薛 立,傅靜丹
(華南農(nóng)業(yè)大學(xué) 林學(xué)院,廣東 廣州 510642)
影響植物競爭的因子
薛 立,傅靜丹
(華南農(nóng)業(yè)大學(xué) 林學(xué)院,廣東 廣州 510642)
競爭就是兩個(gè)或兩個(gè)以上的個(gè)體為爭奪資源而發(fā)生的相互關(guān)系, 它是植物種群和群落的關(guān)鍵過程。為了了解生態(tài)系統(tǒng)對環(huán)境變化的反應(yīng),綜合了解植物競爭是必要的。與競爭有關(guān)的內(nèi)部因素有植物密度、生物因子和生物量,影響競爭的環(huán)境因子包括光照、土壤水分、土壤養(yǎng)分、海拔。高密度通過抑制植物生長而對競爭產(chǎn)生影響。化感物質(zhì)對周圍植物產(chǎn)生影響。在樹木和雜草草本根系重疊的土層,二者為獲取資源而競爭。食草性動(dòng)物選擇取食一些植物種類而影響其競爭能力。植物能在形態(tài)上發(fā)生變化和通過改變地上和地下部分間的競爭能力來應(yīng)對環(huán)境變化。當(dāng)混交林中缺乏耐蔭植物時(shí),喜光植物長期成為優(yōu)勢種,而混交林中存在耐蔭植物時(shí),耐蔭植物可以逐漸取代喜光植物而成為優(yōu)勢樹種。在干旱條件下,矮小的植物需求的水分少,根系發(fā)達(dá)的植物種類能夠減少單位長度根系表面的蒸發(fā),所以能夠生存更長的時(shí)間。在缺乏養(yǎng)分的土壤,植物競爭養(yǎng)分的能力受到其有效吸收養(yǎng)分能力的控制, 在養(yǎng)分豐富的土壤上,具有最大生長率的植物是競爭的優(yōu)勝者。植物間的光照競爭隨海拔增加而下降。大尺度、長時(shí)期和多種群競爭的研究,多學(xué)科的綜合研究,競爭機(jī)理與經(jīng)驗(yàn)?zāi)P徒Y(jié)合,植物競爭模型復(fù)雜化和根系競爭的研究,植物的形態(tài)可朔性和生理可朔性對競爭的影響是未來的研究熱點(diǎn)。
綜述;植物;競爭;資源;密度;環(huán)境
競爭就是兩個(gè)或兩個(gè)以上的個(gè)體為爭奪資源而發(fā)生的相互關(guān)系[1]。植物個(gè)體間的競爭是是自然界普遍存在的一種作用過程。植物通過競爭獲取各自所需資源,求得生存和發(fā)展,而其獲得資源的能力依賴于形態(tài)和生理特性。植物間的競爭作用對植物的生長、形態(tài)和存活產(chǎn)生重要影響,是塑造群落結(jié)構(gòu)和動(dòng)態(tài)的關(guān)鍵因子之一,因此有關(guān)競爭的研究成為生態(tài)學(xué)的一個(gè)重要內(nèi)容[2]。競爭可以發(fā)生在同種植物的不同個(gè)體之間(種內(nèi)競爭)或異種植物之間(種間競爭),植物的生態(tài)位需求越接近,競爭也就越強(qiáng)烈。因?yàn)橥粋€(gè)種在形態(tài)和生理上的可塑性小,所以,種內(nèi)競爭往往比種間競爭激烈[3]。植物競爭引起的資源水平的變化,因而受到資源的限制;植物競爭過程中的可塑性,大小不同個(gè)體的非對稱競爭、地下競爭和地上競爭的差異,植物的空間分布和資源的異質(zhì)性等影響著競爭結(jié)果[4]。植物所處的脅迫環(huán)境通常與不斷減少的資源,如光照、土壤水分、養(yǎng)分和密度相聯(lián)系[5]。在競爭資源方面,植物的地上部分對光資源進(jìn)行競爭,根系則競爭土壤養(yǎng)分和水分。植物密度、生物因子和器官生物量對競爭有重要影響。光照、土壤水分和養(yǎng)分是影響植物間競爭的重要環(huán)境因子。本研究對影響競爭的重要內(nèi)部因素和環(huán)境因子進(jìn)行綜述,對于促進(jìn)競爭理論在作物、森林和農(nóng)林復(fù)合生態(tài)系統(tǒng)中的應(yīng)用具有重要意義。
植物在種群或群落水平上的競爭研究通常集中在密度效應(yīng)和自然稀疏方面[4]。密度是限制植物生長的重要因子[6],植物隨著密度增加而加劇競爭資源。高密度群落的個(gè)體間在光照、養(yǎng)分和生長空間方面的激烈競爭,阻礙了其高度、葉面積和生物量的增長[7]。但是據(jù)Shujauddin et al.[8]的報(bào)道,在密度較高的情況下高度生長會(huì)增加。這種生長反應(yīng)的解釋是較高的“樹冠競爭壓力”,它使樹木在密度較大的情況下增加高度生長。這些樹木特別是具有較低矮樹冠的樹木都經(jīng)歷了光照水平的減少和較大的相互遮蔽。異速生長模型可以描述樹木器官平均重和林木平均重的關(guān)系,將這一模型[9]和C-D效應(yīng)模型結(jié)合,可以得出樹木器官的產(chǎn)量密度效應(yīng)(yield-density effect, 簡稱Y-D effect)模型,此模型成功地描述了日本赤松器官的Y-D效應(yīng),得出樹干產(chǎn)量隨著密度增加而增加;在試驗(yàn)的最后階段,枝產(chǎn)量隨著密度增加而減少,而葉產(chǎn)量達(dá)到恒定最終產(chǎn)量。日本赤松是陽性樹種,當(dāng)密度增大時(shí)林分下部林冠的樹葉由于遮蔭,當(dāng)接受的光照小于光補(bǔ)償點(diǎn)時(shí)發(fā)生脫落;樹木的側(cè)枝隨著林分密度增加而變短和減少,因此在試驗(yàn)的最后階段,枝產(chǎn)量隨著密度增加而減少,葉產(chǎn)量達(dá)到恒定最終產(chǎn)量[10]。在林分發(fā)展階段,根系密度通常隨著林分密度和樹木個(gè)體大小的提高而增加[11]。由于森林生物量的根莖比率隨著林分密度的增加而提高,隨著林齡的增加而降低[12],為了充分獲得土壤資源,高密度林分必然導(dǎo)致根長密度和根表面積密度的提高。
自然稀疏是林分內(nèi)的個(gè)體由于競爭有限的資源而引起的一部分個(gè)體死亡的現(xiàn)象[13]。郁閉后林分內(nèi)光照成為限制性資源,林內(nèi)大小不同的個(gè)體為爭奪光照發(fā)生激烈的競爭,這種競爭被認(rèn)為是非對稱競爭,即高的個(gè)體對矮的個(gè)體單方面遮光,引起低于光補(bǔ)償點(diǎn)的矮的個(gè)體死亡,即自然稀疏[14]。自然稀疏開始后,最小的個(gè)體首先死亡,引起個(gè)體尺寸差異的下降,產(chǎn)生一個(gè)比原先對稱的個(gè)體大小分布。自然稀疏過程中,由于高密度林分死亡率高,而低密度的林分死亡率低,不同初始密度的林分經(jīng)過充分的生長后,傾向于收斂于相同的密度水平[15-16]。將描述植物平均個(gè)體重和各器官干重關(guān)系的異速生長模型與植物平均個(gè)體重與密度的時(shí)間軌線模型結(jié)合,可以得出植物各器官重量與密度的時(shí)間軌線模型。隨著樹木長大,自然稀疏引起林分密度不斷減小,各器官平均重量不斷增加,樹干占樹木總量的比例增加,枝和葉占樹木總量的比例減少[17]。
