, a widely used silylation reagent produced several by-products when it was directly applied to the derivation of reducing sugars[23]. Multiple peaks found for reducing sugars, which corresponded to the various isomeric forms resulted in severe interference. Once reducing sugars react with methylhydroxylamine hydrochloride, the number of isomeric forms can dramatically decrease when using the silylation procedure. So, ketonic group of reducing sugar is in need of protection before silylation reaction and oximation reaction is an effective approach.

    2.1.1 Optimization of oximation reaction

    It could be seen easily from Fig.2 that neither oximation reaction temperature nor time had remarkable effect on the derivation of three inositols, which resulted from no carbonyl group of their molecular structure. High temperature could accelerate the derivatization reaction of sucrose as well as the hydrolysis of the reagent[24]. Therefore, the experiment aimed at the best temperature to achieve the best derivatization yield. Fig.2(A) indicates that the effect of different temperature on the peak areas. The optimum temperature (50 ℃) was employed.

    Usually, the derivatizing is expected to be performed in a short time with satisfying efficiency. In this experiment, the investigation of suitable reaction time was carefully carried out at 50 ℃. As shown in Fig.2 (B), it was demonstrated that the reaction was completed in 20 min. To get reproducible results, the oximation reaction at 50 ℃ for 20 min was performed.

    2.1.2 Optimization of silylation reaction

    Fig.2 Effect of oximation temperature (oximation time for 20 min) (A) and oximation time (oximation temperature for 50 ℃) (B) on response ratio

    Fig.3 Effect of silylation temperature (silylation time for 25min) (A) and silylation time (silylation temperature for 60 ℃) (B) on response ratio

    As shown in Fig.3(A), at first, the peak areas of the derivatives of chiro-inositol, scyllo-inositol and sucrose increased gradually with the increasing of silylation reaction temperature. At 40 ℃, the maximal were almost obtained. The peak areas of their derivatives dropped down markedly with the increase of temperature. In the latter 20 min, the peak areas remained constant. Moreover, the peak areas of other three derivatives could be stable for about 30 min when it reached maximal. Therefore, the silylation reaction was performed at 60 ℃ for 25 min.

    Additionally, the influence of how to add silylation reagent on the separation of carbohydrates was studied. When HMDS and TFA were entered to the reaction system at the room temperature, multiple peaks was found with poor separation in Fig.4(A) and Fig.5(A). While at the ice bath, the contrary result was shown in Fig.4(B) and Fig.5(B).

    Fig.4 Chromatograms of fructose standard under room temperature (A) and ice-bath (B) conditions

    Fig.5 Chromatograms of glucose standard underroom temperature (A) and ice-bath (B) conditions

    2.2 Typical chromatogram

    Fig.6 Chromatographic profiles of TMS inositols and sugar oximes of mixed standard resolution

    A typical gas chromatogram obtained after use of the optimum conditions for derivatization and separation was shown in Fig.6. The derivatives of inositols and carbohydrates were separated to baseline within 20 min. Although peaks of 2 and 3 from fructose partially overlapped, they were integrated without difficulty. Besides, the effect of different capillary columns on the separation was also taken into consideration. Three types of capillary columns, including HP-1701 (30 m× 0.32 mm, 0.25 μm film), HP-1 (30m×0.25 mm, 0.25 μm film) and HP-5MS (30 m×0.32 mm, 0.25 μm film) were used in the experment. It was observed that chiro-inositol and fruc-tose were not separated to baseline and two peaks of scylloinositol and glucose were completely overlapped either in HP-1 or HP-5MS capillary column. As a result, HP-1701 capillary column was a perfect choice in the separation.

    2.3 Accuracy and precision of analytical methods

    In order to quantify the recovery, a known amount of each compoud was added to half-diluted freshly squeezed citrus juices. Table 1 gives the analysis results of satsuma mandarin samples. The satisfactory recoveries were found to be 98.1%-106.9% with RSDs ranged from 0.6%-6.1%. The results support the suitability of the method.

