李國(guó)軍,雷 薇,陳海耿
(東北大學(xué) 材料與冶金學(xué)院,沈陽(yáng) 110819)
加熱爐爐溫優(yōu)化算法研究
李國(guó)軍,雷 薇,陳海耿
(東北大學(xué) 材料與冶金學(xué)院,沈陽(yáng) 110819)
爐溫制度的優(yōu)化是爐子優(yōu)化控制的基礎(chǔ),它包括爐溫優(yōu)化目標(biāo)函數(shù)的確定和目標(biāo)函數(shù)極值的求解兩方面.本文建立了連續(xù)加熱爐板坯加熱的穩(wěn)態(tài)數(shù)學(xué)模型和爐溫優(yōu)化模型.應(yīng)用所建立的穩(wěn)態(tài)數(shù)學(xué)模型定量分析了各段爐溫變化對(duì)鋼坯加熱過(guò)程的影響,形成了啟發(fā)式算法規(guī)則集.建立了考慮出爐鋼坯平均溫度及斷面溫差的目標(biāo)函數(shù),采用啟發(fā)式搜索算法對(duì)鋼坯加熱過(guò)程的爐溫制度進(jìn)行了優(yōu)化,對(duì)優(yōu)化前后的鋼坯平均溫度及斷面溫差的進(jìn)行了對(duì)比分析.計(jì)算結(jié)果表明,本文所歸納的啟發(fā)式搜索規(guī)則可以滿(mǎn)足該模型啟發(fā)式算法的要求,也表明啟發(fā)式搜索算法可作為加熱爐爐溫優(yōu)化的基本算法.
加熱爐模型;啟發(fā)式算法;元體平衡法;爐溫優(yōu)化
加熱爐在鋼材生產(chǎn)中占有十分重要的地位,其能耗約占軋鋼能耗的70% ~80%,提高加熱爐熱效率、降低能耗,對(duì)整個(gè)鋼鐵工業(yè)的節(jié)能具有重要的意義.同時(shí),隨著現(xiàn)代化軋機(jī)向著連續(xù)、大型、高速、高精度和多品種方向發(fā)展,對(duì)鋼坯的加熱質(zhì)量提出了越來(lái)越高的要求.因此,鋼坯加熱爐的優(yōu)化控制在國(guó)內(nèi)外都得到了普遍重視.
爐溫制度的優(yōu)化是爐子優(yōu)化控制的基礎(chǔ),即在已知坯料規(guī)格、種類(lèi),目標(biāo)出爐溫度,裝爐溫度,軋制節(jié)奏等情況下,設(shè)定各段爐溫,使鋼坯在合適的時(shí)間加熱到合適的溫度,且耗能最小.此問(wèn)題包括爐溫優(yōu)化指標(biāo)的確定和最優(yōu)控制的求解兩方面[1~3].Z.J.Wang[4~5]建立了鋼坯溫升計(jì)算模型.J.Buckley[6]將神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)機(jī)制引入了爐溫優(yōu)化系統(tǒng)中.Pike[7]通過(guò)近似集中參數(shù)模型研究了加熱爐靜態(tài)和動(dòng)態(tài)優(yōu)化.吳鐵軍[8~9]建立了爐溫優(yōu)化的二次型性能指標(biāo),并應(yīng)用一種求解帶約束最優(yōu)控制問(wèn)題的算法求解了最優(yōu)爐溫.楊永耀[10]以板坯加熱爐離散狀態(tài)空間模型為基礎(chǔ),提出了以啟發(fā)式搜索方法求解加熱爐爐溫設(shè)定值最優(yōu)化問(wèn)題的原理.
本文在前人的工作基礎(chǔ)之上,建立了連續(xù)加下,尋找最優(yōu)的爐溫控制策略.由于動(dòng)態(tài)下的加熱爐溫難以確定,因此本文以穩(wěn)態(tài)模型為基礎(chǔ),建立穩(wěn)態(tài)離線(xiàn)爐溫優(yōu)化數(shù)學(xué)模型.爐溫優(yōu)化的關(guān)鍵問(wèn)題是如何建立目標(biāo)函數(shù)和確定約束條件,以及約束條件的解法.本文在已建立的穩(wěn)態(tài)數(shù)學(xué)模型的基礎(chǔ)上,尋找最佳爐溫制度,使鋼坯出爐既能滿(mǎn)足出鋼要求,同時(shí)又能使能耗最低.