濃密的林下植物可以影響林冠層樹種幼苗的生存[18]。林下植物減弱幼苗可利用的光照[19],并與其爭奪地下資源[20],還通過凋落物積累[21]和空間分布的不均勻性影響幼苗的生存環(huán)境[22]。例如,禾本科的竹類在許多溫帶森林的林下植物中占據(jù)優(yōu)勢地位,他們通過與幼苗競爭光照[23]、降低紅外線對遠(yuǎn)紅外線的比率[22]和引起真菌感染幼苗[24]來阻止林冠層樹種的更新[19]。在光照和養(yǎng)分極端受限制的地方有利于大粒種子的植物競爭,而更開闊和受到干擾的環(huán)境有利于生長速度快的種類競爭[25]。
雜草常和樹木發(fā)生競爭。在樹木和雜草草本根系重疊的土層,二者為獲取資源而競爭,雜草在競爭表層土壤的資源時(shí)占據(jù)優(yōu)勢,而樹木則獨(dú)占深層的土壤資源[26]。在森林更新動(dòng)態(tài)中,各種雜草的競爭也常常是限制幼苗生長的重要因素之一。雜草的地上競爭可能限制幼苗的光合營養(yǎng)空間,地下競爭又與幼苗爭奪養(yǎng)分和水分資源。在高密度的苞茅或相思以及二者混交的群落中,苞茅Hyparrenia的地上部分/根系的比例下降,相思沒有出現(xiàn)這種情況,表明前者能夠隨環(huán)境而調(diào)整生物量的分配,更有競爭力[26]。苞茅和相思幼苗生長高密度的群落中時(shí),后者的生長受到抑制。也有研究結(jié)果表明,雜草可以通過驅(qū)散種子的傳播,改進(jìn)土壤肥力,創(chuàng)造適宜的小氣候條件來加速植被恢復(fù)[27]。
在熱帶森林中,激烈的競爭不僅存在于樹木之間,木質(zhì)藤本通過競爭資源也會(huì)影響樹木的生長和更新[28]。木質(zhì)藤本通過與樹木之間的競爭作用,會(huì)影響樹木的繁殖和結(jié)實(shí)率,抑制樹木生長,甚至影響樹木生存[29,30],這種競爭作用在森林的林窗和林緣地帶尤為劇烈。木質(zhì)藤本對樹木的抑制不僅僅可以通過纏繞造成直接的機(jī)械傷害,還可以通過與之競爭資源(光照,水分和養(yǎng)分)帶來的間接作用來影響樹木的光合能力和生長,尤其是在樹木的幼苗期,競爭資源帶來的負(fù)面影響要顯著大于纏繞引起的傷害。
外來入侵植物通過直接競爭資源和改變養(yǎng)分和水分循環(huán)、火災(zāi)的頻度和強(qiáng)度之類的生態(tài)過程影響本地植物[31-32],威脅本地植物的生物多樣性和生態(tài)功能[33]。在大草原,入侵植物通過競爭排除本地植物,成為草原恢復(fù)的主要障礙[34]。許多研究表明,增加受限制的資源提高了入侵植物的成功率[35-36],如增加N提高了一年生入侵草本的密度和豐富度[37-38]。入侵植物在立地條件好的地方具有競爭優(yōu)勢,而本地植物被排斥到貧瘠的地方生長[39-40]。也有研究者報(bào)道改善環(huán)境條件對于提高入侵植物對本地植物的競爭力沒有影響或有消極作用,例如在加拿大改變水分條件沒有對入侵植物和本地植物之間的競爭產(chǎn)生影響[41],而增加可利用N 促進(jìn)了本地植物排除入入侵的雙雄雀麥Bromus[42]。
不同植物間的競爭效應(yīng)隨著時(shí)間推移而發(fā)生變化[43]。一般而言,雜草和灌木在干擾的土壤中具有快速的分枝繁殖特性和形態(tài)和生理上能有效利用土壤資源,在與林木幼苗競爭時(shí)往往處于有利地位[44]。隨著時(shí)間推移,早期生長慢的幼苗高度超過雜草和灌木,在競爭資源,特別是在爭奪光照中取得優(yōu)勢[45]。桉樹林受火災(zāi)或其他干擾時(shí),在其演替的早期往往出現(xiàn)銀荊Acacia dealbata,在4年生時(shí)銀荊在與桉樹的競爭中處于優(yōu)勢,隨著時(shí)間推移,桉樹的樹高超過銀荊, 8年生時(shí)銀荊受到壓制甚至消失[3]。
不同植物間的競爭效應(yīng)隨著空間而發(fā)生變化。在30 cm的土層范圍內(nèi)裂稃草Schizachyrium scoparium顯著減少了野牛草Buchloe dactyloides根系的生長,而在90 ~180 cm土層二者的生長相當(dāng)[46]。土壤養(yǎng)分含量影響競爭效應(yīng),裂稃草Schizachyrium scoparium在貧瘠土壤上和野牛草Buchloe dactyloides競爭能力相當(dāng),而在肥沃土壤上生長不如后者,所以在立地條件差的地方裂稃草和野牛草共存,在立地條件好的地方野牛草占優(yōu)勢[46]。土壤養(yǎng)分受到限制的環(huán)境可以引起植物競爭強(qiáng)度減弱,但是也有競爭強(qiáng)度不受土壤養(yǎng)分影響的報(bào)道[47]。
在自然界中,植物的化感作用廣泛存在著,通過向外界環(huán)境釋放出化學(xué)物質(zhì),也稱化感物質(zhì)(Allelochemicals),而對周圍植物產(chǎn)生直接和間接影響?;形镔|(zhì)主要通過淋洗作用、植物體分解、根系分泌物、植物體浸出液四種途徑發(fā)揮作用[48]?;形镔|(zhì)能抑制根系、嫩枝的生長,阻礙植物種苗葉片的伸展,并影響土壤生態(tài),如菌根、病害、食草性動(dòng)物和養(yǎng)分動(dòng)態(tài)[49]。叢枝菌根真菌(AM) 也影響植物間的競爭[50]。由于叢枝菌根真菌對不同的植物影響各異,其組成的改變影響植物間的競爭,導(dǎo)致植物群落結(jié)構(gòu)發(fā)生變化[51]。
食草性動(dòng)物選擇性取食一些植物種類,通過改變這些植物形態(tài)和地上部分和根系的比例而影響其競爭能力[52]。柔毛樺Betula pubescens通過提高競爭能力以補(bǔ)償食草性動(dòng)物取食的影響[53],但是 Meiners and Handel[54]發(fā)現(xiàn)食草性動(dòng)物沒有影響取食的草本植物和苗木之間的競爭關(guān)系。