    2.4 Sample analysis

    Table 1 Range studied for retention time, limits of quantification (LOQs), relative standard deviation (RSD) and mean recovery of inositols and carbohydrates

    The proposed method has been applied to the analysis of citrus samples including loose-skin mandarin, sweet orange, pummelo, lemon and kumquat. Tangerines, mandarins and hybrids were part of loose-skin mandarins. Three major carbohydrates fructose, glucose and sucrose were usually found in a ratio of 1∶1∶2 (m/m). This value was similar to the previous report[6]. Moreover, three inositols have also been found in different fresh citrus juice at low concentrations (Table 2). Chiro-inositol was present in all citrus samples except a portion of pummelos. Scyllo-inositol was found in all citrus juices except a few mandarins, whereas myo-inositol was observed in all analyzed samples.

    Myo-inositol was present in variable amounts, from 0.14 g/L in lemon to 3.15 g/L in pummelo. Myo-inositol content in citrus juice except pummelo was within the ranges 0.12-0.16 g/L and 0.13-0.17 g/L reported by Villamiel et al.[2]and Belitz et al.[25], respectively. Myo-inositol in pummelo (0.95-3.15 g/L) was higher than the maximum of above report. Scyllo-inositol ranged from traces in mandarin to 0.43 g/L in hybrid. Chiroinositol varied from traces in pummelo to 1.75 g/L of hybrid.

    Fig.7 Scatterplot of CI-Is (A), SI-Is (B), MI-Is (C) in citrus juice

    Table 2 Content ranges of fructose, glucose, sucrose, chiro-, scyllo- and myo-inositol in fresh juices from different citrus

    Fig.7(A), (B) and (C) show the scatterplots of CI-Is, SI-Is and MI-Is in different citrus juices, respectively. Compared to the scatterplots of MI-Is and CI-Is, the above citrus juices except lemon and kumquat were not distinguished effectively in the scatterplot of SI-Is. On the other hand, it was obvious that different citrus juices were distinguished either in the scatterplots of MI-Is or CI-Is and even the scatterplots of loose-skin mandarin and sweet citrus were seldom or never overlapped. As a result, these parameters such as the scatterplots of MI-Is and CI-Is be used as indicators of the quality and genuineness of citrus juice.

    3 Conclusions

    From the results above we conclude that our method allows a suitable quantitative determination of inositols and carbohydrates in different citrus juice (loose-skin mandarin, sweet orange, pummelo, lemon and kumquat). Compared with the existing approach, the above is more effective, simple and reproducible. Moreover, the MI-Is and CI-Is scatterplots could afford additional information on the quality and genuineness of commercial citrus juice.

    [1]SANZ M L, VILLAMIEL M, MARTINEZ-CASTRO I. Inositols and carbohydrates in different fresh fruit juices[J]. Food Chemistry, 2004, 87 (3)∶ 325-328.

    [2]VILLAMIEL M, MARTINEZ-CASTRO I, OLANO A, et al. Quantitative determination of carbohydrates in citrus juice by gas chromatography [J]. Zeitschrift fur Lebensmittel Untersuchung und Forschung A, 1998, 206(1)∶ 48-51.

    [3]KATONA Z F, SASS P, MOLNAR-PERL I. Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 1999, 847(1/2)∶ 91-102.

    [4]MACIAS-RODRIGUEZ L, QUERO E, LOPEZ M G. Carbohydrate differences in strawberry crowns and fruit (Fragaria×ananassa) during plant development[J]. Journal of Agriculture Food Chemistry, 2002, 50 (11)∶ 3317-3321.

    [5]FUZFAI Z, KATONA Z F, KOVACS E, et al. Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry[J]. Journal of Agriculture Food Chemistry, 2004, 52(25)∶ 7444-7452.

    [6]FUZFAI Z, MOLNAR-PERL I. Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives∶Analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits[J]. Journal of Chromatography A, 2007, 1149(1)∶ 88-101.

    [7]MANGAS J J, MORENO J, PICINELLI A, et al. Characterization of cider apple fruits according to their degree of ripening. A chemometric approach [J]. Journal of Agriculture Food Chemistry, 1998, 46(10)∶ 4174-4178.

    [8]MASUDA R, KANEKO K, YAMASHITA I. Sugar and cyclitol determination in vegetables by HPLC using postcolumn fluorescent derivatization[J]. Journal of Food Science, 1996, 61(6)∶ 1186-1190.

