• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    第一性原理方法預(yù)測水相核酸堿基及其代謝物的氧化還原電動勢

    2011-12-12 02:43:24李敏杰劉衛(wèi)霞彭淳容陸文聰
    物理化學(xué)學(xué)報 2011年3期
    關(guān)鍵詞:化學(xué)系第一性上海大學(xué)

    李敏杰 劉衛(wèi)霞 彭淳容 陸文聰

    (上海大學(xué)化學(xué)系,上海200444)

    1 Introduction

    Ionizing radiation,photosensitization,or various oxidants are believed to be responsible for oxidatively generated damage to DNA.The reason is attributed to oxidative processes involving loss of an electron and the concomitant generation of a radical cation that migrates along the nucleobases of the du-plex by ahopping mechanism.1-10Low-energy electrons (LEEs)produced in significant numbers by ionizing radiation can also lead to DNA strand breaks via capture of LEEs to form radical anions.11-15Redox potentials of compounds in solution are fundamental properties in determining the innumerable chemical and biological electron-transfer reactions.16The redox potentials of nucleobases and the metabolites in aqueous solution offer critical insight into the electron transfer in DNA caused by ionizing radiation,oxidizing agent,and LEEs.In addition,they are crucial for the design of new redox-active nucleobase compounds using DNA substituents as building blocks.6,17,18

    Although considerable efforts have been devoted to the determination of the redox potentials of DNA and RNA constituents,only few have been reported.19-22And the experimental data reported by one group are different from those reported by other groups.23-34On one hand,different experimental conditions(such as solvent,pH,detection method,etc.)affect the experimental observations significantly.For example,Fukuzumi et al.29reported a redox potential of 1.42 V for deoxyadenosine in aqueous solution at pH 7,whereas Steenken and Jovanovic27observed 2.03 V at pH 1.On the other hand,unavoidable experimental uncertainties(such as irreversible electrochemistry, proton-coupled electron-transfer reaction,etc.)preclude the determination of redox potentials under well-defined equilibrium conditions.30,35,36Seidel et al.30measured the redox values of the DNA constituents under non-equilibrium irreversible conditions,which were known to be underestimated by ca 0.3 V compared to the standard ones recorded under reversible conditions.In this regard,debates still continue on the accuracy of the experimental redox potentials for the DNA and RNA substituents.35,36

    In addition,limited theoretical work on redox potentials for DNA and RNA substituents in aqueous solution has been disclosed.Crespo-Hernández et al.37determined the redox potentials for DNA nucleosides and relevant nucleoside analogues in N,N-dimethylformamide or acetonitrile solutions using density functional theory and integral equation formulation of polarizable continuum model(IEFPCM)solvation model performed with the Gaussian 98 suite of programs.The difference between the calculated and the experimental oxidation potentials was found to be less than 0.3 V.37Baik et al.19predicted the oxidation potentials for DNA bases analogues in aqueous medium using PW91 functional and the conductor-like screening model for real solvents(COSMORS)solvation model implemented in the Amsterdam density functional package with the difference between the calculated and the experimental oxidation values greater than 0.38 V.

    These experimental and theoretical results have contributed positively to the understanding of the electron transfer in DNA and RNA induced by loss of electrons or capture of LEEs.Nevertheless,they represent limited studies on the redox potentials of DNA and RNA substituents in aqueous medium.More importantly,the reported redox values were obtained under different experimental conditions and theoretical models.The differences of the reported redox potentials limit the applicability of the data.Hence,a unified set of redox potentials for DNA and RNAsubstituents in aqueous solution needs to be established.

    This paper focuses on the one-electron redox potential calculations for nucleobases and the metabolites in aqueous solution.A first-principles theoretical protocol was developed to be the optimal for pH-dependent redox potential predictions in aqueous solution among eight theoretical models by comparing the theoretical predictions with the experimental data of 82 aromatic compounds.With this useful protocol we next predicted the redox potentials for nucleobases and the metabolites.Discussions were then made about interesting connections between the redox potentials and charge/electron transfer in DNA,and the impact of structural variations on redox potentials.

    2 Computational details

    All calculations were performed with the Gaussian 03 suite of programs.38Geometry optimizations in gas phase were performed using the B3LYP/6-31+G(d)method.Frequencies were calculated at the same level of theory for all the species to confirm the nature of the local minima and to obtain the zero-point energy(ZPE).Single-point electronic energies were then calculated at the B3LYP/6-311++G(2df,2p)levels.The free energy change was then computed including ZPE corrections,thermal corrections(0→298 K),and the entropy terms.All the calculated gas-phase free energies correspond to the reference state of 101325 Pa,298 K.

    To calculate solvation energies,we used COSMORS model39at the HF/6-31+G(d)level(ε=78.39,radii=UAHF).Conductorlike polarizable continuum model(CPCM)model40at the HF/ 6-31+G(d)level was used for solution geometry re-optimizations(ε=78.39,radii=UAHF).All the free energies in aqueous solution reported in this paper correspond to the reference state of 1 mol·L-1,298 K.

    3 Results and discussion

    3.1 Developing a reliable protocol to calculate redox potential

    3.1.1 Computing redox potentials in aqueous medium

    From a free energy cycle as shown in Fig.1,the standard oxi-dation potentials(E?)can be calculated through the gas phase adiabatic ionization potentials(IP)and solvation energies using equation(1).

