常登輝,陳昌明,馬萬雄,張川(成都信息工程學(xué)院通信工程學(xué)院,成都610225)
基于BP神經(jīng)網(wǎng)絡(luò)的X頻段功率分配器優(yōu)化設(shè)計(jì)?
常登輝,陳昌明,馬萬雄,張川
(成都信息工程學(xué)院通信工程學(xué)院,成都610225)
針對(duì)電大尺寸目標(biāo)的高功率分配器電磁特性模擬難、對(duì)計(jì)算結(jié)果精度要求高等特點(diǎn),利用BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)良好的非線性模擬能力,優(yōu)化設(shè)計(jì)了一種電大尺寸的X頻段四路高功率分配器,與HFSS仿真相比較減少了運(yùn)算時(shí)間。采用Agilent矢量網(wǎng)路分析儀N5244A測(cè)試表明,在9.2~9.6 GHz頻率范圍內(nèi),各路損耗均優(yōu)于6.8 dB,相位差為2°,與BP神經(jīng)網(wǎng)絡(luò)模擬結(jié)果吻合較好,為電大尺寸的微波電路工程設(shè)計(jì)提供了參考。
微波電路;X頻段;功率分配器;BP神經(jīng)網(wǎng)絡(luò)
在微波電路中,采用三維電磁仿真軟件HFSS和CST對(duì)電大尺寸的電路結(jié)構(gòu)進(jìn)行仿真時(shí),具有電磁特性模擬難、計(jì)算機(jī)資源占用量大、耗時(shí)長(zhǎng)的缺點(diǎn)。而人工神經(jīng)網(wǎng)絡(luò)具有復(fù)雜的動(dòng)力學(xué)特性、并行處理機(jī)制、學(xué)習(xí)和記憶等功能,因此能夠提供快速準(zhǔn)確的解。由于BP神經(jīng)網(wǎng)絡(luò)具有良好的非線性性能,已經(jīng)被成功地應(yīng)用于計(jì)算電磁學(xué)和微波領(lǐng)域,如電磁場(chǎng)計(jì)算、微帶阻抗變換器、帶通濾波器等[1-3],同時(shí)也表明了BP神經(jīng)網(wǎng)絡(luò)在計(jì)算電磁學(xué)領(lǐng)域和微波電路設(shè)計(jì)中具有精確、可靠、省時(shí)的優(yōu)點(diǎn)。
本文利用BP神經(jīng)網(wǎng)絡(luò)結(jié)合三維電磁仿真軟件HFSS優(yōu)化設(shè)計(jì)了X頻段四路高功率分配器,仿真結(jié)果表明該方法具有計(jì)算精確、耗時(shí)短、占用計(jì)算機(jī)資源少的優(yōu)點(diǎn),能夠有效地縮短設(shè)計(jì)周期。同時(shí),仿真結(jié)果與實(shí)測(cè)結(jié)果基本一致,從而驗(yàn)證了該方法的準(zhǔn)確性和實(shí)用性。
BP神經(jīng)網(wǎng)絡(luò)又稱為誤差反向傳播(Error Back Propagation)神經(jīng)網(wǎng)絡(luò),它是一種多層的前向型神經(jīng)網(wǎng)絡(luò)。在BP網(wǎng)絡(luò)中,誤差與信號(hào)相反,信號(hào)是前向傳播的,誤差是反向傳播的,在反向傳播過程中,逐層地修改權(quán)值和偏差。神經(jīng)網(wǎng)絡(luò)模型由輸入層、隱層和輸出層組成,隱層可以是一層或多層,采用tansigmoid函數(shù)和log-sigmoid函數(shù),函數(shù)能將(-∞,+∞)的輸入分別映射到區(qū)間(-1,+1)和(0,1)中。BP神經(jīng)網(wǎng)絡(luò)的tan-sigmoid函數(shù)和log-sigmoid函數(shù)分別為
本文采用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行功率分配器優(yōu)化設(shè)計(jì)時(shí),首先由三維電磁仿真軟件HFSS對(duì)四路功率分配器進(jìn)行建模,然后對(duì)模型仿真獲取數(shù)據(jù),最后將仿真數(shù)據(jù)作為BP神經(jīng)網(wǎng)絡(luò)模型的輸入輸出數(shù)據(jù)進(jìn)行優(yōu)化設(shè)計(jì)。在神經(jīng)網(wǎng)絡(luò)優(yōu)化設(shè)計(jì)時(shí),以功率分配器的輸入輸出微帶線線寬W、第一級(jí)混合環(huán)端口長(zhǎng)L1、第二級(jí)混合環(huán)端口長(zhǎng)L2、圓環(huán)的半徑R以及頻率f作為神經(jīng)網(wǎng)絡(luò)的輸入,以功率分配器的帶內(nèi)插損S21、S61的幅度和相位作為神經(jīng)網(wǎng)絡(luò)的輸出。圖1為四路功率分配器的示意圖,圖中假設(shè)端口1為輸入端口,則端口2、4、6、8為四路輸出端口,其余隔離端口接50Ω功率負(fù)載電阻。