    [9]GUIGNARD C, JOUVE L, BOGEAT-TRIBOULOT M B, et al. Analysis of carbohydrates in plants by high-performance anion-exchange chromatography coupled with electrospray mass spectrometry[J]. Journal of Chromatography A, 2005, 1085(1)∶ 137-142.

    [10]BRUGGINK C, MAURER R, HERRMANN H, et al. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry [J]. Journal of Chromatography A, 2005, 1085(1)∶ 104-109.

    [11]SOGA T, SERWE M. Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection[J]. Food Chemistry, 2000, 69(3)∶ 339-344.

    [12]PUPIN A M, DENNIS M J, TOLEDO M C F. Polymethoxylated flavones in brazilian orange juice[J]. Food Chemistry, 1998, 63(4)∶ 513-518.

    [13]PETERSON J J, DWYER J T, BEECHER G R, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos∶ a compilation and review of the data from the analytical literature[J]. Journal of Food Composition and Analysis, 2006, 19(Suppl 1)∶ 66-73.

    [14]McLAURIN J, GOLOMB R, JUREWICZ A, et al. Inositol stereoisomers stabilize an oligomeric aggregate of Alzehimer amyloid β-peptide and inhibit a β-induced toxicity[J]. Journal of Biological Chemistry, 2000, 275(24)∶ 18495-18502.

    [15]NESTLER J E, JAKUBOWICZ D J, REAMER P, et al. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome [J]. The New England Journal of Medicine, 1999, 340(17)∶ 1314-1320.

    [16]MONETTI A, VERSINI G, DALPIAZ G, et al. Sugar adulterations control in concentrated rectified grape musts by finite mixture distribution analysis of the Myo- and scyllo-inositol content and the D/H methyl ratio of fermentative ethanol[J]. Journal of Agriculture Food Chemistry, 1996, 44(8)∶ 2194-2201.

    [17]ZHANG Yanqiu, LI Zhiwei, ZHANG Baotong, et al. The property of inositol and its application in aquaculture[J]. Feed Industry, 2007, 28 (14)∶ 28-30.

    [18]WANG Xiuli, LI Yeyun, ZHOU Hui. Quantitative determination of inositol in herba patriniae[J]. Journal of Anhui Traditional Chinese Medical College, 2002, 21(1)∶ 52-54.

    [19]LIU Renjie, PIAO Chunhong, YU Hansong, et al. TLC determination method research of D-chiro-inositol in buckwheat seed[J]. Food Science and Technology, 2006, 8∶ 263-265.

    [20]DAI Chuanbo, LI Jianqiao, LI Jianxiu. Determination of inositol by high performance liquid chromatography coupled with refraction detector [J]. Journal of Chemistry Industry and Engineering, 2006, 27(4)∶ 57-58.

    [21]YANG Nan, REN G uixing. Determination of D-chiro-Inositol in tartary buckwheat using high performance liquid chromatography with an evaporative light scattering detector[J]. Journal of Agriculture Food Chemistry, 2008, 56(3)∶ 757-760.

    [22]KONG Lingyao, WANG Yun, CAO Yuhua. Determination of Myoinositol and D-chiro-inositol in black rice bran by capillary electrophoresis with electrochemical detection[J]. Journal of Food Composition and Analysis, 2008, 21(6)∶ 501-504.

    [23]BARTOLOZZI F, BERTAZZA G, DANIELE B, et al. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography[J]. Journal of Chromatography A, 1997, 758(1)∶ 99-107.

    [24]SHEPHERD T, DOBSON G, VERRALL S R, et al. Potato metabolomics by GC-MS∶ what are the limiting factors[J]. Metabolomics, 2007, 3(4)∶ 475-482.

    [25]BELITZ H D, GROSCH W. Quimica de los Alimentos∶ food chemistry [M]. Acribia∶ Zaragoza, 1997.