    In equation(1),IP is the gas-phase adiabatic ionization potential(unit:eV),which is defined as the enthalpy changes of reaction(i).The second term,F is the Faraday constant,which equals to 23.06 kJ·mol-1·V-1.The next terms,TΔS(unit:kJ· mol-1)is the gas-phase entropy term of reaction(i).ΔGsol(AH+?) and ΔGsol(AH)(unit:kJ·mol-1),correspond to the solvation free energies of the reduced and oxidized forms in aqueous medium.The last term,-4.44(unit:V),is the free energy change associated with the reference normal hydrogen electrode (NHE)half-reaction(i.e.,H+(aq)+e-(g)→1/2H2(g)).22

    In the same way,the standard reduction potential of reaction (ii)in aqueous medium can be computed using equation(2).

    where,EA is the adiabatic electron affinity in gas phase(unit: eV),which is computed as the difference between the total energies of the appropriate neutral and anion species at their respective optimized geometries defined in the reaction.TΔS (unit:kJ·mol-1)is the gas-phase entropy term of the reaction. ΔGsol(AH-●)and ΔGsol(AH)(unit:kJ·mol-1)correspond to the solvation free energies of the reduced(anion)and oxidized (neutral)forms in aqueous medium.

    3.1.2 Computing pH-dependent redox potentials in aqueous medium

    The redox potentials are highly pH dependent(decrease as pH increase)because of the rapid deprotonation of the corresponding radical cation at neutral(or basic)pH.6Nevertheless, none of the previous theoretical predictions took pH effects into consideration.From the following free energy cycle(Fig.2), oxidation potential can be computed at different pH values using equation(3).

    where,Ka(AH+●)and Ka(AH)correspond to the acidity constant in aqueous medium,which can be computed from the following proton exchange reaction(iii)using equation(4).

    Fig.2 Free energy cycle for the half-wave oxidation potential of AH in aqueous medium affected by pH value

    where,ΔGexchangeis defined as the solvation free energy change of the above reaction in aqueous solution.The experimental pKavalue for phenol is 9.98.41It was noteworthy that we chose phenol for the proton exchange reaction in that we wished to develop a most effective method for redox potential calculations of aromatic compounds.Likewise,reduction potential of reaction(ii)can also be computed at different pH values.

    3.1.3 Evaluation of different theoretical protocols

    We attempt to develop a reliable method to predict the redox potentials of aromatic compounds in aqueous medium.The gas-phase calculations were conducted using the standard B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d)method which was tested for reliability in gas phase IP and EA calculations in previous studies.15The prediction accuracy of the redox potentials in aqueous solution relies heavily on the accuracy of the calculated solvation energies in the same solution.To select an appropriate solvation model,we tested the different solvation models for the calculation of the redox potentials in aqueous medium.

    The CPCM solvation model with UAHF and UAKS cavity models at HF/6-31+G(d)level were used for re-optimized geometries in aqueous solution(ε=78.39).The COSMORS and CPCMsolvation models with UAHF and UAKS cavity models at the HF/6-31+G(d)level were used for solvation energies calculations for gas-phase and re-optimized solution geometries in aqueous solution.

    The redox potentials in aqueous solution of 12 aromatic compounds containing phenol,aniline,and nucleobase analogues were predicted with 8 composite protocols(Table S1 in Supporting Information).Comparing the experimental data with the theoretical predictions,we find that the B3LYP/ 6-311++G(2df,2p)//B3LYP/6-31+G(d)in gas phase and the HF-COSMORS/UAHF for solvation energy calculations at the HF-CPCM/UAHF re-optimized solution geometries in aqueous solution protocol(method 1)is the most reliable theoretical protocol for predicting the redox potentials of aromatic compounds.The evaluation of different theoretical protocols was given in Table S2.

    Using method 1,we also calculated the redox potentials of 70 aromatic compounds in aqueous solution.The results were summarized in Table S3.The experimental42-44and theoretical values of only several compounds were given in Table 1 for the other compounds with different substituent groups.It should be emphasized that several selected compounds have similar functional groups and heteroatoms as those in DNA constituents.In addition,their redox values extend over a wider range of potentials than those expected for the DNA and RNAsubstituents.

    Comparing all the experimental redox potentials with theoretical predictions for the 82 compounds in Table S3,we found that the theoretical predictions were in good agreement with the experimental data.The correlation between the experimen-tal and theoretical redox potentials is shown in Fig.3.It can be seen from Fig.3 that the slope and intercept of the correlation are 1.00 and-0.003 V,respectively,indicating that there is almost no systematic error in the predictions.The correlation coefficient(r)is 0.977.The RMSD between the experimental and theoretical redox potentials is 0.124 V(e.g.12 kJ·mol-1) for 82 hetero-aromatic compounds.

    Table 1 Experimental42-44and theoretical redox potentials(vs NHE,V)in aqueous solution for several compounds

    Fig.3 Comparison between the theoretical and experimental redox potentials in aqueous solution

    3.2 Determination of oxidation potentials for nucleobases and the metabolites

    The above analysis demonstrates that method 1 can predict the redox potentials of hetero-aromatic compounds with a precision of about 0.124 V.Here we utilized this theoretical protocol to predict the oxidation potentials of nucleobases and 15 familiar metabolites in aqueous medium at pH 7.The oxidation values for nucleobases and the metabolites in neutral solution are listed in Table 2.

