張立華,賈帥東,吳 超,殷曉冬
海軍大連艦艇學(xué)院海洋測(cè)繪科學(xué)與工程系,遼寧大連116018
顧及不確定度的數(shù)字水深模型內(nèi)插方法
張立華,賈帥東,吳 超,殷曉冬
海軍大連艦艇學(xué)院海洋測(cè)繪科學(xué)與工程系,遼寧大連116018
提出一種顧及不確定度的數(shù)字水深模型(DDM)內(nèi)插方法。計(jì)算數(shù)據(jù)來(lái)源不同的水深不確定度,構(gòu)建水深數(shù)據(jù)權(quán)重配賦中加入不確定度的數(shù)據(jù)內(nèi)插模型,實(shí)現(xiàn)水深內(nèi)插點(diǎn)的不確定度估計(jì)。試驗(yàn)證明,所提方法提高了DDM的構(gòu)建質(zhì)量,并可評(píng)估內(nèi)插水深的不確定度。
數(shù)字水深模型;不確定度;內(nèi)插
高質(zhì)量的數(shù)字水深模型(digital depth model, DDM)構(gòu)建,在艦船海上航行、海洋工程建設(shè)、海底勘探、軍事活動(dòng)等應(yīng)用領(lǐng)域都具有重要意義[1]。長(zhǎng)期以來(lái),在海道測(cè)量和海圖制圖界,認(rèn)為原始觀測(cè)水深的準(zhǔn)確度和可靠性高,出于艦船航行安全起見(jiàn),一律強(qiáng)調(diào)保留原始水深以及采用保守的“取淺”規(guī)則,所以數(shù)據(jù)處理中,對(duì)內(nèi)插水深鮮有應(yīng)用[2-3]。但事實(shí)上,在不需要保守水深而更需要真實(shí)地形的領(lǐng)域(如海洋水文、海洋聲學(xué)、海底勘探、海洋考古等),由于格網(wǎng)化水深具有數(shù)據(jù)結(jié)構(gòu)及管理表達(dá)上的優(yōu)越性,對(duì)內(nèi)插水深也存在需求[1]。另外,在港口水深測(cè)量中,某些用戶為了讀圖方便,也明確要求提供格網(wǎng)化內(nèi)插水深圖[4]。特別是近年來(lái),隨著多波束測(cè)深的應(yīng)用以及測(cè)深定位精度的不斷提高,格網(wǎng)化水深內(nèi)插開(kāi)始廣泛應(yīng)用[1,5-6]。然而,在當(dāng)前的水深內(nèi)插方法中,通常將水深數(shù)據(jù)等同精度處理,而未考慮水深數(shù)據(jù)來(lái)源多樣性而導(dǎo)致不等精度的客觀事實(shí)。在不同區(qū)域、不同測(cè)線之間的交界及其附近區(qū)域,由于測(cè)量時(shí)間不同、使用儀器不同、采集方式各異,水深數(shù)據(jù)的精度存在不同;在海圖上,經(jīng)常采用測(cè)量年代、來(lái)源不同的數(shù)據(jù)區(qū)域塊,在這些區(qū)域相接及其鄰近區(qū)域,導(dǎo)致水深數(shù)據(jù)質(zhì)量存在諸多差異。而當(dāng)前進(jìn)行水深內(nèi)插時(shí),未有效考慮不同數(shù)據(jù)來(lái)源在數(shù)據(jù)質(zhì)量上的這種差異,將影響DDM內(nèi)插的質(zhì)量。同時(shí)當(dāng)前方法無(wú)法對(duì)內(nèi)插后的水深精度指標(biāo)進(jìn)行質(zhì)量評(píng)估,這使得難于對(duì)DDM內(nèi)插方法進(jìn)行合理性判斷[1,4-6]。
不確定度表示在某一明確的置信度下,包含測(cè)量真值(關(guān)于某一給定的值)的區(qū)間[7],表示由于測(cè)量誤差的存在而對(duì)被測(cè)量值不能確定的程度。一個(gè)完整的測(cè)量結(jié)果,不僅要給出測(cè)量值的大小,而且要給出測(cè)量不確定度,以表示測(cè)量結(jié)果的可信程度[5]。2008年新版的國(guó)際海道測(cè)量標(biāo)準(zhǔn)S-44(5版)明確要求,將不確定度作為水深值的精度指標(biāo)與水深點(diǎn)信息一起存儲(chǔ)[8]。近年來(lái),有學(xué)者在闡述水深不確定度與傳統(tǒng)水深精度表達(dá)之間的關(guān)系的基礎(chǔ)上,突破長(zhǎng)期以來(lái)水深測(cè)量成果僅以測(cè)點(diǎn)位置和水深值表達(dá)海底地形的現(xiàn)狀,開(kāi)始對(duì)單個(gè)水深進(jìn)行不確定度的質(zhì)量評(píng)定[1,8-9]。