    柱前衍生-氣相色譜法同時(shí)測定不同柑橘汁中的糖和肌醇

    張耀海1,2,趙其陽1,張雪蓮3,王 磊1,焦必寧1,3,*,周志欽2

    (1.西南大學(xué)柑桔研究所,重慶 400712;2.西南大學(xué)園藝園林學(xué)院,重慶 400716;3.西南大學(xué)食品科學(xué)學(xué)院,重慶 400716)

    為建立柱前衍生-氣相色譜技術(shù)同時(shí)測定不同柑橘汁(寬皮柑橘、甜橙、柚子、檸檬和金柑)中3種肌醇(肌肌醇、鯊肌醇、手性肌醇)和3種可溶性糖(果糖、葡萄糖、蔗糖)的方法,以內(nèi)標(biāo)物(甲基-α-D-葡萄糖苷)定量,標(biāo)準(zhǔn)物質(zhì)的保留時(shí)間定性。結(jié)果表明:在兩個(gè)添加水平下,6種成分的平均回收率為98.1%~106.9%,相對標(biāo)準(zhǔn)偏差為0.6%~6.1%,檢測限在0.29×10-3~0.41×10-3μg/L(RSN=3)。本方法簡便快速,結(jié)果準(zhǔn)確可靠。

    氣相色譜;肌醇;柑橘汁;內(nèi)標(biāo)物

    TS255.1

    A

    1002-6630(2012)10-0173-06

    2011-07-07

    國家現(xiàn)代農(nóng)業(yè)(柑桔)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-27);重慶市自然科學(xué)基金項(xiàng)目(CSTC 2009BB1136);

    張耀海(1977—),男,助理研究員,博士,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全檢測。E-mail:zyh26824@sina.com

    第四十七批中國博士后科學(xué)基金面上項(xiàng)目(20100470808);中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(XDJK2012C059)

    *通信作者:焦必寧(1964—),男,研究員,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全檢測。E-mail:bljiao@tom.com