    Table 2 clearly showed that oxidation potentials of purine nucleobases are lower than those of pyrimidine nucleobases. Guanine(G)has the lowest oxidation potential(1.10 V)among the five natural nucleobases,which show that guanine is the most commonly oxidized of the nucleobases.The oxidation value of adenine,1.38 V,is higher than that of guanine.The values of thymine,uracil,and cytosine were about 0.32,0.52, and 0.66 V higher than that of guanine,respectively.The data for DNA nucleobases follow the trend observed experimentally in solution:guanine<adenine<thymine<cytosine.34The order is also in agreement with the theoretical results predicted by Baik et al.19The relative electron-donating abilities in solution should decrease in the order of:purine nucleobases>pyrimidine nucleobases.

    Table 2 Theoretical oxidation potentials(vs NHE,V)for nucleobases and the metabolites in aqueous solution

    5-hydroxy-C has the lowest oxidation potential(0.53 V) among the five nucleobases and 15 familiar metabolites listed in Table 2,which is 0.57 V lower than that of guanine.Oxidation potentials of 5-hydroxy-U,8-oxoG,and 8-oxoA are 0.81, 0.87,and 1.00 V which are lower than that of guanine,respectively.Oxidation potentials of FAPy-G and FAPy-A are 1.09 and 1.17 V,which are comparable to that of guanine.Among the nucleobases and the metabolites,5-hydroxy-C and 5-hydroxy-U can be used as effective reductants for the design of new redox-active nucleobase compounds.

    From Table 2,it is observed that the 5-hydroxyl group significantly reduces the oxidation potentials for pyrimidine metabolites,5-hydroxyl-C and 5-hydroxyl-U.The oxidation values of 5-hydroxyl derivatives are 1.23 and 0.81 V lower than those of cytosine and uracil respectively.Introduction of hydroxyl to 5-position of 5,6-dihydro-T and 5,6-dihydro-U similarly reduces the oxidation values for the 5-hydroxy derivatives.An opposite tendency is found that the 5-formyl group increases the oxidation potential noticeably for uracil metabolite,5-formyl-U. However,introduction of hydroxyl to 6-position of 5-hydroxy-5,6-dihydro-T and 5-hydroxy-5,6-dihydro-U has less influence on the oxidation values.These results indicate that introduction of different substituents to 5 and 6-positions has different effects on oxidation potentials for pyrimidine analogues, which can be explained by the spin density localized at 5-C and 6-C of the oxidized pyrimidines(see Table 3).The spin density on 5-C is much higher than that on 6-C in the oxidized pyrimidines.Thus,introduction of electron donating groups to 5-position of pyrimidines could significantly decrease the oxidation potentials.On the contrary,introduction of electron withdrawing groups to 5-position increases the oxidation potentials noticeably.Furthermore,additions to 5-position could have more significant effects on oxidation potentials than those to 6-position.

    Table 3 Spin density distributions in the 5-and 6-positions of the oxidized and reduced pyrimidine nucleobases calculated at the B3LYP/6-31+G(d)level

    Oxidation potentials increase markedly with the hydrogenation of carbon(5),carbon(6)double bond of thymine and uracil due to dearomaticity of ring systems.

    The result reported in Table 3 suggests that 8-oxoG has a lower oxidation potential than that of guanine in aqueous solu-tion.26(a)Thus 8-oxoG is a better hole-trap than guanine.These predictions are in good agreement with experimental observations in aqueous solution by Steenken26(a)and Foote45et al.Likewise,8-oxoA is expected to have lower potential than that of guanine,which is in consistent with the observation reported by Baik et al.19

    Table 4 Theoretical reduction potentials(vs NHE,V)for nucleobases and the metabolites in aqueous solution

    The transfer direction of the hole,generated by one-electron oxidation in DNA,is an important topic for using DNA as building blocks for electronic devices.9,23,25,46,47Oxidation potential is intrinsically connected to hole-trapping ability of an agent.In our predictions listed in Table 2,oxidation potentials of 5-hydroxy-C,5-hydroxy-U,8-oxoG,and 8-oxoA are lower than that of guanine(G),which suggest that these four compounds are more powerful hole-trapping agents than guanine.

    3.3 Determination of reduction potentials of nucleobases and the metabolites

    Low electron affinities of nucleobases and limited accessible potential range(background discharge potential ca-1.7 V vs NHE)lead to limited experimental data on one electron reduction potentials.30Here,method 1 was used for reduction potential predictions of nucleobases and the metabolites(Table 4).

    Uracil has the lowest reduction potential(2.05 V)in the five natural nucleobases.The reduction potential of thymine is 2.09 V,comparable to that of uracil.The value of cytosine is 0.10 V higher than that of thymine.The values of adenine and guanine are 0.41 V and 0.90 V higher than that of thymine.The reduction potentials for nucleobases increase in the order of:uracil<thymine<cytosine<adenine.Our results are consistent with Crespo-Hernández and co-workers'theoretical preditions.37Besides,our results are in good agreement with the experimental trend reported by Seidel et al.30

    Reduction potentials for pyrimidine nucleobases are much lower than those for purine nucleobases.Our results suggest that thymine,cytosine and uracil are reduced by LEEs more easily than guanine and adenine.Pyrimidine nucleobases are found to have a stronger tendency to capture low-energy electrons than purine nucleobases.Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA and RNA single-strand break.Our suggestions are in very good agreement with theoretical findings of Gu et al.12

    In general,the reduction potentials of pyrimidine metabolites are much lower than those of purine counterparts.5-formyl-U has the lowest reduction potential(1.27 V)among the nucleobases and the metabolites(Table 4).The reduction potential(1.84 V)of 5-hydroxyhydantoin is higher than that of 5-formyl-U.The data of uridine glycol,5-hydroxy-C and thymine glycol are comparable to that of uracil.Of the nucleobases and the metabolites,5-hydroxy-U and 5-hydroxyhydantoin are the most effective oxidants for the design of new redox-active nucleobase compounds.