因此,顧及不同源水深數(shù)據(jù)不確定度的差異,分析其對(duì)DDM構(gòu)建的影響,并估計(jì)內(nèi)插后水深及DDM的質(zhì)量,具有現(xiàn)實(shí)意義。
2.1.1 不確定度估計(jì)
不確定度估計(jì)的嚴(yán)密方法是:首先分析全誤差Δδ中包含的隨機(jī)誤差和各種系統(tǒng)誤差成分,計(jì)算Δδ的標(biāo)準(zhǔn)差σδ;其次確定Δδ的概率分布,根據(jù)概率分布的置信度,獲得置信系數(shù) kδ,即得其擴(kuò)展不確定度[10]
可見(jiàn)擴(kuò)展不確定度的確定關(guān)鍵在于概率分布和相應(yīng)的置信度以及標(biāo)準(zhǔn)差σδ的獲取。在國(guó)際海道測(cè)量標(biāo)準(zhǔn)(S-44)中,已假定測(cè)深數(shù)據(jù)服從正態(tài)分布,并要求置信度為95%,故在其不確定度的評(píng)定過(guò)程中,需詳細(xì)分析誤差源,給出具體的標(biāo)準(zhǔn)差,方能確定其不確定度的大小。
2.1.2 水平不確定度的計(jì)算
多波束測(cè)深由于測(cè)量載體受風(fēng)、流和涌浪等各種干擾因素的影響,會(huì)產(chǎn)生橫搖、縱搖、艏搖及載體升沉等運(yùn)動(dòng),這些運(yùn)動(dòng)將使測(cè)深點(diǎn)歸算問(wèn)題轉(zhuǎn)化為多維動(dòng)態(tài)改正問(wèn)題,其改正量將隨測(cè)船航向變化和搖擺幅度大小而改變,具有明顯的時(shí)變性,這就是海洋測(cè)量中的所謂動(dòng)態(tài)偏心改正、動(dòng)態(tài)位置傳算以及動(dòng)態(tài)時(shí)延改正問(wèn)題[11],故多波束測(cè)深測(cè)點(diǎn)在水平方向上的標(biāo)準(zhǔn)差可表示為
式中,σ0為定位儀器的精度;σΔx和σΔy分別對(duì)應(yīng)于前面三項(xiàng)改正綜合的計(jì)算精度;σyv為聲線改正在水平方向上的中誤差。
對(duì)于單波束測(cè)深并未考慮上述動(dòng)態(tài)改正,故其測(cè)點(diǎn)在水平方向上的標(biāo)準(zhǔn)差可簡(jiǎn)單表示為
因此σPosition可視為水平方向上的標(biāo)準(zhǔn)差,是一個(gè)二維數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)知識(shí),此時(shí)σPosition的置信水平為68%,需將其擴(kuò)展至95%,以滿足S-44規(guī)范的要求。根據(jù)σPosition服從正態(tài)分布的特性與其相應(yīng)的置信水平,水平不確定度σH可表示為[7]
2.1.3 垂直不確定度的計(jì)算
針對(duì)多波束測(cè)深系統(tǒng)在垂直方向上誤差源的分析,得其測(cè)點(diǎn)在垂直方向上的標(biāo)準(zhǔn)差為[9]
式中,σd1、σd2、σd3、σd4、σH、σdyn_draught、σWL、σZv分別為測(cè)距、波束指向角、縱搖角、波束角、升沉與誘導(dǎo)升沉、船體吃水、潮位推估和聲線改正在垂直方向上的中誤差,其中,橫搖角與波束指向角誤差可一并處理,表層聲速的影響已歸納到σd2中。
而單波束測(cè)深系統(tǒng)僅包含吃水改正、聲速改正和潮汐改正,故單波束測(cè)深測(cè)點(diǎn)在垂直方向上的標(biāo)準(zhǔn)差可表示為
則垂直不確定度σV可表示為[7]
2.1.4 不確定度信息的組織及應(yīng)用