    猜你喜歡
    肌醇柑桔西南
    低蛋白質(zhì)日糧添加植酸酶和肌醇對蛋雞生產(chǎn)性能、蛋品質(zhì)及消化道發(fā)育的影響
    中國飼料(2022年6期)2022-04-22 05:14:30
    “潮”就這么說
    Country Driving
    柑桔無公害栽培技術(shù)研討
    柑桔樹青苔病的發(fā)生與防治
    柑桔園冬季管理技術(shù)
    柑桔砂皮病研究進(jìn)展
    一路向西南——然烏湖、米堆冰川
    啟蒙(3-7歲)(2017年4期)2017-06-15 20:28:55
    磷脂酰肌醇蛋白聚糖3在肝細(xì)胞癌組織中的表達(dá)及臨床意義
    西南絲綢之路及其對西南經(jīng)濟(jì)的影響
    av又黄又爽大尺度在线免费看| 久久99一区二区三区| 韩国精品一区二区三区| 久久 成人 亚洲| 久久热在线av| 777米奇影视久久| 亚洲欧洲国产日韩| 又大又爽又粗| 欧美日韩综合久久久久久| 尾随美女入室| 国产免费又黄又爽又色| 亚洲国产欧美日韩在线播放| 亚洲精品国产区一区二| 丝袜脚勾引网站| 国产一区二区 视频在线| 免费av中文字幕在线| 亚洲av福利一区| 亚洲欧美成人综合另类久久久| 色精品久久人妻99蜜桃| 久久亚洲国产成人精品v| 久久天堂一区二区三区四区| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| 欧美97在线视频| 一区二区三区乱码不卡18| 婷婷色综合大香蕉| av线在线观看网站| www.精华液| 国产男女超爽视频在线观看| 亚洲五月色婷婷综合| 性少妇av在线| 国产又色又爽无遮挡免| 亚洲 欧美一区二区三区| 黑丝袜美女国产一区| 国产野战对白在线观看| 晚上一个人看的免费电影| 国产精品99久久99久久久不卡 | 国产精品一二三区在线看| 美女国产高潮福利片在线看| 色播在线永久视频| 久久青草综合色| 久久久久人妻精品一区果冻| 青春草亚洲视频在线观看| 亚洲精品国产色婷婷电影| 国产亚洲午夜精品一区二区久久| 一本—道久久a久久精品蜜桃钙片| 精品一区二区免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区黑人| 欧美最新免费一区二区三区| 捣出白浆h1v1| 久久精品国产亚洲av涩爱| 国产xxxxx性猛交| 极品少妇高潮喷水抽搐| 激情视频va一区二区三区| 成年人午夜在线观看视频| 热99国产精品久久久久久7| 黄色毛片三级朝国网站| 日本av手机在线免费观看| 日韩制服骚丝袜av| 美女主播在线视频| 超色免费av| 婷婷色麻豆天堂久久| 国产成人精品无人区| 国产成人精品久久久久久| 尾随美女入室| 免费在线观看完整版高清| 赤兔流量卡办理| 美女中出高潮动态图| 999久久久国产精品视频| 久久精品久久久久久久性| 一区二区三区激情视频| 国产 精品1| 一区二区三区乱码不卡18| 国产免费一区二区三区四区乱码| 午夜免费鲁丝| 久久久久久久久免费视频了| 日本猛色少妇xxxxx猛交久久| 爱豆传媒免费全集在线观看| 少妇人妻久久综合中文| 99香蕉大伊视频| 日本色播在线视频| 国产黄频视频在线观看| 亚洲av中文av极速乱| 纵有疾风起免费观看全集完整版| 国产精品二区激情视频| 1024香蕉在线观看| h视频一区二区三区| 青春草视频在线免费观看| avwww免费| 国产亚洲av片在线观看秒播厂| 亚洲五月色婷婷综合| 亚洲精品中文字幕在线视频| 美女视频免费永久观看网站| 亚洲成人一二三区av| 国产精品久久久久久久久免| av女优亚洲男人天堂| 一级毛片我不卡| 一区二区三区四区激情视频| 亚洲色图综合在线观看| av在线播放精品| 综合色丁香网| 精品一区在线观看国产| 中文字幕色久视频| xxx大片免费视频| 最新在线观看一区二区三区 | 自线自在国产av| 飞空精品影院首页| 欧美亚洲日本最大视频资源| 黑人巨大精品欧美一区二区蜜桃| 丝袜在线中文字幕| 性色av一级| 99热全是精品| 国产精品一二三区在线看| 一边摸一边做爽爽视频免费| 少妇 在线观看| 最近2019中文字幕mv第一页| 建设人人有责人人尽责人人享有的| av不卡在线播放| 色婷婷久久久亚洲欧美| 在现免费观看毛片| 亚洲精品日本国产第一区| 久久久久网色| 国产老妇伦熟女老妇高清| 国产精品久久久久久精品电影小说| 女性被躁到高潮视频| 国产老妇伦熟女老妇高清| 亚洲欧美精品综合一区二区三区| 亚洲国产精品成人久久小说| 亚洲国产精品成人久久小说| a 毛片基地| 女性被躁到高潮视频| 亚洲国产精品成人久久小说| 一级a爱视频在线免费观看| 日韩 亚洲 欧美在线| 热re99久久精品国产66热6| 国产无遮挡羞羞视频在线观看| 一二三四在线观看免费中文在| 午夜激情av网站| 一二三四在线观看免费中文在| 丰满饥渴人妻一区二区三| 精品国产超薄肉色丝袜足j| 999久久久国产精品视频| 极品少妇高潮喷水抽搐| 