要對(duì)加熱爐進(jìn)行優(yōu)化,就必須首先有一個(gè)明確的優(yōu)化目標(biāo).針對(duì)以上要求,本文提出下面的優(yōu)化目標(biāo)函數(shù):
該優(yōu)化指標(biāo)函數(shù)分兩項(xiàng),每一項(xiàng)代表一個(gè)優(yōu)化條件.其中第一項(xiàng)(ex,min)2是代表鋼坯出爐的平均溫度的指標(biāo),是預(yù)測(cè)出爐時(shí)鋼坯平均溫度,ex,min是工藝要求的鋼坯平均溫度最小值;第二項(xiàng)(Δtex-Δtex,max)2是代表鋼坯出爐時(shí)斷面溫差的指標(biāo),Δtex為預(yù)測(cè)出爐時(shí)的斷面溫差,Δtex,max是工藝允許的鋼坯斷面溫差最大值.
根據(jù)數(shù)學(xué)模型的特點(diǎn),考慮到最優(yōu)化算法的收斂速度及計(jì)算量,本文采用啟發(fā)式搜索來(lái)求解該最優(yōu)化問(wèn)題,啟發(fā)式搜索規(guī)則集見(jiàn)§2,求解的程序框圖如圖1所示.
圖1 爐溫優(yōu)化程序框圖Fig.1 The program diagram of furnace temperature optimization
本文算例為某軋鋼廠(chǎng)的步進(jìn)梁式板坯加熱爐,該爐有效長(zhǎng)43.2 m,寬11.2 m,分為四個(gè)爐段,分別為均熱段7.32 m,加熱二段9.98 m,加熱一段12.4 m,預(yù)熱段13.5 m.該爐子加熱的典型坯為普碳鋼坯,規(guī)格為10 000 mm×1 100 mm×220 mm,冷裝坯料入爐溫度為25℃,出爐平均鋼溫1 180±20℃,斷面溫差≤40℃.各段爐溫范圍分別為 600≤Tf,1≤800;950≤Tf,2≤1 200;1 100≤Tf,3≤1 300;1 1500≤Tf,4≤1 280 .此外,考慮到相鄰路段間的相互影響,優(yōu)化過(guò)程中爐溫的取值還需滿(mǎn)足 Tf,i+1- Tf,i≤300 ℃ .
取例爐的一個(gè)典型工況作為參照,對(duì)爐溫進(jìn)行優(yōu)化,優(yōu)化的附加條件是鋼坯的鋼種和規(guī)格相同,產(chǎn)量和出爐平均溫度相等,以便進(jìn)行對(duì)比.優(yōu)化前后的對(duì)比示于圖2和圖3.由圖2可以看出,優(yōu)化后的平均鋼溫的升高,總落后于優(yōu)化前的,直到出爐時(shí)二者相等.由圖3可以看出,優(yōu)化前的斷面溫差峰值較大,且較靠近低溫段;出爐時(shí),優(yōu)化后的斷面溫差較大,但滿(mǎn)足約束條件.從斷面溫差的峰值與出現(xiàn)位置看,優(yōu)化方案遵循了強(qiáng)化端頭供熱的原則,所以是省能的.
圖2 鋼坯平均溫度沿爐長(zhǎng)的變化Fig.2 The average temperature vs.furnace length
圖3 鋼坯斷面溫差沿爐長(zhǎng)的變化Fig.3 The difference of temperature in cross section vs.furnace length
本文建立了連續(xù)加熱爐板坯加熱的穩(wěn)態(tài)數(shù)學(xué)模型和爐溫優(yōu)化模型.建立了考慮鋼坯平均溫度及斷面溫差的目標(biāo)函數(shù),并以鋼坯出爐平均溫度、斷面溫差和爐內(nèi)段間爐溫差作為約束條件.應(yīng)用所建立的穩(wěn)態(tài)數(shù)學(xué)模型定量分析了各段爐溫變化對(duì)鋼坯加熱過(guò)程的影響,形成了啟發(fā)式算法規(guī)則集.在此基礎(chǔ)上,采用啟發(fā)式搜索算法對(duì)鋼坯加熱過(guò)程的爐溫制度進(jìn)行了優(yōu)化,證明了本文所歸納的啟發(fā)式搜索規(guī)則可以滿(mǎn)足該模型啟發(fā)式算法的要求,能夠求得合理的爐溫優(yōu)化制度.