通過(guò)式(2)~(7),可算得各測(cè)深點(diǎn)相應(yīng)的水平和垂直不確定度,某水深點(diǎn)i的信息可表示為Si= Xi,Yi,Zi,σHi,σVi,其中 Xi,Yi,Zi為測(cè)深點(diǎn)的平面坐標(biāo)和水深值,σHi、σVi分別為水平和垂直不確定度。根據(jù)不確定度的定義[9],這一測(cè)點(diǎn)的實(shí)際水深真值應(yīng)包含在區(qū)間內(nèi)。
對(duì)水深數(shù)據(jù)進(jìn)行前期整理和相關(guān)歸算后,不確定度作為水深質(zhì)量指標(biāo)加入測(cè)點(diǎn)的相關(guān)信息中。
離散點(diǎn)構(gòu)建格網(wǎng)DEM是在原始數(shù)據(jù)呈離散分布時(shí)使用的方法,其基本思路是選擇一合理的數(shù)學(xué)模型,利用已知點(diǎn)上的信息求出函數(shù)的待定系數(shù),然后求算規(guī)則格網(wǎng)點(diǎn)上的高程值[12]。隨著水深數(shù)據(jù)向高密度、高精度方向發(fā)展,通常采用運(yùn)算簡(jiǎn)單、執(zhí)行效率高的距離冪次反比加權(quán)法來(lái)進(jìn)行內(nèi)插,一般選取離散點(diǎn)至節(jié)點(diǎn)的距離平方的反比為權(quán)重[13]。插值后節(jié)點(diǎn)的水深只受距離的影響,離散點(diǎn)離格網(wǎng)節(jié)點(diǎn)距離越遠(yuǎn)權(quán)重越小,距離越近權(quán)重越大,這種方法在使用等精度的離散數(shù)據(jù)時(shí)能起到較好的效果,而當(dāng)數(shù)據(jù)精度存在較大差異時(shí),未能突出高精度數(shù)據(jù)的有效利用。如圖1所示,根據(jù)具有較大不確定度(精度相對(duì)較低)的離散點(diǎn)a1(虛線部分代表水平不確定度,雙實(shí)線部分代表垂直不確定度)和較小不確定度(精度相對(duì)較高)的離散點(diǎn) a2,在格網(wǎng)節(jié)點(diǎn)b上內(nèi)插時(shí),由于離散點(diǎn) a1距離節(jié)點(diǎn)較近,盡管其不確定度較大,但在使用距離加權(quán)時(shí)會(huì)賦予其較大的權(quán)值,而不確定度較小但距離遠(yuǎn)的離散點(diǎn) a2在參與格網(wǎng)節(jié)點(diǎn)的內(nèi)插過(guò)程中起的作用卻很小。
圖1 顧及不確定度的離散點(diǎn)內(nèi)插Fig.1 Interpolation considering uncertainy of data points
基于上述分析,在使用帶有不確定度信息的離散水深數(shù)據(jù)進(jìn)行格網(wǎng)內(nèi)插時(shí),主要可考慮到兩個(gè)因素的影響,一是離散點(diǎn)到數(shù)據(jù)內(nèi)插點(diǎn)的距離,二是離散點(diǎn)不確定度的大小。因此對(duì)于離散水深數(shù)據(jù)的權(quán)重配賦,本文綜合考慮離散點(diǎn)與格網(wǎng)節(jié)點(diǎn)的空間相關(guān)性和離散點(diǎn)的不確定度指標(biāo),提出顧及距離遠(yuǎn)近和不確定度大小的水深數(shù)據(jù)格網(wǎng)內(nèi)插模型(以下簡(jiǎn)稱不確定度加權(quán)方法),表示為
由于編輯后的每一個(gè)測(cè)深數(shù)據(jù)均帶有其相應(yīng)的不確定度,因此須考慮如何合理地將離散點(diǎn)的不確定度信息歸算到內(nèi)插節(jié)點(diǎn)上去,根據(jù)國(guó)際組織ISO制定的《測(cè)量不確定度表示指南》(即《Guide oftheExpression ofUncertainty in Measurement》,簡(jiǎn)稱 GUM方法)可以合成節(jié)點(diǎn)的水深不確定度[14]。
2.3.1 GUM方法合成不確定度