国产精品香港三级国产av潘金莲 | 韩国精品一区二区三区| av在线app专区| 亚洲国产看品久久| 久热这里只有精品99| av视频免费观看在线观看| 免费看不卡的av| 欧美激情极品国产一区二区三区| 男女床上黄色一级片免费看| 久久久久精品人妻al黑| 久久久久精品人妻al黑| 狠狠婷婷综合久久久久久88av| 亚洲人成77777在线视频| 天天添夜夜摸| 制服丝袜香蕉在线| 18在线观看网站| 99香蕉大伊视频| 日日撸夜夜添| 91国产中文字幕| 亚洲一级一片aⅴ在线观看| 国产亚洲欧美精品永久| 国产亚洲最大av| 久久青草综合色| 久久久久网色| 老司机靠b影院| 少妇精品久久久久久久| 在线观看免费视频网站a站| 在线精品无人区一区二区三| 久久国产精品大桥未久av| av网站免费在线观看视频| 国产一区二区三区av在线| 久久精品久久久久久噜噜老黄| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品 欧美亚洲| 日本爱情动作片www.在线观看| av国产久精品久网站免费入址| 97精品久久久久久久久久精品| 18禁动态无遮挡网站| 在线观看一区二区三区激情| 欧美老熟妇乱子伦牲交| 色网站视频免费| av在线观看视频网站免费| 极品人妻少妇av视频| √禁漫天堂资源中文www| av在线播放精品| 男女之事视频高清在线观看 | 老熟女久久久| 国产淫语在线视频| 免费在线观看完整版高清| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 亚洲av中文av极速乱| 99久久精品国产亚洲精品| 亚洲情色 制服丝袜| 美女福利国产在线| 水蜜桃什么品种好| 自线自在国产av| 久久精品aⅴ一区二区三区四区| 日本黄色日本黄色录像| 欧美激情高清一区二区三区 | 久久热在线av| 国产免费一区二区三区四区乱码| 最近2019中文字幕mv第一页| 纯流量卡能插随身wifi吗| 国产一区有黄有色的免费视频| 亚洲精品一二三| 国产男女超爽视频在线观看| 91国产中文字幕| 国产精品人妻久久久影院| 亚洲欧洲日产国产| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区国产| 丝瓜视频免费看黄片| 国产一卡二卡三卡精品 | 超色免费av| 十八禁人妻一区二区| 欧美人与性动交α欧美精品济南到| 国产男人的电影天堂91| 青草久久国产| 少妇被粗大猛烈的视频| 丝袜人妻中文字幕| 日韩伦理黄色片| 国产亚洲午夜精品一区二区久久| 亚洲第一区二区三区不卡| 欧美精品一区二区免费开放| 亚洲精品一二三| 最近中文字幕高清免费大全6| www.精华液| 久久97久久精品| 性少妇av在线| 欧美日韩视频精品一区| 精品国产露脸久久av麻豆| 亚洲成人国产一区在线观看 | 国产午夜精品一二区理论片| www.自偷自拍.com| 国产黄色视频一区二区在线观看| 精品久久久精品久久久| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久影院| 亚洲精品乱久久久久久| 亚洲精品久久午夜乱码| 成年人午夜在线观看视频| 欧美 日韩 精品 国产| 国产午夜精品一二区理论片| 国产伦人伦偷精品视频| 国产欧美日韩综合在线一区二区| 久久影院123| 国产精品久久久久成人av| 女的被弄到高潮叫床怎么办| tube8黄色片| 亚洲成av片中文字幕在线观看| 成年美女黄网站色视频大全免费| 香蕉国产在线看| 久久久精品94久久精品| 一本大道久久a久久精品| 亚洲精品在线美女| 美女午夜性视频免费| 国产精品.久久久| 国产精品偷伦视频观看了| 亚洲一级一片aⅴ在线观看| 亚洲国产精品一区三区| 最近手机中文字幕大全| 欧美日韩亚洲高清精品| 亚洲成人国产一区在线观看 | 国产成人精品福利久久| 纵有疾风起免费观看全集完整版| 色吧在线观看| 久久久久久久久免费视频了| 伦理电影免费视频| 日韩欧美精品免费久久| 天堂俺去俺来也www色官网| 天天影视国产精品| 成人亚洲欧美一区二区av| 亚洲欧洲国产日韩| av在线播放精品| 亚洲av综合色区一区| 亚洲男人天堂网一区| 成人手机av| 色视频在线一区二区三区| 韩国av在线不卡| 国产不卡av网站在线观看| 精品福利永久在线观看| 亚洲av福利一区| www日本在线高清视频| 亚洲精品一区蜜桃| 亚洲精华国产精华液的使用体验| 男女下面插进去视频免费观看| 亚洲一级一片aⅴ在线观看| 久久 成人 亚洲| 啦啦啦啦在线视频资源| 考比视频在线观看| 狠狠婷婷综合久久久久久88av| xxx大片免费视频| 老司机深夜福利视频在线观看 | 国产一区亚洲一区在线观看| 大片免费播放器 马上看| 亚洲精品在线美女| 亚洲久久久国产精品| 波多野结衣一区麻豆| 人人妻人人添人人爽欧美一区卜| 黄色视频在线播放观看不卡| avwww免费| 国产女主播在线喷水免费视频网站| 亚洲综合色网址| 水蜜桃什么品种好| 18禁国产床啪视频网站| 