BP算法是一種廣泛應(yīng)用于微波領(lǐng)域的神經(jīng)網(wǎng)絡(luò)算法,是一種有監(jiān)督的學(xué)習(xí)算法,它沿著誤差函數(shù)減小最快的方向,也就是梯度的反方向改變權(quán)值和偏差,使得實(shí)際的輸出和期望的輸出誤差最小,這一點(diǎn)與線性網(wǎng)絡(luò)的學(xué)習(xí)算法是一致的。BP算法的迭代計(jì)算公式可以表示為[4]
式中,xk代表當(dāng)前的權(quán)值和偏差,xk+1代表迭代產(chǎn)生的下一次的權(quán)值和偏差,gk為當(dāng)前誤差函數(shù)的梯度,ak代表學(xué)習(xí)速率。
在感知器的應(yīng)用中,以單隱層網(wǎng)絡(luò)和雙隱層網(wǎng)絡(luò)應(yīng)用較為普遍。下面以單隱層感知器為例,對(duì)學(xué)習(xí)算法進(jìn)行推導(dǎo)。設(shè)輸入數(shù)目為i;隱層記為j,包含j個(gè)神經(jīng)元;輸出層記為P,包含k個(gè)神經(jīng)元。
對(duì)于輸出層來說,有
式中,pk為輸出向量,w表示隱層到輸出層的權(quán)值。對(duì)于隱層來說,有
式中,y表示隱層到輸出層的輸出向量,v表示輸入層到隱層的權(quán)值。
以上兩式中,傳輸函數(shù)f(x)均采用log-sigmoid函數(shù)。
由于3 dB混合環(huán)具有設(shè)計(jì)簡(jiǎn)單、安裝方便的優(yōu)點(diǎn),在X頻段固態(tài)放大器中應(yīng)用比較廣泛。圖2為制作在介質(zhì)基片上的3 dB混合環(huán)的結(jié)構(gòu)[5],其周長(zhǎng)是1.5λ,端口1-2、2-3-4都隔開,而1-4隔g,信號(hào)從端口1輸入,從端口2、4按一定功率分配比反相輸出,此時(shí),端口3為隔離端;而當(dāng)信號(hào)從端口3輸入,從端口2、4按一定功率分配比同相輸出[6]。
當(dāng)信號(hào)從端口1輸入,從端口2、4的輸出功率之比為p2/p4,則混合環(huán)的各節(jié)導(dǎo)納的相關(guān)方程如下:
式中,y0為混合環(huán)的端接導(dǎo)納,當(dāng)混合環(huán)等功率分配輸出時(shí),y=y=
四路功率分配器的設(shè)計(jì)指標(biāo):頻率范圍在9.2~標(biāo)>9.6 GHz,各路損耗優(yōu)于6.8 dB,帶內(nèi)波動(dòng)小于0.2 dB,相位差為2°。設(shè)計(jì)所采用的板材為RT5880,εr=2.2,基板厚度為0.508 mm。由于四路功率分配器由兩級(jí)3 dB混合環(huán)采用二進(jìn)制結(jié)構(gòu)的形式組成,設(shè)計(jì)時(shí)在HFSS三維電磁仿真軟件中采用微帶工藝建立3 dB混合環(huán)初始模型,再根據(jù)3 dB功率分配器的損耗對(duì)電路進(jìn)行優(yōu)化設(shè)計(jì),然后將優(yōu)化后的3 dB混合環(huán)采用二進(jìn)制結(jié)構(gòu)形式進(jìn)行級(jí)聯(lián),最后對(duì)一分四功率分配器進(jìn)行整體優(yōu)化設(shè)計(jì)[7]。
本文采用雙隱層的4層BP神經(jīng)網(wǎng)絡(luò)對(duì)上述四路功率分配器進(jìn)行設(shè)計(jì),各層的神經(jīng)元個(gè)數(shù)分別為5、6、9、4,采用Scaled共軛梯度訓(xùn)練算法,神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)模型如圖3所示。