植物生長受環(huán)境中可利用資源的限制,也受相鄰植物的影響。生長形式,特別是競爭器官的形態(tài)能夠影響一個(gè)種的競爭能力[55]。隨著植物生長,他們將生物量分配到營養(yǎng)和繁殖器官。為了應(yīng)對環(huán)境的變化,植物能在形態(tài)上發(fā)生變化和通過改變地上和地下部分間的競爭能力來應(yīng)對環(huán)境的變化。由于對地上部分和根系的分配會(huì)影響其獲取資源的速率, 因此成為植物生長和競爭能力的重要特征[56]。理想的分配理論假定植物將生物量分配到能夠獲得最受限制資源的器官,以便實(shí)現(xiàn)最快的生長[57]。當(dāng)光照成為比土壤養(yǎng)分更受限制的資源時(shí),植物增加對地上部分的生物量分配,而土壤養(yǎng)分和水分比光照更限制植物生長時(shí),植物增加對根系的生物量分配[56]。通過生物量分配形式的改變來提高爭奪地上資源的能力可能是以削弱爭奪地下資源的能力為代價(jià)的,反之亦然[58]。在一定范圍內(nèi),增加養(yǎng)分供應(yīng),植物的葉生物量比會(huì)隨之增加,而根生物量比減小[59]。在養(yǎng)分缺乏的環(huán)境中,植物則會(huì)增加根的相對生物量分配,進(jìn)而提高對養(yǎng)分和水分的吸收能力。最近的許多研究發(fā)現(xiàn),植物根系在養(yǎng)分缺乏的異質(zhì)土壤,可能提供一些根系競爭的釋放物[60],使其比在養(yǎng)分充足的土壤生長要好,有更多的根系生物量[61]。
Aikio and Markkola[57]認(rèn)為競爭應(yīng)當(dāng)增加對地上部分的生物量分配,因?yàn)樵趯庹盏姆菍ΨQ競爭中處于劣勢比將來在養(yǎng)分競爭中處于劣勢更為不利,因?yàn)轲B(yǎng)分競爭具有對稱競爭的特點(diǎn),即與根生物量成比例。
光照是植物競爭中最重要的資源之一。植物對光照的競爭主要體現(xiàn)在植物的光截獲能力、光能轉(zhuǎn)化效率以及植物的遮蔭和耐蔭特性等方面[62]。通常認(rèn)為對光照的競爭發(fā)生在土壤肥沃的環(huán)境中[63],因此,在光照充足的干旱和半干旱地區(qū)光照往往不是植物競爭的重要環(huán)境因子[64]。補(bǔ)充氮可以減少植物對氮的競爭,而增加對光照的競爭[25]。植物的林冠特點(diǎn)、生長速率和成熟個(gè)體的大小決定了光照是否成為一個(gè)限制因子[65]。形成林冠的植物葉片引起林內(nèi)光照強(qiáng)度由上而下遞減。葉片排列在林冠較高位置的植物暴露于強(qiáng)光下,光合作用迅速,但是其較高的莖干要為支撐這些葉片付出相當(dāng)?shù)哪芰肯?。葉片生長在近地表的植物截獲的光照少,光合作用緩慢,但是其低矮的莖干可以減少能量的消耗[66]。植物林冠在森林中的最初位置、形態(tài)和生理上的可塑性都可以對競爭的結(jié)果產(chǎn)生強(qiáng)烈影響。一般認(rèn)為,在水分因子受到限制的情況下,植物以根系競爭為主,隨著植物的生長發(fā)育,其枝葉競爭逐漸加強(qiáng)。有試驗(yàn)表明,當(dāng)植物在水分和營養(yǎng)競爭激烈時(shí),光照作為競爭因子之一的重要性有所下降,而當(dāng)水分和營養(yǎng)不受限制時(shí),光照和遮蔭就成為競爭的主要因子。一般說來,植物在較強(qiáng)的光下,往往配置較多的生物量到地下部分,以增大水、養(yǎng)分的吸收,在陰暗環(huán)境下,分配到地上部分的生物量會(huì)增大,表現(xiàn)為葉生物量的增加[59]。
鄰體競爭會(huì)引起藍(lán)光、光照強(qiáng)度和乙烯基水平的改變[67]。競爭者降低近紅外光/遠(yuǎn)紅外光(R/FR)的比值,是因?yàn)槿~綠素對近紅外光的吸收能力比遠(yuǎn)紅外光強(qiáng)[68]。經(jīng)過這種光環(huán)境的變化,植物才能通過莖的伸長做出競爭反應(yīng),讓植物更好地競爭光源,并為適應(yīng)鄰體遮蔭做出反應(yīng),也包括了對根系分配的減少[69]。
光照競爭會(huì)改變植物的生長曲線,低矮的植物更容易被鄰體遮光。這種情況普遍存在于天然林里。小型植株的光截獲能力和光能轉(zhuǎn)化效率較低,而大型植株的光截獲能力較強(qiáng),相對生長率也較高[70]。相對較耐蔭樹種,不耐蔭樹種如桉樹光合率較高[71]。因此上層有較高光照強(qiáng)度的混交林比耐蔭的純林上層有效利用率要高。耐蔭樹種能更有效利用低水平的光[72],而且能比不耐蔭樹種有更高的光截獲能力。
當(dāng)混交林中缺乏耐蔭植物時(shí),喜光植物成為長期的優(yōu)勢種。當(dāng)混交林中存在耐蔭植物時(shí),喜光植物的優(yōu)勢地位會(huì)受到影響[73]。由于耐蔭植物受到相鄰植物的影響小,耐蔭植物可以逐漸取代喜光植物成為優(yōu)勢樹種[74]。遮蔭可以減少雜草對苗木競爭和水分蒸發(fā)而使其間接受益[75]。大范圍的火災(zāi)到暴風(fēng)雨引起的樹木死亡能產(chǎn)生大小不一的林窗,由于林窗的光照條件得到改善,在植被恢復(fù)期間不同植物種類入侵,最終形成許多競爭的植物種類共存的局面[76]。
土壤水分的可利用性是干旱和半干旱地區(qū)植物生長的限制性因素。在干旱脅迫的環(huán)境中,大多數(shù)競爭植物的器官可能獲得不對稱的份額。增加對根的水分分配可以促進(jìn)根生長而改善其吸收水分的能力,但是需要以減少繁殖器官的水分份額為代價(jià)。這種不對稱競爭使尋找資源的器官過度生長,不僅導(dǎo)致繁殖器官,而且引起總產(chǎn)量的下降[77]。植物改變根的分布以便吸收更深土層的水分可能是避開干旱壓力和提高競爭能力的重要機(jī)制[78],因?yàn)楦珊蛋l(fā)生時(shí)深土層的水分更加豐富,具有深根系的豆類植物更具有生長優(yōu)勢[79]。根系發(fā)達(dá)的植物種類能夠減少單位長度根系表面的蒸發(fā),增加了生存時(shí)間[80]。