[1]Ko H S,Kim J S,Yoon T W,et al.Modeling and predictive control of a reheating furnace[C]//Chicago:American Control Conference.2000.
[2]Ditzhujzen V,Staalman D,Koom A,et al.Identification and model presictive control of a slab reheating furnace[C]//Glasgow,Scotland:2002 IEEE International Conference on Control Applications.2002.
[3]Hollander F,Zuurbier S P A.Design,development and performance of on-line computer control in a 3-zone reheating furnace [J].Iron and Steel Engineer,1982,59(1):44-52.
[4]Wang Z J,Wu Q D,Chai T Y.Optimal-setting control for complicated industrial processes and its application study[J].Control Engineering Practice,2004,12(1):65-74.
[5]Wang Z J,Chai T Y,Guan S P,et al.Hybrid optimization setpoint strategy for slab reheating furnace temperature[C]//San Diego,California:American Control Conference.1999.
[6]Buckley J,Hayashi Y.Fuzzy Neural Networks:A Survey[J].Fuzzy Sets and Systems,1994,66(1):1.
[7]Pike H E,Citron S J.Optimization study of a slab reheating furnace[J].Automatica,1970,6(1):41 -50.
[8]吳鐵軍,呂勇哉.均熱爐最佳加熱策略的開(kāi)發(fā)[J].自動(dòng)化學(xué)報(bào),1986,12(2):113-119.
(Wu Tiejun, Lu Yongzai. The development of optimal heating patterns for steel mill soaking pits[J].Acta Automatica Sinica,1986,12(2):113 -119.)
[9]Wu T J,Lu Y Z.An algorithm for solving constrained optimal control problems[C]//Proceedings of International Conference on Industrial Process Modelingand Control.China:Hangzhou.1985.
[10]楊永耀,呂勇哉.板坯加熱爐的遞階計(jì)算機(jī)控制[J].自動(dòng)化學(xué)報(bào),1989,15(4):303-309.
(Yang Yongyao,Lu Yongzai.Hierachical computer control for slab reheating furnace[J].Acta Automatica Sinica,1989,15(4):303-309.)
Study of optimization algorithm on reheating furnace temperature
LI Guo-jun,LEI Wei,CHEN Hai-geng
(School of Materials and Metallurgy,Northeastern University,Shenyang 110819,China)
The optimization of the furnace temperature system is on the basis of optimized control,which includes the determination of furnace temperature optimizing object function and the solving of the extreme.In this paper,the stable model and furnace temperature optimization model were established.According to the mathematical model steady quantitatively analyze the heating process influence that change of each billet temperature,the heuristic algorithm rule sets was formed,and the furnace temperature of thin slab heating process was optimal analyzed by the minimizing fuel consumption as the object function.The comparison of the average temperature and temperature difference of crosssection before and after optimization was made.The results show that the heuristic search rules established through the dynamic mathematical model can meet the requirements of the heuristic algorithm,and show that the heuristic search algorithm can be used as the basic algorithm of the heating furnace temperature optimization.
reheatingfurnace mathematical model;heuristic algorithm;elementbalance method;furnace temperature optimization
TK 124
A
1671-6620(2011)04-0325-04
2011-09-20.
國(guó)家自然科學(xué)基金資助 (50974146).
李國(guó)軍 (1972—),男,吉林扶余人,博士,東北大學(xué)講師,E-mail:ligj@smm.neu.edu.cn;陳海耿 (1944—),男,福建龍海人,東北大學(xué)教授,博士生導(dǎo)師.