神經(jīng)網(wǎng)絡(luò)的輸入為四路功率分配器的輸入輸出線寬W、第一級(jí)混合環(huán)端口長(zhǎng)L1、第二級(jí)混合環(huán)端口長(zhǎng)L2、圓環(huán)的半徑R以及掃描頻率范圍f。W、L1、L2、R的取值范圍分別為其各項(xiàng)性能比較好的點(diǎn),掃描頻率范圍為9.0~9.8 GHz,神經(jīng)網(wǎng)絡(luò)的目標(biāo)輸出為HFSS采樣的傳輸系數(shù)S21、S61的幅度和相位。從HFSS中共選取1 377個(gè)數(shù)據(jù)點(diǎn),然后在BP神經(jīng)網(wǎng)絡(luò)里進(jìn)行多次優(yōu)化設(shè)計(jì),經(jīng)過優(yōu)化后的神經(jīng)網(wǎng)絡(luò)訓(xùn)練結(jié)果、HFSS的仿真結(jié)果及實(shí)測(cè)結(jié)果如圖4所示。
圖4中的實(shí)測(cè)結(jié)果是采用Agilent公司的N5244A矢量網(wǎng)絡(luò)分析儀測(cè)量的。圖5為四路功率分配器的實(shí)物照片,面積為175 mm×80 mm。由于四路功率分配器的S21和S41、S61和S81具有很強(qiáng)的對(duì)稱性,文中只給出了S21和S61的幅度、相位曲線圖。在9.2~9.6 GHz頻率范圍內(nèi)各路損耗優(yōu)于6.8 dB,相位差為2°。實(shí)測(cè)結(jié)果滿足設(shè)計(jì)要求,從而證實(shí)了基于神經(jīng)網(wǎng)絡(luò)功率分配器設(shè)計(jì)的有效性和實(shí)用性。
高效率的功率分配合成器是設(shè)計(jì)大功率放大器的重點(diǎn),本文將三維電磁仿真軟件HFSS與BP神經(jīng)網(wǎng)絡(luò)結(jié)合起來設(shè)計(jì)了一種電大尺寸的X頻段四路高功率分配器。測(cè)試結(jié)果和仿真結(jié)果吻合較好,為電大尺寸的微波電路工程設(shè)計(jì)提供了參考。
[1]謝濤,何怡剛,姚建剛,等.基于改進(jìn)BP算法的微帶射頻帶通濾波器設(shè)計(jì)[J].儀器儀表學(xué)報(bào),2009,30(6):1317-1323. XIE Tao,HE Yi-gang,YAO Jian-gang,et al.Design of microstrip radio frequency bandpass filter based on improved BP algorithm[J].Chinese Journal of Scientific Instrument,2009,30(6):1317-1323.(in Chinese)
[2]劉興,李文宀成.基于神經(jīng)網(wǎng)絡(luò)的四分之一波長(zhǎng)微帶阻抗變換器設(shè)計(jì)[J].重慶工學(xué)院學(xué)報(bào)(自然科學(xué)),2008,22(3):72-75. LIU Xing,LI Wen-cheng.Design of Quarter-Wavelength Microstrip Impedance Transformer Based on Neural Network[J].Journal of Chongqing Institute of Technology(Natural Science),2008,22(3):72-75.(in Chinese)
[3]劉洋.基于神經(jīng)網(wǎng)絡(luò)的微波電磁場(chǎng)計(jì)算問題的研究[D].大連:大連理工大學(xué),2006. LIU Yang.Study on the Calculation Problem of Microwave Field Based on Artificial Neural Network[D].Dalian:Dalian University of Technology,2006.(in Chinese)
[4]朱凱,王正林.精通MATLAB神經(jīng)網(wǎng)絡(luò)[M].北京:電子工業(yè)出版社,2010. ZHU Kai,WANG zheng-lin.Proficient in Matlab Neural Network[M].Beijing:Publishing House of Electronics Industry,2010.(in Chinese)
[5]Pon C Y.Hybrid-ring directional coupler of arbitrary power division[J].IRE Transactions on Microwave Theory and Techniques,1961,9(6):529-535.