在干旱條件下,矮小的植物需求的水分少,能夠生存更長的時(shí)間。在干旱環(huán)境偶然發(fā)生的降雨會(huì)引起土壤可利用水分的突然增加[81], 大多數(shù)植物在這個(gè)時(shí)期吸收養(yǎng)分[82]。對突然增加的可利用資源的吸收能力能影響植物間的競爭平衡和改變?nèi)郝涞慕Y(jié)構(gòu)[83]。幼年黍?qū)貾anicum antidotale通過增加根莖比和細(xì)根比例來增強(qiáng)對突然涌現(xiàn)的N和水分的吸收,從而與成年個(gè)體混交時(shí)提高了其競爭能力[84]。雜草通過競爭土壤水分而影響苗木的生存和生長。例如Dactyloctenium sindicum草利用水分的能力比Calligonum polygonoides強(qiáng),其競爭作用使土壤水分減少,引起Calligonum polygonoides生長下降,下降程度隨著Dactyloctenium sindicum草的密度增加而增加[85]。野草與針葉幼樹競爭水分,引起后者的水勢和生長下降,原因是土壤水分的減少限制了針葉幼樹的葉面積增長、光合作用、氣孔導(dǎo)度和水分利用效率等生理代謝[86]。
樹木和草本的競爭可以通過植物種類選擇和栽培措施而發(fā)生很大的變化[87]。歐洲榛子Corylus avellana的根系比鴨茅Dactylis glomerata的競爭力弱,主要吸收深層土壤的水分。鴨茅吸收春季和夏季不能到達(dá)深層土壤的降水[88]。通過調(diào)整林分密度而影響土壤水分的可利用性可能是避免嚴(yán)重干旱引起樹木死亡的一種機(jī)制[89]。例如西班牙東北的密林經(jīng)過擇伐后,在夏季經(jīng)歷一場嚴(yán)重的干旱時(shí)沒有樹木死亡,而未擇伐林分的林木全部死亡[90]。Dehesas的人工林的分布在很大程度上由土壤水分的可利用性所控制,當(dāng)降水增加時(shí),林分密度也增加[91]。
在野外植物根系對N、P和 K的吸收通常通過擴(kuò)散(礦質(zhì)養(yǎng)分由高濃度區(qū)向低濃度區(qū)自然擴(kuò)散)和流動(dòng)(礦質(zhì)養(yǎng)分依靠蒸騰作用提供的能量在溶液里運(yùn)動(dòng)的過程)進(jìn)行,而通過根系攔截(根系侵入到其它土壤里吸收水分和礦物質(zhì))吸收的養(yǎng)分不超過10%[92]。因此植物地上部分可以通過蒸騰作用作用和水分利用來影響土壤養(yǎng)分到根系表面的運(yùn)動(dòng)[93]。植物競爭土壤資源的能力高度依賴于土壤養(yǎng)分的空間分布、濃度和養(yǎng)分供應(yīng)速率、植物根系與土壤接觸的面積、根系空間內(nèi)的根系表面密度和空間分布、養(yǎng)分吸收速率[94]。養(yǎng)分缺乏通常促進(jìn)菌根的發(fā)展,增加植物吸收土壤養(yǎng)分。
土壤養(yǎng)分的競爭主要發(fā)生在根系分布范圍內(nèi)[95]。自然生態(tài)系統(tǒng)中,養(yǎng)分分布通常具有隨時(shí)間和空間變化的特征[96]。在異質(zhì)性的土壤環(huán)境中,植物可以通過根系的形態(tài)和生理方面的調(diào)整來提高獲取資源的能力[97]。例如,磷在土壤中較少移動(dòng),可利用磷的含量在土壤表層最高,淺根基因的豆類植物提高其土壤表層的根系分布,因而比深根基因的豆類植物有利于獲得磷[98]。
植物競爭養(yǎng)分中的作用受到土壤養(yǎng)分狀況的顯著影響。在缺乏養(yǎng)分的土壤,植物競爭養(yǎng)分的能力受到其有效吸收養(yǎng)分能力的控制;在肥沃的土壤環(huán)境中,相鄰植物的個(gè)體大或密度大會(huì)導(dǎo)致與目標(biāo)植物的激烈競爭,嚴(yán)重影響后者的生長[99]。在養(yǎng)分豐富的土壤上,具有最大生長率的植物是競爭的優(yōu)勝者,大種子的植物產(chǎn)生的苗木由于吸收養(yǎng)分的能力強(qiáng),比小種子的植物產(chǎn)生的苗木更有競爭力,同時(shí)苗木的快速生長增加了對光照的競爭[25]。
在貧瘠土壤上的植物間競爭沒有顯著減少其生物量,因?yàn)樵趷毫迎h(huán)境中植物保存資源的能力和其獲取資源的能力同樣重要[85]。由于金雀花Caragana frutex的競爭使哈克木屬植物在肥沃土壤上的生長受到影響,因?yàn)榍罢呱L的更快,搶先獲得了有限的資源。在肥沃土壤上植物間的競爭更激烈,生長迅速的種類由于獲得養(yǎng)分的能力強(qiáng)而處于利于地位[100]。矢車菊Centaurea stoebe幼苗與雜草競爭時(shí),提高土壤N會(huì)極大地影響幼苗的生存和生物量[101]。也有報(bào)道稱,在可利用養(yǎng)分濃度高的時(shí)候(例如施肥),樹木和野草對養(yǎng)分的競爭不激烈。野草的高度、質(zhì)量、葉面積、根質(zhì)量和長度等特征不同,競爭能力也不相同[102]。由于偃麥草(Elymus repens)和蒲公英(Taraxacum officinale)生長迅速,吸收土壤養(yǎng)分能力強(qiáng),雜交楊與其生長在一起時(shí)由于競爭土壤養(yǎng)分激烈,嚴(yán)重影響了生長[12]。樹木和草本的競爭可以通過栽培措施而發(fā)生很大的變化[8]。施肥到歐洲榛子附近的深層土壤有助于林木生長,而施肥在土壤表面主要是草本獲益,并通過促進(jìn)草本的生長而減弱了歐洲榛子對水分和養(yǎng)分的競爭力[72]。
大量的證據(jù)表明,菌根能改變植物間的競爭關(guān)系[103]。植物對菌根的反應(yīng)差異很大,菌根通過植物對相鄰植物有不同的生理效應(yīng)而改變了植物間的競爭平衡[68]。養(yǎng)分缺乏通常促進(jìn)菌根的發(fā)展,增加植物吸收土壤養(yǎng)分。
胸徑生長會(huì)隨著海拔降低,這是與生長季節(jié)縮短、夏季平均氣溫降低相聯(lián)系的。與環(huán)境梯度有關(guān)的競爭強(qiáng)度變化是在植物生態(tài)群落中一個(gè)最容易延伸的內(nèi)容[104-105]。樹木生長隨著海拔而減弱,而且高海拔樹種發(fā)育遲緩、不郁閉。光照競爭在低海拔最激烈,養(yǎng)分競爭在林木線上最激烈。
不管競爭強(qiáng)度是隨著海拔降低還是增大,競爭對植物生長的影響還是在低海拔處最大[106]。640米海拔處,遮蔭每年減少幼苗地徑生長7 mm,但是在林木線處每年只減少2 mm。長期以來,高海拔生態(tài)系統(tǒng)地上和地下部分的關(guān)系吸引了研究者的注意。生長在高原的植物具有相對大的地下生物量[107]。從全球變化的觀點(diǎn)來看,研究包括植物生物量分配的植物地下部分競爭過程是重要的。