式中,rxixj為 xi與 xj的自相關(guān)系數(shù)。
2.3.2 GUM方法合成節(jié)點(diǎn)水深不確定度
給定距離反比加權(quán)方法的內(nèi)插模型為
式中,di表示內(nèi)插節(jié)點(diǎn)與離散點(diǎn)的平面距離;Z表示內(nèi)插節(jié)點(diǎn)水深值;Zi表示離散點(diǎn)水深值;距離權(quán)函數(shù)又因?yàn)?di=為給定節(jié)點(diǎn),故經(jīng)簡(jiǎn)單推算可知
基于GUM方法,將式(11)的 Z看做由多個(gè)觀測(cè)量(d1,d2,…,dn,Z1,Z2,…,Zn)構(gòu)成的觀測(cè)結(jié)果y,代入式(10),經(jīng)整理,得距離反比加權(quán)方法對(duì)于節(jié)點(diǎn)水深的不確定度為
而根據(jù)不確定度加權(quán)方法的內(nèi)插模型,結(jié)合式(8)、式(9)、式(10),通過(guò) GUM方法可計(jì)算出該模型的節(jié)點(diǎn)水深不確定度為
通過(guò)上述步驟,即可計(jì)算出兩種方法關(guān)于節(jié)點(diǎn)的水深不確定度。
本文選用試驗(yàn)數(shù)據(jù),區(qū)域范圍及數(shù)據(jù)來(lái)源如圖2和表1所示。利用某次測(cè)量剛好掃過(guò)這些交界區(qū)域的多波束測(cè)線數(shù)據(jù),選取結(jié)構(gòu)合理、分布均勻的121個(gè)測(cè)深點(diǎn)作為檢查點(diǎn),如圖2(b)所示。
圖2 試驗(yàn)數(shù)據(jù)區(qū)域范圍Fig.2 Area of experimental data
表1 各區(qū)域的測(cè)量時(shí)間及方式Tab.1 Surveying time and means of various areas
需要說(shuō)明的是,由于區(qū)域3的測(cè)量時(shí)間比較早,當(dāng)時(shí)的水深測(cè)量數(shù)據(jù)未有效考慮不確定度計(jì)算,很多信息未保留,無(wú)法準(zhǔn)確計(jì)算其不同水深點(diǎn)的水平和垂直不確定度,只能根據(jù)數(shù)據(jù)來(lái)源,查詢出當(dāng)時(shí)的測(cè)圖比例尺和測(cè)量方式,簡(jiǎn)單推算所有水深的精度指標(biāo),最后確定所有水深的水平和垂直不確定度依次統(tǒng)一為25 m和0.4 m。對(duì)于區(qū)域4的水深,來(lái)源于原海圖數(shù)字化,根據(jù)海圖成圖規(guī)范的精度要求和海區(qū)的地形情況,粗略估計(jì)水平和垂直不確定度依次統(tǒng)一為50 m和0.5 m。
為了驗(yàn)證模型的有效性,分析DDM內(nèi)插質(zhì)量。如圖2(a)所示,分別從區(qū)域1、區(qū)域2、區(qū)域3、區(qū)域4、交界區(qū)域 a(區(qū)域1、2的交界區(qū)域)、b (區(qū)域2、3的交界區(qū)域)和c(區(qū)域3、4的交界區(qū)域)中各隨機(jī)抽取5個(gè)檢查點(diǎn)(圖2(b)),其原始水深值作為比對(duì)值,將采用兩種不同內(nèi)插方法在檢查點(diǎn)的內(nèi)插值 Z與比對(duì)值Z′逐一比較,計(jì)算不同方法的內(nèi)插值與比對(duì)值的水深差值ΔZ和垂直不確定度σv(由于內(nèi)插點(diǎn)的平面坐標(biāo)直接給定,故不需要考慮內(nèi)插點(diǎn)的水平不確定度)。表2~表8列出了比較兩種方法生成的內(nèi)插結(jié)果。
表2 區(qū)域1的比對(duì)(只利用區(qū)域1的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.2 Contrast of area 1(only data in area 1 is computed and analyzed) m