    Table 4 clearly shows that introduction of 6-hydroxyl to 5-hydroxy-5,6-dihydro-T and 5-hydroxy-5,6-dihydro-U decreases the reduction potentials by 0.23 and 0.30 V,respectively.In comparison with cytosine and uracil,the reduction potentials of their 5-hydroxy analogs do not have obvious change. The rational explanations for the different changes in the reduction potential of pyrimidine analogues owe to the spin density localized at 5-C and 6-C of the reduced pyrimidines(see Table 3).The spin density on 6-C is much higher than that on 5-C in the reduced pyrimidines,which is the opposite of that in the oxidized forms.Therefore,introduction of hydroxyl to 6-position of pyrimidines could decrease the reduction potentials.Furthermore,introduction of 5-hydroxyl could have negligible effect on oxidation potentials.

    Hydrogenation of carbon(5),carbon(6)double bond of thymine and uracil lead to the increase in the reduction potentials due to dearomaticity of ring systems,which has the same effect on the oxidation potentials.

    In a word,our results indicate that electronic properties and structural variations of the aromatic rings of nucleobase metabolites have predictable impact on the reduction potentials.

    4 Conclusions

    We successfully developed a first-principles method to predict the pH-dependent redox potentials of aromatic compounds in aqueous medium with a RMSD of 0.124 V.Here,the B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d)in gas phase and the HF-COSMORS/UAHF for solvation energy calculations at the HF-CPCM/UAHF re-optimized solution geometries in aqueous solution protocol is found to be the optimal method for predicting the redox potentials of aromatic compounds in aqueous solution.With this protocol,a set of redox potentials of nucleobases and the metabolites in aqueous medium were obtained.In addition,our observations about the impact of structural variations on redox potentials may provide important guidance in the design of new redox-active nucleobases compounds.

    Although our calculations are directly relevant to free molecules in aqueous solution,they might be helpful in elucidation of the charge/electron transfer in nucleic acid.With an accurate knowledge of the redox potentials of H-bonded pairs in nucleic acid,an in-depth understanding of the charge/electron transfer in nucleic acid might be possible.In our further study,the reliable redox potentials for nucleoside base stacks and more complex nucleic acid system in aqueous solution will be determined and the discussion on the charge/electron transfer in nucleic acid will be made more thoroughly.

    Supporting Information Available:Detailed geometrical coordinates optimized at the B3LYP/6-31+G(d)level of theory, and the evaluation of different theoretical method and the experimental and theoretical redox potentials of 82 compounds have been included.This material is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Steenken,S.;Telo,J.P.;Novais,H.M.;Candeias,L.P.J.Am. Chem.Soc.1992,114,4701.

    (2) (a)Colson,A.O.;Sevilla,M.D.Int.J.Radiat.Biol.1995,67, 627. (b)Li,X.;Cai,Z.;Sevilla,M.D.J.Phys.Chem.B 2001,105, 10115. (c)Li,X.;Sevilla,M.D.;Sanche,L.J.Phys.Chem.B 2004, 108,5472. (d)Li,X.;Sanche,L.;Sevilla,M.D.J.Phys.Chem.B 2004, 108,19013.

    (3) Desfrancois,D.;Abdoul-Carime,H.;Schermann,J.P.J.Chem. Phys.1996,104,7792.

    (4) Huels,M.A.;Hahndorf,I.;Illengerger,E.;Sanche,L.J.Chem. Phys.1998,108,1309.

    (5) (a)Li,M.J.;Liu,L.;Wei,K.;Fu,Y.;Guo,Q.X.J.Phys.Chem. B 2006,110,13582. (b)Li,M.J.;Liu,L.;Fu,Y.;Guo,Q.X.J.Phys.Chem.B 2005, 109,13818.

    (6) Burrows,C.J.;Muller,J.G.Chem.Rev.1998,98,1109.

    (7) Kelley,S.O.;Barton,J.K.Science 1999,283,375.

    (8) Berlin,Y.A.;Burin,A.L.;Ratner,M.A.J.Am.Chem.Soc. 2001,123,260.

    (9)(a)Giese,B.;Amaudrut,J.;K?hler,A.K.;Spormann,M.; Wessely,S.Nature 2001,412,318. (b)Giese,B.Accounts Chem.Res.2000,33,631.

    (10) (a)Anusiewicz,I.;Berdys-Kochanska,J.;Sobczyk,M.;Skurski, P.;Simons,J.J.Phys.Chem.A 2004,108,11381. (b)Anusiewicz,I.;Sobczyk,M.;Berdys-Kochanska,J.; Skurski,P.;Simons,J.J.Phys.Chem.A 2005,109,484.

    (11) LaVerne,J.A.;Pimblott,S.M.Radiat.Res.1995,141,208.

    (12) (a)Gu,J.D.;Xie,Y.M.;Schaefer,H.F.J.Am.Chem.Soc. 2005,127,1053. (b)Hou,R.;Gu,J.;Xie,Y.;Yi,X.;Schaefer,H.F.J.Phys. Chem.B 2005,109,22053. (c)Gu,J.D.;Xie,Y.M.;Schaefer,H.F.J.Am.Chem.Soc. 2006,128,1250. (d)Gu,J.D.;Xie,Y.M.;Schaefer,H.F.Nucleic Acids Res. 2007,35,5165. (e)Lyngdoh,R.H.D.;Schaefer,H.F.Accounts Chem.Res. 2009,42,563. (f)Jaeger H.M.and Schaefer,H.F.J.Phys.Chem.B 2009, 113,8142.