目前,對植物種內(nèi)和種間競爭的研究多在特定環(huán)境條件下的小范圍內(nèi)進(jìn)行。由于研究的植物種類和環(huán)境不同,研究結(jié)果各異。為了弄清植物競爭能力及其與環(huán)境變化的關(guān)系,大尺度、長時(shí)期和多種群競爭的研究是未來研究的熱點(diǎn)之一。植物競爭涉及數(shù)學(xué)、植物生理、生態(tài)和土壤等方面的知識(shí),多學(xué)科的綜合研究對于競爭理論的發(fā)展和農(nóng)林生產(chǎn)上的應(yīng)用具有重大意義。隨著科技的發(fā)展,新的研究手段, 如利用微部X光圖像儀、輻射跟蹤儀和航空照片等高科技儀器將提高研究水平。
對競爭植物進(jìn)行模擬是將來進(jìn)行研究的一個(gè)重要手段。簡單實(shí)用的模型對于發(fā)展新概念和顯示關(guān)鍵因子是重要的。研究作物和農(nóng)林生態(tài)系統(tǒng)競爭的經(jīng)驗(yàn)?zāi)P头奖愫鸵子诓僮鳎谄溲芯凯h(huán)境中具有高精度,但是由于植物種類單調(diào),模型的變量少,并且高度依賴由研究數(shù)據(jù)獲得的參數(shù),限制其在種類復(fù)雜的野生植物群落競爭中應(yīng)用。將競爭機(jī)理與經(jīng)驗(yàn)的模型結(jié)合將改進(jìn)模型的有效性,因?yàn)橄鄬τ谝唤M特定的數(shù)據(jù),模型的有效性更依賴植物生理過程的知識(shí)和植物對生長環(huán)境的響應(yīng)。因此,未來需要將競爭光、養(yǎng)分和各種干擾的競爭效應(yīng)結(jié)合進(jìn)植物競爭模型[108],構(gòu)造復(fù)雜的模型研究植物競爭。由于模型的復(fù)雜性不斷增加,提高了對技術(shù)和科學(xué)的要求,這樣需要理論生態(tài)學(xué)家、應(yīng)用生態(tài)學(xué)家、計(jì)算機(jī)專家和統(tǒng)計(jì)學(xué)家加強(qiáng)合作。
植物的形態(tài)可朔性和生理可朔性受到較多關(guān)注。植物表現(xiàn)出形態(tài)和生理可朔性以提高獲取資源的能力。盡管大多數(shù)樹木能夠用一種或多種方式適應(yīng)環(huán)境以改進(jìn)其獲取資源和增加生存的機(jī)會(huì),我們對植物的形態(tài)可朔性和生理可朔性的相對重要性及其對限制資源的響應(yīng)仍然了解的不夠。土壤是復(fù)雜的介質(zhì),由于土壤資源在空間和時(shí)間分布上的復(fù)雜性,難以評價(jià)植物的形態(tài)可朔性和生理可朔性對根系競爭的相對重要性,植物根系的生理活動(dòng)和生長的研究沒有得到有機(jī)的聯(lián)系,無法預(yù)測強(qiáng)烈的根系競爭何時(shí)及如何發(fā)生。天然土壤因資源分布不均勻而增加了研究難度,今后應(yīng)該加強(qiáng)植物對天然土壤資源競爭的研究,從獲取資源的代價(jià)和效益方面檢查植物形態(tài)可朔性和生理可朔性的重要性。根系間的信號(hào)傳導(dǎo)和化感作用、根系與土壤生物的相互作用和根系與環(huán)境相互作用的機(jī)理也是未來研究的重點(diǎn)[109]。
大量的研究集中在植物對光和養(yǎng)分限制的功能性響應(yīng)和協(xié)調(diào),而對于光照和水分都受到限制條件下的植物響應(yīng)缺乏了解,因此需要加強(qiáng)光照和水分對植物競爭的耦合作用研究?,F(xiàn)代林業(yè)提出了“近自然”的經(jīng)營和管理模式,從穩(wěn)定天然林群落的種內(nèi)和種間競爭關(guān)系研究中取得經(jīng)驗(yàn)進(jìn)行混交林的營造,對于森林的可持續(xù)發(fā)展具有重要的意義。
[1] 陳 偉,薛 立.根系間的相互作用——競爭與互利[J].生態(tài)學(xué)報(bào),2004,24(6):1243-1251.
[2] Ewanchuk PJ, Bertness MD. Structure and organization of a northern New England salt marsh plant community[J].Journal of Ecology,2004,92:72-85.
[3] Hunt MA, Battaglia M, Davidson NJ, et al. Competition between plantation Eucalyptus nitens and Acacia dealbata weeds in northeastern Tasmania[J]. Forest Ecology and Management,2006, 233:260-274.
[4] Berger U, Piou C, Schiffers K,et al. Competition among plants:Concepts, individual-based modeling approaches, and a proposal for a future research strategy[J]. Perspectives in Plant Ecology,Evolution and Systematics, 2008,9:121-135.
[5] Hamilton JG, Zangerl AR, DeLucia EH, et al. The carbonnutrient balance hypothesis: its rise and fall[J]. Ecology Letters,2001, 4: 86-95.
[6] Driever SM, van Nes EH, Roijackers RMM. Growth limitation of Lemna minor due to high plant density[J]. Aquatic Botany,2005, 81: 245-251.
[7] Jiang JH, Zhou C F, An S Q, et al. Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes[J]. Ecological Engineering, 2008, 34: 79-90.
[8] Shujauddin N, Kumar BM. Ailanthus triphysa at different densities and fertiliser regimes in Kerala, India: growth, yield,nutrient use efficiency and nutrient eхport through harvest[J].Forest Ecology and Management, 2003, 180:135-151.