[6]蔣擁軍.X頻段大功率固態(tài)放大器設(shè)計(jì)技術(shù)研究[D].南京:南京理工大學(xué),2006. JIANG Yong-jun.X-band high-power solid-state amplifier design technology[D].Nanjing:Nanjing University of Science and Technology,2006.(in Chinese)
[7]李明洋.HFSS電磁仿真設(shè)計(jì)應(yīng)用詳解[M].北京:人民郵電出版社,2010. LI Ming-yang.Detailed Application and Design of HFSS Electromagnetic Simulation[M].Beijing:People′s Posts&Telecom Press,2010.(in Chinese)
CHANG Deng-huiwas born in Zhoukou,Henan Province,in 1987.He is now a graduate student.His research direction is RF circuit and system.
Email:changdh2010@163.com
陳昌明(1971—),男,四川安縣人,副教授、碩士生導(dǎo)師,主要研究方向?yàn)樯漕l、微波毫米波電路與系統(tǒng);
CHEN Chang-ming was born in Anxian,Sichuan Province,in 1971.He is now an associate professor and also the instructor of graduate students.His research interests include RF,microwave circuit and system.
馬萬雄(1987—),男,四川樂山人,碩士研究生,主要研究方向?yàn)樯漕l電路與系統(tǒng);
MA Wan-xiong was born in Leshan,Sichuan Province,in 1987.He is now a graduate student.His research direction is RF circuit and system.
張川(1986—),男,四川瀘州人,碩士研究生,主要研究方向?yàn)樘炀€。
ZHANG Chuan was born in Luzhou,Sichuan Province,in 1986. He is now a graduate student.His research direction is antenna.
Optimization Design of X-band Power Dividers Based on BP Neural Network
CHANG Deng-hui,CHEN Chang-ming,MA Wan-xiong,ZHANG Chuan
(College of Communication Engineering,Chengdu University of Information Technology,Chengdu 610225,China)
It is difficult to simulate the electromagnetic properties of high power dividers and high precision of calculation result is required for the electrically large objects.According to above mentioned characteristics,an X -band four-way electrically large high power divider is optimally designed based on BP(Back Propagation)neural network.The computation cycle has been greatly shortened compared with HFSS simulation.The test results measured by vector network analyser Agilent N5244A indicate that the loss of every way is better than 6.8 dB,phase difference is 2°at9.2~9.6 GHz,which are in good accordance with simulation results of BP neural network.The method provides reference for the design of electrically large microwave circuits.
microwave circuit;X-band;power divider;BP neural network
TN73
A
10.3969/j.issn.1001-893x.2012.02.017
常登輝(1987—),男,河南周口人,碩士研究生,主要研究方向?yàn)樯漕l電路與系統(tǒng);
1001-893X(2012)02-0203-04
2011-08-29;
2011-11-17