    (13) Li,X.;Sevilla,M.D.;Sanche,L.J.Am.Chem.Soc.2003,125, 13668.

    (14) (a)Berdys,J.;Anusiewicz,I.;Skurski,P.;Simons,J.J.Am. Chem.Soc.2004,126,6441. (b)Berdys,J.;Skurski,P.;Simons,J.J.Phys.Chem.B 2004, 108,5800.

    (15) Hendricks,J.H.;Lyapustina,S.A.;de Clercq,H.L.;Bowen,K. H.J.Chem.Phys.1998,108,8.

    (16)(a)Fu,Y.;Liu,L.;Yu,H.Z.;Wang,Y.M.;Guo,Q.X.J.Am. Chem.Soc.2005,127,7227. (b)Fu,Y.;Liu,L.;Wang,Y.M.;Li,J.N.;Yu,T.Q.;Guo,Q.X. J.Phys.Chem.A 2006,110,5874. (c)Feng,Y.;Liu,L.;Fang,Y.;Guo,Q.X.J.Phys.Chem.A 2002,106,11518.

    (17)Abraham,J.;Gosh,A.K.;Schuster,G.B.J.Am.Chem.Soc. 2006,128,5346.

    (18) Becker,D.;Sevilla,M.D.Adv.Radiat.Biol.1993,17,121.

    (19) Baik,M.H.;Silverman,J.S.;Yang,I.V.;Ropp,P.A.;Szalai,V. A.;Yang,W.T.;Thorp,H.H.J.Phys.Chem.B 2001,105,6437.

    (20) Baik,M.H.;Ziegler,T.;Schauer,C.K.J.Am.Chem.Soc.2000, 122,9143.

    (21) Kettle,L.J.;Bates,S.P.;Mount,A.R.Phys.Chem.Chem. Phys.2000,2,195.

    (22) Trasatti,S.Pure Appl.Chem.1986,58,955.

    (23)(a)Kawai,K.;Wata,Y.;Ichinose,N.;Majima,T.Angew.Chem. Int.Edit.2000,39,4327. (b)Kawai,K.;Wata,Y.;Hara,M.;Tojo,S.;Majima,T.J.Am. Chem.Soc.2002,124,3586. (c)Kawai,K.;Takada,T.;Tojo,S.;Ichinose,N.;Majima,T. J.Am.Chem.Soc.2001,123,12688.

    (24) (a)Caruso,T.;Carotenuto,M.;Vasca,E.;Peluso,A.J.Am. Chem.Soc.2005,127,15040. (b)Caruso,T.;Capobianco,A.;Peluso,A.J.Am.Chem.Soc. 2007,129,15347.

    (25) (a)Lewis,F.D.Photochem.Photobiol.2005,81,65. (b)Lewis,F.D.;Letsinger,R.L.;Wasielewski,M.R.Accounts Chem.Res.2001,34,159.

    (26) (a)Steenken,S.;Jovanovic,S.V.;Bietti,M.;Bernhard,K. J.Am.Chem.Soc.2000,122,2373. (b)Steenken,S.Biol.Chem.1997,378,1293. (c)Steenken,S.Chem.Rev.1989,89,503. (d)Jovanovic,S.V.;Simic,M.G.J.Phys.Chem.1986,90,974.

    (27) Steenken,S.;Jovanovic,S.V.J.Am.Chem.Soc.1997,119,617.

    (28) (a)Close,D.M.J.Phys.Chem.A 2004,108,10376. (b)Crespo-Hernández,C.E.;Arce,R.;Ishikawa,Y.;Gorb,L.; Leszczynski,J.;Close,D.M.J.Phys.Chem.A 2004,108, 6373. (c)Close,D.M.;?hman,K.T.J.Phys.Chem.A 2008,112, 11207. (d)Close,D.M.J.Phys.Chem.A 2008,112,8411. (e)Close,D.M.;Crespo-Hernández,C.E.;Gorb,L.; Leszczynski,J.J.Phys.Chem.A 2006,110,7485.

    (29)Fukuzumi,S.;Miyao,H.;Ohkubo,K.;Suenobu,T.J.Phys. Chem.A 2005,109,3285.

    (30) Seidel,C.A.M.;Schulz,A.;Sauer,M.H.M.J.Phys.Chem. 1996,100,5541.

    (31) Lecomte,J.P.;Kirsch-De Mesmaeker,A.;Kelly,J.M.;Tossi,A. B.;G?rner,H.Photochem.Photobiol.1992,55,681.

    (32) Langmaier,J.;Samec,Z.;Samcová,E.;Hobza,P.;Reha,D. J.Phys.Chem.B 2004,108,15896.

    (33) Kittler,L.;L?ber,G.;Gollmick,F.;Berg,H.J.Electroanal. Chem.1980,116,503.

    (34) Oliveira-Brett,A.M.;Piedade,J.A.P.;Silva,L.A.;Diculescu, V.C.Anal.Biochem.2004,332,321.

    (35) Guirado,G.;Fleming,C.N.;Lingenfelter,T.G.;Williams,M. L.;Zuihof,H.;Dinnocenzo,J.P.J.Am.Chem.Soc.2004,126, 14086.