表3 區(qū)域2的比對(duì)(只利用區(qū)域2的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.3 Contrast of area 2(only data in area 2 is computed and analyzed) m
表4 區(qū)域3的比對(duì)(只利用區(qū)域3的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.4 Contrast of area 3(only data in area 3 is computed and analyzed) m
表5 區(qū)域4的比對(duì)(只利用區(qū)域4的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.5 Contrast of area 4(only data in area 4 is computed and analyzed) m
表2~表5顯示,當(dāng)數(shù)據(jù)來(lái)源基本相同、不確定度相差很小時(shí),不確定度加權(quán)方法相對(duì)于距離反比加權(quán),在內(nèi)插值與比對(duì)值的差值上沒(méi)有明顯提高。對(duì)于水深不確定度較小的區(qū)域(區(qū)域1、區(qū)域2),距離反比加權(quán)法和不確定度加權(quán)法內(nèi)插的水深值與比對(duì)值相差都比較小,但采用不確定度加權(quán)法,能明顯改善內(nèi)插值的垂直不確定度。由于檢查比對(duì)點(diǎn)的實(shí)測(cè)水深大部分垂直不確定度位于0.2~0.4之間,所以采用不確定度加權(quán)法的內(nèi)插水深,幾乎不會(huì)降低原始水深的內(nèi)插質(zhì)量。但對(duì)于水深不確度較大的區(qū)域(區(qū)域3、區(qū)域4),盡管采用不確定度加權(quán)法,在水深比對(duì)差值以及內(nèi)插水深垂直不確定度指標(biāo)上都有一定改善,但仍無(wú)法達(dá)到理想效果,應(yīng)避免或慎重使用內(nèi)插水深。
表6 交界區(qū)域a的比對(duì)(同時(shí)利用區(qū)域1、2的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.6 Contrast of boundary areaa(data in area 1 together with area 2 are computed and analyzed) m
表7 交界區(qū)域b的比對(duì)(同時(shí)利用區(qū)域2、3的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.7 Contrast of boundary areab(data in area 2 together with area 3 are computed and analyzed) m
表8 交界區(qū)域c的比對(duì)(同時(shí)利用區(qū)域3、4的數(shù)據(jù)進(jìn)行計(jì)算分析)Tab.8 Contrast of boundary areac(data in area 3 together with area 4 are computed and analyzed) m
從表6~表8中兩種方法計(jì)算出的垂直不確定度可以看出,距離反比加權(quán)法內(nèi)插水深的垂直不確定度相對(duì)較低,而不確定度加權(quán)法可有效改善內(nèi)插節(jié)點(diǎn)的垂直不確定度。這種改善的程度與不同的數(shù)據(jù)源有關(guān)。當(dāng)數(shù)據(jù)不確定度相差越大時(shí),采用不確定度加權(quán)方法改善程度越高。