丝袜人妻中文字幕| 青春草亚洲视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲成人国产一区在线观看 | 满18在线观看网站| 狂野欧美激情性xxxx| 老司机深夜福利视频在线观看 | 欧美日韩视频高清一区二区三区二| 99热全是精品| 欧美老熟妇乱子伦牲交| 超色免费av| 久久热在线av| 丝袜在线中文字幕| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 一个人免费看片子| 天天操日日干夜夜撸| 日日撸夜夜添| 色播在线永久视频| 老熟女久久久| 日韩熟女老妇一区二区性免费视频| 91aial.com中文字幕在线观看| 成人漫画全彩无遮挡| 老司机亚洲免费影院| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜一区二区 | 高清欧美精品videossex| 精品人妻一区二区三区麻豆| 国产高清不卡午夜福利| 日本猛色少妇xxxxx猛交久久| 亚洲色图综合在线观看| 国产精品一二三区在线看| 在线精品无人区一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品av麻豆av| 激情视频va一区二区三区| 少妇被粗大的猛进出69影院| 久久免费观看电影| 久久ye,这里只有精品| 久久久精品区二区三区| 亚洲精品美女久久久久99蜜臀 | 丝袜喷水一区| 99国产综合亚洲精品| 日韩精品有码人妻一区| 一本色道久久久久久精品综合| 一本久久精品| 侵犯人妻中文字幕一二三四区| 丝瓜视频免费看黄片| 国产精品.久久久| 日日撸夜夜添| 亚洲四区av| 午夜免费观看性视频| 国产福利在线免费观看视频| 午夜久久久在线观看| 国产黄色视频一区二区在线观看| 国产又色又爽无遮挡免| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 乱人伦中国视频| 成人亚洲欧美一区二区av| 精品久久蜜臀av无| 老司机影院成人| 精品视频人人做人人爽| 亚洲av国产av综合av卡| 免费观看性生交大片5| 悠悠久久av| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 亚洲综合精品二区| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 校园人妻丝袜中文字幕| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 欧美国产精品一级二级三级| 丰满饥渴人妻一区二区三| 亚洲精品美女久久久久99蜜臀 | 国产极品天堂在线| 青青草视频在线视频观看| 亚洲成人免费av在线播放| 国产女主播在线喷水免费视频网站| 成人18禁高潮啪啪吃奶动态图| 免费看av在线观看网站| 不卡视频在线观看欧美| 一区二区av电影网| 国产精品久久久久久精品电影小说| av视频免费观看在线观看| 国产 一区精品| 中文字幕高清在线视频| 欧美av亚洲av综合av国产av | 老司机亚洲免费影院| 亚洲人成网站在线观看播放| 哪个播放器可以免费观看大片| 欧美人与性动交α欧美软件| 国产又色又爽无遮挡免| bbb黄色大片| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 美女高潮到喷水免费观看| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 九草在线视频观看| 日韩中文字幕视频在线看片| 一级黄片播放器| 成年人免费黄色播放视频| 亚洲一级一片aⅴ在线观看| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜一区二区 | 国产成人欧美| 国产成人精品无人区| √禁漫天堂资源中文www| 蜜桃国产av成人99| 中文字幕人妻丝袜制服| 成人影院久久| 久久久久久人人人人人| 国产av精品麻豆| www.熟女人妻精品国产| 久久久久久人人人人人| 欧美日韩一区二区视频在线观看视频在线| 成年女人毛片免费观看观看9 | 成年人免费黄色播放视频| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 久久久久久免费高清国产稀缺| 久久精品人人爽人人爽视色| 啦啦啦在线观看免费高清www| 另类精品久久| 亚洲七黄色美女视频| 色视频在线一区二区三区| 亚洲国产看品久久| 99香蕉大伊视频| 曰老女人黄片| 国产探花极品一区二区| 一级片'在线观看视频| 国产精品蜜桃在线观看| 老鸭窝网址在线观看| 亚洲,欧美精品.