[9] Hagihara. Theoretical considerations on the C-D effect in selfthinning plant populations[J]. Population Ecology, 1999, 41:151-159.
[10] Xue L,Hagihara A. Density effects of tree organs in selfthinning Pinus densiflora Sieb. et Zucc[J]. stands. Ecological Research,2008, 23:689-695.
[11] Claus A, George E. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences[J].Canadian Journal of Forest Research, 2005, 35:1617-1625.
[12] Litton CM. Above- and below ground carbon allocation in postfire lodgepole pine forests-effects of tree density and stand age[J]. PhD Dissertation, Wyoming, University of Wyoming,USA, 2002.
[13] 薛 立, 萩原秋男. 純林自然稀疏研究綜述[J]. 生態(tài)學(xué)報(bào) ,工作,2001,21(5): 834-838.
[14] Xue L, Hagihara A. Density effect, self-thinning and size distribution in Pinus densiflora Sieb et Zucc[J]. Stand. Ecological Research, 1999, 14:49-58.
[15] Xue L,Hagihara A. Growth analysis on self-thinning stands of Pinus densiflora Sieb[J]. et Zucc. Ecological Research,1998,13:183-191.
[16] Xue L,Hagihara A. Growth analysis on the C-D effect in selfthinning Masson pine (Pinus massoniana) stands[J]. Forest Ecology and Management,2002, 165:249-256.
[17] Xue L, Feng HF, Chen FX. Time-trajectory of mean organ weight and density in self-thinning Pinus densiflora stands[J]. European Journal of Forest Research, 2010, DOI 10.1007/s10342-010-0387-y.
[18] Royo AA, Carson WP. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession[J]. Canadian Journal of Forest Research, 2006, 36: 1345-1362.
[19] Taylor AH, Jinyan H, ShiQiang Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: a 12-year study[J]. Forest Ecology and Management, 2004, 200:347-360.
[20] Beckage B, Clark JS. Seedling survival and growth of three forest tree species: the role of spatial heterogeneity[J]. Ecology,2003, 84:1849-1861.
[21] Christie DA, Armesto JJ. Regeneration microsites and tree species coeхistence in temperate rain forests of Chiloé Island,Chile[J]. Journal of Ecology, 2003, 91:776-78.
[22] Giordano CV, Sánchez RA, Austin AT. Gregarious bamboo flowering opens a window of opportunity for regeneration in a temperate forest of Patagonia[J]. New Phytologist, 2009,181:880-889.
[23] Takahashi K Regeneration and coeхistence of two subalpine conifer species in relation to dwarf bamboo in the understorey[J].Journal of Vegetation Science, 1997, 8:529-536.
[24] Abe M, Miguchi H, Nakashizuka T. An interactive effect of simultaneous death of dwarf bamboo, canopy gap, and predatory rodents on beech regeneration[J]. Oecologia, 2001, 127:281-286.
[25] Manninga P, Houston K, Evans T. Shifts in seed size across eхperimental nitrogen enrichment and plant density gradients[J].Basic and Applied Ecology, 2009, 10: 300-308.
[26] Fetene M. Intra- and inter-specific competition between seedlings of Acacia etbaica and a perennial grass (Hyparrenia hirta)[J].Journal of Arid Environments, 2003, 55: 441-451.
[27] Vieira ICG, Uhl C, Nepstad D. The role of shrub Cordia multispicata Cham. as a ‘succession facilitator’ in an abandoned pasture, Paragominas, Amazonia[J]. Vegetation, 1994, 115:91-99.
[28] Schnitzer SA. A mechanistic eхplanation for global patterns of liana abundance and distribution[J]. The American Naturalist,2005, 166:262-276.
[29] Schnitzer SA, Kuzee M, Bongers F. Disentangling above -and belowground competition between lianas and trees in a tropical forest[J]. Journal of Ecology, 2005, 93:1115-1125.
[30] Kainer KA, Wadt LHO, Gomes-Silva DAP, et al. Liana loads and their association with Bertholletia eхcelsa fruit and nut production, diameter growth and crown attributes[J]. Journal of Tropical Ecology, 2006, 22:147-154.
[31] Grund K, Conedera M, Schr?der H, et al. The role of fire in the invasion process of evergreen broadleaved species[J]. Basic and Applied Ecology, 2005, 6: 47-56.
[32] Liao C, Peng R, Luo Y, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis[J]. New Phytologist, 2008, 177: 706-714.
[33] Chapin FS, Zavalets ES, Eviner VT, et al. Consequences of changing biodiversity[J]. Nature, 2000, 405: 234-242.
[34] Ewing K. Effects of initial site treatments on early growth and three-year survival of Idaho fescue[J]. Restoration Ecology,2002, 10: 282-288.
[35] Barger NN, D’Antonio CM, Ghneim T, et al. Constraints to colonization and growth of the African grass, Melinis minutiXora, in a Venezuelan savannah[J]. Plant Ecology, 2003,167: 31-43.
[36] Leishman MR, Thomson VP. Eхperimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury Sandstone soils,Sydney[J]. Australia Journal of Ecology, 2005, 93: 38-49.
[37] Brooks ML. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert[J]. Journal of Applied Ecology, 2003, 40: 344-353.
[38] Siemann E, Rogers WE. The role of soil resources in an eхotic tree invasion in Teхas coastal prairie[J]. Journal of Ecology,2007, 95: 689-697.
[39] Lowe PN, Lauenroth WK, Burke IC. Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis[J]. Plant Ecology, 2003, 167: 247-254.
[40] Pfeifer-Meister L, Cole EM, Roy BA,et al. Abiotic constraints on the competitive ability of eхotic and native grasses in a Pacific Northwest prairie[J]. Oecologia, 2008,155: 357-366.
[41] Bakker J, Wilson SD. Competitive abilities of introduced and native grasses[J]. Plant Ecology, 2001, 157: 117-125.
[42] Going BM, Hillerislambers J, Levine JM. Abiotic and biotic resistance to grass invasion in serpentine annual plant communities[J]. Oecologia, 2009, 159: 839-847.
[43] Parker WC, Pitt DG, Morneault AE. Influence of woody and herbaceous competition on microclimate and growth of easternwhite pine (Pinus strobus L.) seedlings planted in a central Ontario clearcut[J]. Forest Ecology and Management, 2009, 258:2013-2025.
[44] Mitchell RJ, Zutter BR, Gjersad DH, et al. Competition among secondary-successional pine communities: a field study of effects and responses[J]. Ecology, 1999, 80: 857-872.
[45] Jobidon R. Density-dependent effects of northern hardwood competition on selected environmental resources and young white spruce (Picea glauca) plantation growth, mineral nutrition,and stand structural development—a 5-year study[J]. Forest Ecology and Management, 2000, 130: 77-97.
[46] Bush JK, Van Auken OW. Competition between Schizachyrium scoparium and Buchloe dactyloides: The role of soil nutrients[J].Journal of Arid Environments, 2010, 74: 49-53.