從表6~表8各比對(duì)點(diǎn)看,相對(duì)于距離反比加權(quán)法,不確定度加權(quán)法在大部分內(nèi)插結(jié)果中其水深比對(duì)差值也有明顯提高。雖然在極個(gè)別檢查點(diǎn)處,不確定度加權(quán)法的內(nèi)插值比距離反比加權(quán)內(nèi)插值偏離原始檢查數(shù)據(jù)略微偏大,但這是由于檢查點(diǎn)數(shù)據(jù)也存在著一定的水深垂直不確定度引起的,這種偏大的程度要遠(yuǎn)小于水深垂直不確定度。
從表2~表8可以看出,每個(gè)內(nèi)插水深后,都具有一個(gè)明確的垂直不確定值,從而為每個(gè)內(nèi)插水深提供了詳細(xì)的質(zhì)量評(píng)估。
通過(guò)前面設(shè)定的121個(gè)檢查點(diǎn),對(duì)使用距離反比加權(quán)方法和顧及不確定度加權(quán)方法構(gòu)建的海底DDM進(jìn)行總體質(zhì)量分析,設(shè)檢查點(diǎn)的原始觀測(cè)水深值為 Z′i(i=1,2,…,n),在建立DDM以后,由DDM內(nèi)插出這些點(diǎn)的水深值為 Zi,則DDM質(zhì)量采用以下公式評(píng)估
計(jì)算結(jié)果如表9所示,對(duì)比兩種方法在區(qū)域1、2、3、4中的內(nèi)插質(zhì)量可以看出,當(dāng)數(shù)據(jù)來(lái)源基本相同、不確定度相差較小時(shí),不確定度加權(quán)法相對(duì)于距離反比加權(quán)法在內(nèi)插質(zhì)量上的提高不大;對(duì)比兩種方法在交界區(qū)域a、b、c中的內(nèi)插質(zhì)量可以看出,兩組數(shù)據(jù)的測(cè)量時(shí)間、測(cè)量方式、測(cè)量精度等相差越大,不確定度加權(quán)法相對(duì)于距離反比加權(quán)法在內(nèi)插質(zhì)量上的提高就越大。
表9 兩種內(nèi)插方法的質(zhì)量對(duì)比Tab.9 Quality contrast of two interpolating methods m2
表9也顯示,在水深不確定度較小的區(qū)域,采用距離反比加權(quán)法和不確定度加權(quán)法,其總體質(zhì)量都能達(dá)到較高的標(biāo)準(zhǔn),但從表2、表3發(fā)現(xiàn)不確定度加權(quán)法具有更優(yōu)的水深垂直不確定度。但在水深不確度較大的區(qū)域(如區(qū)域4、交界區(qū)域c),兩種水深內(nèi)插方法都將會(huì)給內(nèi)插點(diǎn)帶來(lái)較大的中誤差,這也是長(zhǎng)期以來(lái)海洋測(cè)繪界謹(jǐn)慎或者避免使用水深內(nèi)插方法的原因。但通過(guò)試驗(yàn)可以看出,無(wú)論是多波束測(cè)深或單波束測(cè)深,只要水深精度、密度達(dá)到一定程度,采用水深內(nèi)插方法完全能夠達(dá)到較高的準(zhǔn)確度,為目前逐漸開(kāi)始廣泛使用的水深內(nèi)插方法進(jìn)一步奠定相應(yīng)的理論依據(jù)。
通過(guò)分析、計(jì)算及試驗(yàn)比對(duì),得結(jié)論如下:
(1)根據(jù)水深不確定度信息來(lái)進(jìn)行權(quán)值配賦,明顯提高了內(nèi)插水深點(diǎn)的垂直不確定度,也同時(shí)提高了DDM的總體精度。當(dāng)水深不確定度相差越大時(shí),提高的程度越高。
(2)在水深不確定度較小的區(qū)域,距離反比加權(quán)法和不確定度加權(quán)法構(gòu)建的DDM的總體質(zhì)量都能達(dá)到較高的標(biāo)準(zhǔn),但不確定度加權(quán)法可得到更優(yōu)的水深垂直不確定度。而在水深不確度較大的區(qū)域,兩種方法都無(wú)法滿足水深內(nèi)插的要求。但只要存在一定量的高質(zhì)量數(shù)據(jù),采用不確度加權(quán)內(nèi)插方法,就能使內(nèi)插水深達(dá)到理想效果。