    (36)Fiebig,T.;Wan,C.;Zewail,A.H.Chem.Phys.Chem.2002,3, 781.

    (37) Crespo-Hernández,C.E.;Close,D.M.;Gorb,L.;Leszczynski, J.J.Phys.Chem.B 2007,111,5386.

    (38) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.et al.Gaussian 03, Revision C.02;Gaussian,Inc.:Wallingford,CT,2004.

    (39) Klamt,A.;Schüürmann,G.J.Chem.Soc.Perkin Trans.1993,2, 799.

    (40) (a)Barone,V.;Cossi,M.J.Phem.Chem.A 1998,102,1995. (b)Fu,Y.;Wang,H.J.;Chong,S.S.;Guo,Q.X.;Liu,L. J.Org.Chem.2009,74,810. (c)Fu,Y.;Liu,L.;Li,R.Q.;Liu,R.;Guo,Q.X.J.Am.Chem. Soc.2004,126,814.

    (41) Liptak,D.;Gross,K.C.;Seybold,P.G.;Feldgus,S.;Shields,G. C.J.Am.Chem.Soc.2002,124,6421.

    (42) Suatoni,J.C.;Snyder,R.E.;Clark,R.O.Anal.Chem.1961,33, 1894

    (43) Faraggi,M.;Broitman,F.;Trent,J.B.;Klapper,M.H.J.Phys. Chem.1996,100,14751.

    (44) Lias,S.G.;Bartmess,J.E.;Liebman,J.F.;Holmes,J.L.;Levin R.D.;Mallard,W.G.J.Phys.Chem.Ref.Data 1988,17,Suppl. 1.

    (45) Prat,F.;Houk,K.N.;Foote,C.S.J.Am.Chem.Soc.1998,120, 845.

    (46) Grinstaff,M.W.Angew.Chem.Int.Edit.1999,38,3629.

    (47) Schuster,G.B.Accounts Chem.Res.2000,33,253.