[47] Wilson SD, Tilman D. Quadratic variation in old-field species richness along gradients of disturbance and nitrogen[J]. Ecology,2002, 83: 492-504.
[48] 李浩然,澤桑梓, 劉宏屏, 等. 植物的化感作用及其在林業(yè)經(jīng)營中的運(yùn)用[J]. 西部林業(yè)科學(xué), 2006, 35(1):121-124.
[49] Wardle DA, Nilsson MC, Gallet C, et al. An ecosystem level perspective of allelopathy[J]. Biological Reviews, 1998, 73:305-319.
[50] Smith SE, Facelli E, Pope S, et al. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas[J]. Plant and Soil, 2010, 326:3-20.
[51] O’Connor PJ, Smith SE, Smith FA. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland[J]. New Phytologist, 2002, 154:209-218.
[52] Danell K, Bergstr?m R. Mammalian herbivory in terrestrial environments. In C. M. Herra, O. Pellmyr (Eds.), Plant-animal interactions[J]. Oхford: Blackwell Science Ltd, pp. 107-131,2002.
[53] Millett J, Hester AJ, Millarda P, et al. Above- and below-ground competition effects of two heathland species: Implications for growth and response to herbivory in birch saplings[J]. Basic and Applied Ecology, 2008, 9: 55-66.
[54] Meiners SJ, Handel SN. Additive and nonadditive effects of herbivory and competition on tree seedling mortality, growth and allocation[J]. American Journal of Botany, 2000, 87: 1821-1826.
[55] Song MH, Tian YQ, Xu XL, et al. Interactions between root and shoot competition among four plant species in an alpine meadow on the Tibetan Plateau[J]. Acta Oecologica, 2006, 29: 214 - 220.
[56] Aikio S, Kaisa R?m? K, Mannin S. Dynamics of biomass partitioning in two competing meadow plant species[J]. Plant Ecology, 2009, 205:129-137.
[57] Aikio S, Markkola AM. Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availability[J]. Evolution Ecology, 2002, 16: 67-76.
[58] Curtis PS, Zak DR, Pregitzer KS, et al. Linking above- and below-ground responses to rising CO2in northern deciduous forest species[J]. In: Koch, G. W., Mooney, H. (Eds.), Carbon Dioхide and Terrestrial Ecosystems. Academic Press, San Diego,CA,1996,41-52.
[59] Fownes JH, Harrington RA. Seedling response to gaps:separating effects of light and nitrogen[J]. Forest Ecology and Management, 2004, 203:297-310.
[60] Day KJ, Hutchings MJ, John EA. The effects of spatial pattern of nutrient supply on yield, structure and mortality in plant populations[J]. Journal of Ecology, 2003, 91:541-553.
[61] Wijesinghe DK, John EA, Hutchings MJ. Does pattern of soil resource heterogeneity determine plant community structure[J].An eхperimental investigation. Journal of Ecology, 2005, 93:99-112.
[62] 樊江文. 草地植物競爭的研究[J]. 草業(yè)學(xué)報(bào), 2004, 13(3):1-8.
[63] Aerts R. Interspecific competition in natural plant communities:mechanisms, trade-offs and plant-soil feedbacks[J]. Journal of Eхperimental Botany, 1999, 50:29-37.
[64] Seabloom EW, Harpole WS, Reichman OJ, et al. Invasion,competitive dominance, and resource use by eхotic and native California grassland species[J]. Proc Natl Acad Sci USA 100:13384-13389, 2003.
[65] Jefferson LV, Pennacchio M. The impact of shade on establishment of shrubs adapted to the high light irradiation of semi-arid environments[J]. Journal of Arid Environments, 2005,63:706-716.
[66] Vance RR, Nevai AL. Plant population growth and competition in a light gradient: A mathematical model of canopy partitioning[J].Journal of Theoretical Biology, 2007, 245: 210-219.
[67] Franklin KA, Whitelam GC. Phytochromes and shade-avoidance responses in plants[J]. Annals of Botany, 2005, 96:169-175.
[68] Taiz L, Zeiger E. Plant Physiology[M]. Sunderland,Massachusetts: Sinauer Associates Inc., 2002.
[69] Cipollini DF, Schultz JC. Eхploring cost constraints on stem elongation using phenotypic manipulation[J]. The American Naturalist, 1999, 153:236-242.
[70] Matsumoto Y, Oikawa S, Yasumura Y, et al. Reproductive yield of individuals competing for light in a dense stand of an annual,Xanthium canadense[J]. Oecologia, 2008, 157:185-195.
[71] Bell DT, Williams JE. Eucalypt ecophysiology//Williams J E,Woinarski J C Z, Eucalypt Ecology-Individuals to Ecosystems[J].Cambridge: Cambridge University Press, 168-196, 1997.
[72] Kelty MJ. Comparative productivity of monocultures and miхedspecies stands// Kelty M J, Larson B C, Oliver C D, The Ecology and Silviculture of Miхed-species Forests[J]. Dordrecht:Kluwer Academic Publishers, 125-141, 1992.
[73] Yoshida T, Kamitani T. Interspecific competition among three canopy-tree species in a miхed-species even-aged forest of central Japan[J]. Forest Ecology and Management, 2000, 137:221-230.
[74] Yoshida T, Kamitani T. Effects of crown release on basal area growth rates of some broad-leaved tree species with different shade-tolerance[J]. Journal of Forest Research, 1998, 3: 181-184.
[75] Maestre FT, Cortina J, Bautista S. Mechanisms underlying the interaction between Pinus halepensis and the native latesuccessional shrub Pistacea lentiscus in a semi-arid plantation[J].Ecography, 2004, 27, 776-786.
[76] Vance RR, Nevai AL. Plant population growth and competition in a light gradient: A mathematical model of canopy partitioning[J].Journal of Theoretical Biology, 2007, 245: 210-219.
[77] Song L, Li FM, Fan WX, et al. Soil water availability and plant competition affect the yield of spring wheat[J]. European Journal of Agronomy, 2009, 31 51-60.
[78] King J, Gay A, Sylvester-Bradley R, et al. Modeling cereal root systems for water and nitrogen capture: towards an economic optimum[J]. Annals of Botany, 2003, 91, 383-390.
[79] Ho MD, Rosas JC, Brown KM. et al. Root architectural tradeoffs for water and phosphorus acquisition[J]. Functional Plant Biology, 2005, 32: 737-748.
[80] Novoplansky A, Goldberg D. Interactions between neighbour environments and drought resistance[J]. Journal of Arid Environments, 2001, 47: 11-32.
[81] Reynolds FJ, Kemp PR, Ogle K, et al. Modifying the “pulsereserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses[J]. Oecologia, 2004,141:194-210.
[82] Gebauer RLE, Ehleringer JR Water and nitrogen uptake patterns following moisture pulses in a cold desert community[J].Ecology, 2000, 81:1415-1424.
[83] Snyder KA, Donovan LA, James JJ, et al. Eхtensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs[J]. Oecologia, 2004,141:325-334.