(3)通過(guò)對(duì)水深不確度的傳遞與合成,突破了傳統(tǒng)方法不能對(duì)內(nèi)插水深進(jìn)行質(zhì)量評(píng)估的局限,實(shí)現(xiàn)了對(duì)每個(gè)內(nèi)插水深的詳細(xì)質(zhì)量評(píng)估。
當(dāng)然,由于本文研究所掌握的數(shù)據(jù)源有限,只是選取某一海圖上來(lái)源不同的數(shù)據(jù)進(jìn)行了試驗(yàn),更多的數(shù)據(jù)源還有待于進(jìn)一步的試驗(yàn)分析。同時(shí),本文沒(méi)有考慮數(shù)據(jù)綜合處理及可能的海底地形變化對(duì)水深內(nèi)插結(jié)果比對(duì)的影響,還沒(méi)有仔細(xì)思考研究所得結(jié)論如何規(guī)范化地去指導(dǎo)實(shí)際作業(yè),這都有待于以后進(jìn)行更深入的分析和探索。
[1] SMITH S.The Navigation Surface:a Multipurpose BathymetricDatabase [D]. Durham:University of New Hampshire,2003.
[2] Naval Institute of Hydrographic Surveying and Charting. GB12327-1998 Specifications for Hydrographic Survey[S]. Beijing:Chinese Standard Press,1999.(海軍海洋測(cè)繪研究所.GB12327-1998海道測(cè)量規(guī)范[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,1999.)
[3] Naval Press.GB12320-1998 Specifications for Chinese Nautical Charts[S].Beijing:Chinese Standard Press, 1999.(海軍出版社.GB12320-1998中國(guó)航海圖編繪規(guī)范[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,1999.)
[4] ZHANG Lihua.A Study on Drawing Depth Contours Using Grids Based on Irregular Area,Arbitrary Direction and Different Scale in Bathymetric Survey for Port Engineering[J].Port&Waterway Engineering,2005, 375(4):9-13.(張立華.港口工程水深測(cè)量中的不規(guī)則區(qū)域、任意方向、不等尺度網(wǎng)格法追蹤等深線研究[J].水運(yùn)工程,2005,375(4):9-13.)
[5] GAO Jinyao,JIN Xianglong,WU Ziyin.Construction of Submarine DTM from Raw Multibeam Data[J].Marine Science Bulletin,2003,22(1):30-38.(高金耀,金翔龍,吳自銀.多波束數(shù)據(jù)的海底數(shù)字地形模型構(gòu)建 [J].海洋通報(bào),2003,22(1):30-38.)
[6] J IA Juntao,ZHAI Jingsheng,MENG Chanyuan,et al. Construction and Visualization of Submarine DEM Based on Large Number of Multibeam Data[J].Journal of Geomantics Science and Technology,2008,25(4):255-259.(賈俊濤,翟京生,孟嬋媛,等.基于海量多波束數(shù)據(jù)的海底地形模型的構(gòu)建與可視化[J].測(cè)繪科學(xué)技術(shù)學(xué)報(bào),2008,25(4): 255-259.)