    猜你喜歡
    化學(xué)系第一性上海大學(xué)
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計算
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    上海大學(xué)學(xué)報(自然科學(xué)版)征稿簡則
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計算
    缺陷和硫摻雜黑磷的第一性原理計算
    女人被狂操c到高潮| 久久影院123| 国产精品1区2区在线观看. | 99热国产这里只有精品6| 国产精品久久久人人做人人爽| 亚洲在线自拍视频| 男人的好看免费观看在线视频 | 国产精品欧美亚洲77777| 久久精品成人免费网站| 天堂√8在线中文| 国产深夜福利视频在线观看| 91在线观看av| 高清av免费在线| 久久天躁狠狠躁夜夜2o2o| 欧美激情极品国产一区二区三区| 国产真人三级小视频在线观看| 亚洲中文字幕日韩| av网站在线播放免费| 在线看a的网站| 亚洲av美国av| 国产精品久久久av美女十八| 丰满饥渴人妻一区二区三| 香蕉久久夜色| a在线观看视频网站| 一本一本久久a久久精品综合妖精| 黄色 视频免费看| 久久影院123| 在线观看免费午夜福利视频| 亚洲av日韩在线播放| 午夜福利,免费看| 嫩草影视91久久| 窝窝影院91人妻| 久久久久久亚洲精品国产蜜桃av| av网站免费在线观看视频| 亚洲久久久国产精品| 国产成人精品久久二区二区免费| 久久久久久亚洲精品国产蜜桃av| 香蕉国产在线看| 99精国产麻豆久久婷婷| 国产精品久久久人人做人人爽| 久久 成人 亚洲| bbb黄色大片| 久久久国产精品麻豆| 深夜精品福利| 国产av一区二区精品久久| 在线观看www视频免费| 老熟妇乱子伦视频在线观看| 亚洲精品乱久久久久久| av片东京热男人的天堂| 国产成人精品在线电影| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美日韩在线播放| 91在线观看av| www.精华液| 美女 人体艺术 gogo| 亚洲av日韩精品久久久久久密| 国产成人系列免费观看| 亚洲五月色婷婷综合| 亚洲av成人一区二区三| 丰满迷人的少妇在线观看| 午夜精品久久久久久毛片777| 精品免费久久久久久久清纯 | 夜夜爽天天搞| 亚洲av成人av| 一级a爱片免费观看的视频| 婷婷精品国产亚洲av在线 | 午夜福利视频在线观看免费| 国产在线精品亚洲第一网站| 91国产中文字幕| 男女下面插进去视频免费观看| 99国产精品免费福利视频| 一级a爱片免费观看的视频| 99久久人妻综合| 亚洲一区二区三区不卡视频| 午夜久久久在线观看| 99香蕉大伊视频| 精品国产乱码久久久久久男人| 黄色女人牲交| 久久婷婷成人综合色麻豆| 精品久久久精品久久久| 99久久综合精品五月天人人| 18禁美女被吸乳视频| www.999成人在线观看| 亚洲 国产 在线| 精品卡一卡二卡四卡免费| 久久ye,这里只有精品| 亚洲欧美激情综合另类| 国产精品 国内视频| 国产一区在线观看成人免费| 热99国产精品久久久久久7| 精品国产乱子伦一区二区三区| 久久久久视频综合| 天堂中文最新版在线下载| 亚洲熟妇中文字幕五十中出 | 香蕉久久夜色| av天堂久久9| 777米奇影视久久| 如日韩欧美国产精品一区二区三区| 国产男女超爽视频在线观看| 久久亚洲精品不卡| 身体一侧抽搐| 咕卡用的链子| 国产激情欧美一区二区| 一级毛片女人18水好多| 国产激情久久老熟女| e午夜精品久久久久久久| 又大又爽又粗| 90打野战视频偷拍视频| 亚洲第一青青草原| 欧美+亚洲+日韩+国产| 不卡一级毛片| 一区二区三区激情视频| 国产视频一区二区在线看| 亚洲国产精品合色在线| 老熟妇乱子伦视频在线观看| 中文字幕最新亚洲高清| 精品无人区乱码1区二区| 母亲3免费完整高清在线观看| 五月开心婷婷网| 亚洲精品国产精品久久久不卡| 在线永久观看黄色视频| 巨乳人妻的诱惑在线观看| 日本五十路高清| 韩国精品一区二区三区| 18禁观看日本| 悠悠久久av| 美女国产高潮福利片在线看| 手机成人av网站| 欧美最黄视频在线播放免费 | 久久久久久免费高清国产稀缺| 九色亚洲精品在线播放| 久久精品亚洲精品国产色婷小说| 最近最新中文字幕大全电影3 | 日韩大码丰满熟妇| 色精品久久人妻99蜜桃| 国产成人精品无人区| 久久99一区二区三区| av网站免费在线观看视频| 欧美乱妇无乱码| 中文字幕人妻熟女乱码| 在线观看日韩欧美| 精品无人区乱码1区二区| 99久久综合精品五月天人人| 国产片内射在线| xxxhd国产人妻xxx| 免费日韩欧美在线观看| 国产淫语在线视频| 热re99久久国产66热| av片东京热男人的天堂| 两人在一起打扑克的视频| 一级作爱视频免费观看| 亚洲五月婷婷丁香| 国产色视频综合| 中国美女看黄片| 免费人成视频x8x8入口观看| 中文字幕人妻丝袜制服| 一级,二级,三级黄色视频| 一区二区三区精品91| 久久精品成人免费网站| 桃红色精品国产亚洲av| 欧美日韩乱码在线| 日韩欧美免费精品| 黄色视频,在线免费观看| 欧美激情极品国产一区二区三区| 一二三四社区在线视频社区8| 国产精品二区激情视频| 丝瓜视频免费看黄片| 精品一区二区三区视频在线观看免费 | 精品国产乱子伦一区二区三区| 久久人人爽av亚洲精品天堂| 国产精品永久免费网站| 亚洲免费av在线视频| 大码成人一级视频| av网站在线播放免费| 精品午夜福利视频在线观看一区| 日本vs欧美在线观看视频| 色婷婷av一区二区三区视频| 无人区码免费观看不卡| 99国产精品一区二区蜜桃av | 国产精品一区二区在线不卡| 成人国语在线视频| 色精品久久人妻99蜜桃| 电影成人av| 免费观看人在逋| 亚洲精品美女久久av网站| 亚洲人成77777在线视频| 欧美激情极品国产一区二区三区| 狠狠狠狠99中文字幕| 一个人免费在线观看的高清视频| 在线天堂中文资源库| 另类亚洲欧美激情| 亚洲av美国av| 在线天堂中文资源库| 露出奶头的视频| 人人妻人人爽人人添夜夜欢视频| 国产不卡一卡二| 精品乱码久久久久久99久播| 久久精品熟女亚洲av麻豆精品| 国产又色又爽无遮挡免费看| 午夜免费观看网址| 国产欧美日韩精品亚洲av| 大香蕉久久网| 久久人妻熟女aⅴ| 免费高清在线观看日韩| 黑丝袜美女国产一区| 叶爱在线成人免费视频播放| 99精国产麻豆久久婷婷| 久久中文字幕一级| 在线看a的网站| 丝袜人妻中文字幕| 成年女人毛片免费观看观看9 | 国产欧美日韩一区二区精品| 欧美精品一区二区免费开放| 嫁个100分男人电影在线观看| 制服诱惑二区| 亚洲一区高清亚洲精品| 国产亚洲欧美精品永久| 久久久国产成人精品二区 | 欧美一级毛片孕妇| www.