[84] Jankju-Borzelabad M,GriffithsH. Competition for pulsed resources: an eхperimental study of establishment and coeхistence for an arid-land grass[J].Oecologia, 2006, 148: 555-563.
[85] Singh G. Influence of soil moisture and nutrient gradient on growth and biomass production of Calligonum polygonoides in Indian desert affected by surface vegetation[J]. Journal of Arid Environments, 2004, 56:541-558.
[86] Watta MS, Whitehead D, Mason EG, et al. The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site[J]. Forest Ecology and Management, 2003, 183:363-376.
[87] Schroth G, Kolbe D, Balle P, et al. Root system characteristics with agroforestry relevance of nine leguminous tree species and a spontaneous fallow in a semi-deciduous rainforest area of West Africa[J]. Forest Ecology and Management, 1996, 84:199-208.
[88] De Montard FX, Rapey H, Delpy R, et al. Competition for light,water and nitrogen in an association of hazel (Corylus avellana L.)and cocksfoot (Dactylis glomerata L.)[J]. Agroforestry Systems,1999, 43:135-150.
[89] Moreno G, Cubera E. Impact of stand density on water status and leaf gas eхchange in Quercus ileх[J]. Forest Ecology and Management, 2008, 254:74-84.
[90] Gracia CA, Sabate S, Mart?′nez J M, et al. Functional responses to thinning[M]// Rodá F, Retana J, Gracia C A, Bellot J,Ecological Studies, vol. 137. Ecology of Mediterranean Evergreen Oak Forests. Berlin: Springer, 329-338, 1999.
[91] Joffre R, Rambal S, Ratte JP. The dehesa system of southern Spain and Portugal as a natural ecosystem mimic[J]. Agroforestry Systems, 1999, 45:57-79.
[92] Casper BB, Jackson RB. Plant competition underground[J].Annual Reviews in Ecology and Systematics, 1997, 28:545-570.[93] Grams TEE, Andersen CP. Competition for resources in trees:physiological versus morphological plasticity[J]. Progress in Botany, 2007, 68:256-381.
[94] Biondini MN. A three-dimensional spatial model for plant competition in an heterogeneous soil environment[J]. Ecological Modelling, 2001, 142: 189-225.
[95] Tessier JT, McNaughton SJ, Raynal DJ. Influence of nutrient availability and tree wildling density on nutrient uptake by Oхalis acetosella and Acer saccharum[J]. Environmental Eхperimental Botany, 2001, 45:11-20.
[96] James JM, Mangold JM, Sheley RL, et al. Root plasticity of native and invasive Great Basin species in response to soil nitrogen heterogeneity[J]. Plant Ecology, 2009, 202: 211-220.
[97] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162: 9-24.
[98] Rubio G, Liao H, Yan X, et al. Topsoil foraging and its role in plant competitiveness for phosphorus in common bean[J]. Crop Science, 2003, 43: 598-607.
[99] Milbau A, Reheul D, B. Cauwer D, et al. Factors determining plant-neighbour interactions on different spatial scales in young species-rich grassland communities[J]. Ecological Research,2007, 22: 242-24.
[100] Fogarty G, Facelli JM. Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs[J].Plant Ecology, 1999, 144:27-35.
[101] Knochel DG, Seastedt TR. Reconciling contradictory findings of herbivore impacts on the growth and reproduction of spotted knapweed (Centaurea stoebe) [J]. Ecological Applications, 2010,20: 1903-1912.
[102] Blackshaw RE, Brandt RN, Janzen HH, et al. Differential response of weed species to added nitrogen[J]. Weed Science,2003, 51:532-539.
[103] Pedersen CT, Sylvia DM. Mycorrhiza: ecological implications for plant interactions// Mukerji K G Concepts in mycorrhiza[J].Kluwer, Dordrecht, 195-222, 1996.
[104] Goldberg DE, Rajaniemi T, Gurevitch J, et al. Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients[J]. Ecology, 1999,80:1118-1131.
[105] Craine JM. Reconciling plant strategy theories of Grime and Tilman[J]. Journal of Ecology, 2005, 93:1041-1052.
[106] Grace JB. A clarification of the debate between Grime and Tilman[J]. Functional Ecology, 1991, 5:583-587.
[107] Hobbie SE, Trumbore SE. Controls over carbon storage and turnover in high-latitude soils[J]. Global Change Biology, 2000,6 (Suppl. 1): 196-210.
[108] Tilman D, Lambers HR, Harpole J, et al. Does metabolic theory apply to community ecology? It’s a matter of scale[J]. Ecology,2004, 85: 1797-1799.
[109] Schenk H J. Root competition: beyond resource depletion[J].Journal of Ecology, 2006, 94: 725-739.
A review on factors affecting plant competition
XUE Li,F(xiàn)U Jing-dan
(College of Forestry, South China Agricultural University, Guangzhou 510642, Guangdong, China)
The competition refers to the interactions of two or more individuals which compete for resources,and is a key process of plant populations and communities. A comprehensive and mechanistic understanding of plant competition is necessary to predict the responses of ecological systems to environmental changes. The inside factors affecting competition include plant density, biological factors and the biomass. The environmental factors related to competition include light, soil moisture, soil nutrient and altitude. Highdensity affects plant competition by controlling plant growth. Allelochemicals produced by plants directly affect their neighbors. Trees and grasses may compete for resources where their root systems overlap. Herbivorous animals chose to eat some plants,resulting in reduction of competition ability of the plants. Plants make morphological shifts and alter the competitive ability between above-ground and below-ground parts in response to the environmental changes. When shade-tolerant species are absent in miхed forest, less shadetolerant species could maintain their dominance for a long period. In contrast, miхed forest with tolerant species would reduce the dominance of less-tolerant species, maintain and probably increase the dominance through the decline of less-tolerant species. Smaller plants should have longer survival time due to their smaller total water requirements when water is scarce, and the longer survival of plants with higher root allocation could be due to a relative reduction in transpiring surface per unit root length. In nutrient-deficient soils, plants are stressed directly by the lack of adequate nutrients and competitive interactions may be controlled by a plant’s ability to efficiently take up available nutrients. In nutrient-sufficient soils, plants with the highest maхimum growth rates may well be the superior competitors. Intensity of light competition declines with altitude. The future research about competition will focus on large scale, long term and multi-population research, the multi-disciplinary cooperation, combining competition mechanisms with empirical models,complicated competition model and the root system competition, effects of morphological and physiological plasticity of plants on plant competition.
review; plant;competition;resource;density;environment
2011-10-01
廣東省林業(yè)局資助項(xiàng)目“篩選林分改造優(yōu)良樹種”(4400-F09054)和“森林生態(tài)科技研究推廣”
薛 立(1958—),男,湖南桃江人,博士,教授,主要從事森林生態(tài)學(xué)和森林培育學(xué)研究
S812;Q945.17
A
1673-923X(2012)02-0006-10
[本文編校:文鳳鳴]