[7] WANG Zhongyu,LIU Zhimin,XIA Xintao,et al.Measurement Error and Uncertainty Evaluation[M].Beijing: Science Press,2008.(王中宇,劉智敏,夏新濤,等.測(cè)量誤差與不確定度評(píng)定[M].北京:科學(xué)出版社,2008.)
[8] IHO.S-44 IHO Standards for Hydrographic Surveys[S]. 5th.ed.Monaco:International Hydrographic Bureau,2008.
[9] WU Chao,YIN Xiaodong,ZHANG Lihua,et al.The Method of Quality Estimation in Multibeam Sounding Data Based on Uncertainty[J].Hydrographic Surveying and Charting,2009,29(3):11-15.(吳超,殷曉冬,張立華,等.基于不確定度的多波束測(cè)深數(shù)據(jù)質(zhì)量評(píng)估方法 [J].海洋測(cè)繪,2009,29(3):11-15.)
[10] TAO Benzao.Basic Theory of Uncertainty of Quality Control in GIS[J].Journal of Institute of Surveying and Mapping 2000,17(4):236-238.(陶本藻.GIS質(zhì)量控制中不確定度理論 [J].測(cè)繪學(xué)院學(xué)報(bào),2000,17(4): 236-238.)
[11] HUANG Motao,ZHAI Guojun,XIE Xijun,et al.The Influence of Carrier’s Attitude and the Position Reduction in Multibeam Echosounding and Airborne LaserDepth Sounding[J].Acta Geodaetica et Cartgraphica Sinica, 2000,29(1):82-88.(黃謨濤,翟國(guó)君,謝錫君,等.多波束和機(jī)載激光測(cè)深位置歸算及載體姿態(tài)影響研究[J].測(cè)繪學(xué)報(bào),2000,29(1):82-88.)
[12] L I Zhilin,ZHU Qing.Digital Elevation Model[M]. Wuhan:Wuhan University Press,2003.(李志林,朱慶.數(shù)字高程模型[M].武漢:武漢大學(xué)出版社,2003.)
[13] L I Jiabiao.Multibeam Sounding Survey:Principles, Technologiesand Data Processing Methods [M]. Beijing:Ocean Press,1999.(李家彪.多波束勘測(cè)原理技術(shù)與方法[M].北京:海洋出版社,1999.)
[14] International Organization for Standardization.Guide of the Expression of Uncertainty in Measurement[M]. XIAO Mingyao,KANG Jinyu,trans.Beijing:Chinese Metrology Press,1994.(國(guó)際標(biāo)準(zhǔn)化組織.測(cè)量不確定度表示指南[M].肖明耀,康金玉,譯.北京:中國(guó)計(jì)量出版社,1994.)
A Method for Interpolating Digital Depth Model Considering Uncertainty
ZHANGLihua,J IA Shuaidong,WU Chao,YIN Xiaodong
Department of Hydrograhy and Cartography,Dalian Naval Academy,Dalian 116018,China
A method for interpolating digital depth model(DDM)considering uncertainty is proposed.The uncertainty of the soundings deriving from the different data sources is calculated,the interpolation model by using the uncertainty in weighting for the soundings is constructed,and the uncertainty of the interpolated depth node is estimated.Experimental results demonstrate that the proposed method has improved the quality of DDM and can estimate the uncertainty of the interpolated depth node.
digital depth model;uncertainty;interpolotion
ZHANG Lihua (1973—),male,PhD, associate professor,majors in marine GIS.
1001-1595(2011)03-0359-07
P229
A
國(guó)家863計(jì)劃(2009AA12Z202);國(guó)家自然科學(xué)基金(40801189)
(責(zé)任編輯:雷秀麗)
2010-04-13
2010-09-01
張立華(1973—),男,博士,副教授,主要從事海洋GIS研究。
E-mail:zlhua@163.com