| 麻豆精品久久久久久蜜桃| 在线精品无人区一区二区三| 亚洲精品,欧美精品| 精品一区二区三区av网在线观看 | 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 色精品久久人妻99蜜桃| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| 成人国产麻豆网| 亚洲精品第二区| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 亚洲视频免费观看视频| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 久久天躁狠狠躁夜夜2o2o | 久久青草综合色| 精品人妻在线不人妻| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| av在线观看视频网站免费| 五月天丁香电影| 最近中文字幕2019免费版| 免费观看性生交大片5| 国产成人午夜福利电影在线观看| 亚洲成国产人片在线观看| 啦啦啦啦在线视频资源| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 亚洲国产精品999| www.熟女人妻精品国产| 国产日韩欧美在线精品| 亚洲国产av新网站| 亚洲精品在线美女| 1024视频免费在线观看| 女性被躁到高潮视频| 大香蕉久久网| 亚洲欧洲精品一区二区精品久久久 | 各种免费的搞黄视频| 亚洲专区中文字幕在线 | 国产精品久久久久久精品电影小说| 成人亚洲精品一区在线观看| 男女国产视频网站| 日韩视频在线欧美| 日韩一卡2卡3卡4卡2021年| 免费看av在线观看网站| 亚洲精品自拍成人| 丝袜脚勾引网站| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 亚洲精品一二三| 成人三级做爰电影| 亚洲精品一区蜜桃| 亚洲美女视频黄频| 久久久久久人人人人人| 制服诱惑二区| 国产精品免费视频内射| 男女下面插进去视频免费观看| 高清欧美精品videossex| 最近中文字幕2019免费版| 一二三四中文在线观看免费高清| 深夜精品福利| 制服人妻中文乱码| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| tube8黄色片| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| av.在线天堂| 亚洲欧美一区二区三区久久| 亚洲男人天堂网一区| 天堂8中文在线网| 久久天堂一区二区三区四区| 欧美国产精品一级二级三级| 精品视频人人做人人爽| www.精华液| 考比视频在线观看| 亚洲精品国产一区二区精华液| 久久狼人影院| 精品午夜福利在线看| 亚洲第一av免费看| 可以免费在线观看a视频的电影网站 | 少妇精品久久久久久久| 最新在线观看一区二区三区 | 在现免费观看毛片| 亚洲第一区二区三区不卡| 欧美乱码精品一区二区三区| 精品人妻熟女毛片av久久网站| 亚洲国产精品一区三区| 人妻 亚洲 视频| 成人影院久久| 久久久精品免费免费高清| 99久久精品国产亚洲精品| 女人被躁到高潮嗷嗷叫费观| 波多野结衣一区麻豆| 免费黄色在线免费观看| 亚洲av日韩在线播放| 91aial.com中文字幕在线观看| 老司机深夜福利视频在线观看 | 国产日韩欧美亚洲二区| 久久精品国产综合久久久| 97在线人人人人妻| 香蕉国产在线看| 亚洲精品在线美女| 久久精品国产亚洲av涩爱| 欧美另类一区| 亚洲图色成人| 国产一区二区在线观看av| 亚洲av电影在线观看一区二区三区| 精品人妻在线不人妻| 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 男人操女人黄网站| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看| 精品一区二区三区av网在线观看 | 中文字幕色久视频| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 你懂的网址亚洲精品在线观看| 亚洲精品av麻豆狂野| 五月开心婷婷网| av网站在线播放免费| 午夜免费观看性视频| 熟女少妇亚洲综合色aaa.| 九九爱精品视频在线观看| 午夜av观看不卡| 男人爽女人下面视频在线观看| 在线看a的网站| 国产免费一区二区三区四区乱码| 国产免费现黄频在线看| 国产视频首页在线观看| 男女床上黄色一级片免费看| 观看美女的网站| 欧美97在线视频| 美女扒开内裤让男人捅视频| 亚洲av在线观看美女高潮| 亚洲av男天堂| 欧美中文综合在线视频| 日韩一区二区视频免费看| 精品一区在线观看国产| 人妻一区二区av| 日日爽夜夜爽网站| 欧美最新免费一区二区三区| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 在线免费观看不下载黄p国产| 久久99精品国语久久久| 悠悠久久av| 精品久久久久久电影网| 搡老岳熟女国产| av一本久久久久| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频| 黄频高清免费视频|