精华液| 黑人操中国人逼视频| 精品少妇一区二区三区视频日本电影| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 国产成+人综合+亚洲专区| xxxhd国产人妻xxx| 成人永久免费在线观看视频| netflix在线观看网站| 少妇猛男粗大的猛烈进出视频| 在线十欧美十亚洲十日本专区| 黄色成人免费大全| 一级黄色大片毛片| 午夜精品国产一区二区电影| 一级a爱片免费观看的视频| 老汉色av国产亚洲站长工具| 黄频高清免费视频| 女人精品久久久久毛片| 老司机亚洲免费影院| 黄色 视频免费看| 一级a爱片免费观看的视频| 午夜免费观看网址| 国产精品自产拍在线观看55亚洲 | 欧美日韩成人在线一区二区| 亚洲色图 男人天堂 中文字幕| 别揉我奶头~嗯~啊~动态视频| 免费在线观看黄色视频的| 国产色视频综合| 人人妻人人澡人人看| 在线观看免费日韩欧美大片| 操出白浆在线播放| bbb黄色大片| 国产区一区二久久| svipshipincom国产片| 丰满迷人的少妇在线观看| 91老司机精品| 欧美性长视频在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品在线观看二区| 亚洲片人在线观看| 天堂动漫精品| 亚洲人成77777在线视频| 国产欧美日韩精品亚洲av| 精品视频人人做人人爽| 亚洲久久久国产精品| 国产精品久久久av美女十八| 午夜福利视频在线观看免费| 免费在线观看完整版高清| 亚洲人成77777在线视频| 久久天躁狠狠躁夜夜2o2o| 国产精品成人在线| 国产精品偷伦视频观看了| 免费在线观看亚洲国产| 人人妻人人添人人爽欧美一区卜| 日日爽夜夜爽网站| 国产精品99久久99久久久不卡| 免费在线观看影片大全网站| 午夜影院日韩av| 国产蜜桃级精品一区二区三区 | 99久久精品国产亚洲精品| 久久ye,这里只有精品| 看片在线看免费视频| 老司机亚洲免费影院| 999久久久国产精品视频| av欧美777| 国产成人精品在线电影| 最新的欧美精品一区二区| 日本一区二区免费在线视频| 国产精品一区二区在线不卡| 美女福利国产在线| 亚洲精品成人av观看孕妇| 午夜影院日韩av| 欧美黑人欧美精品刺激| 在线看a的网站| 久久这里只有精品19| 国产激情欧美一区二区| 九色亚洲精品在线播放| 成人国产一区最新在线观看| 在线永久观看黄色视频| 黑丝袜美女国产一区| 嫁个100分男人电影在线观看| 午夜老司机福利片| 国产精品永久免费网站| 亚洲 欧美一区二区三区| 欧美成人午夜精品| 99久久99久久久精品蜜桃| 久久香蕉精品热| 亚洲视频免费观看视频| 18禁美女被吸乳视频| 一级作爱视频免费观看| 91老司机精品| 欧美久久黑人一区二区| 黑人操中国人逼视频| 欧美日韩黄片免| 欧美av亚洲av综合av国产av| 大香蕉久久网| 99精品久久久久人妻精品| 人妻丰满熟妇av一区二区三区 | 国产成+人综合+亚洲专区| 女人被躁到高潮嗷嗷叫费观| 男女午夜视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲久久久国产精品| 久久精品国产亚洲av高清一级| 亚洲色图 男人天堂 中文字幕| 法律面前人人平等表现在哪些方面| 热re99久久国产66热| 成年版毛片免费区| 黑人巨大精品欧美一区二区蜜桃| 国产高清激情床上av| 老司机影院毛片| 青草久久国产| 国产aⅴ精品一区二区三区波| 另类亚洲欧美激情| 成年人免费黄色播放视频| 午夜精品在线福利| 欧美中文综合在线视频| 国产免费男女视频| 嫩草影视91久久| 国产一卡二卡三卡精品| 天堂中文最新版在线下载| 99精品久久久久人妻精品| 亚洲精品乱久久久久久| 高潮久久久久久久久久久不卡| 在线国产一区二区在线| 精品电影一区二区在线| www.自偷自拍.com| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品合色在线| 老熟女久久久| 一区福利在线观看| 露出奶头的视频| 亚洲精品自拍成人| 日韩一卡2卡3卡4卡2021年| 我的亚洲天堂| 国产在视频线精品| 天堂俺去俺来也www色官网| 国产不卡一卡二| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 久久久久视频综合| 色播在线永久视频| 身体一侧抽搐| 久久久久精品人妻al黑| 日韩有码中文字幕| 欧美日韩国产mv在线观看视频| 欧美精品高潮呻吟av久久| 久久99一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 男女午夜视频在线观看| 国产精品久久视频播放| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 成熟少妇高潮喷水视频| 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费 | 国产精品.久久久| 一级作爱视频免费观看| 国产成人av激情在线播放| 亚洲精品一卡2卡三卡4卡5卡| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| 校园春色视频在线观看| 欧美日韩瑟瑟在线播放| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 777米奇影视久久| 成年版毛片免费区| 热99久久久久精品小说推荐| 91国产中文字幕| 欧美成人免费av一区二区三区 | 黑人巨大精品欧美一区二区mp4| 国产91精品成人一区二区三区| 欧美精品人与动牲交sv欧美| 高清在线国产一区| 不卡av一区二区三区| 一区福利在线观看| 亚洲五月婷婷丁香| 亚洲精品久久午夜乱码| 亚洲全国av大片| 精品人妻熟女毛片av久久网站| bbb黄色大片| 97人妻天天添夜夜摸| 深夜精品福利| 精品熟女少妇八av免费久了| 一级毛片精品| 久久婷婷成人综合色麻豆| 大陆偷拍与自拍| 校园春色视频在线观看| 美女国产高潮福利片在线看| 国产高清激情床上av| 国产成人一区二区三区免费视频网站| 看片在线看免费视频| 丝瓜视频免费看黄片| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 久久久精品区二区三区| 天堂√8在线中文| 国产成人免费观看mmmm| 国产乱人伦免费视频| 亚洲,欧美精品.| 久久久国产成人免费| 成人精品一区二区免费| 亚洲少妇的诱惑av| а√天堂www在线а√下载 | 精品少妇一区二区三区视频日本电影| 日韩 欧美 亚洲 中文字幕| 1024视频免费在线观看| 夫妻午夜视频| 女同久久另类99精品国产91| 99国产精品免费福利视频| 欧美成狂野欧美在线观看| 久久青草综合色| 国产精品98久久久久久宅男小说| 老熟女久久久| 性色av乱码一区二区三区2| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 久热这里只有精品99| 在线天堂中文资源库| 久久久久视频综合| 又黄又粗又硬又大视频| 丰满饥渴人妻一区二区三| 一二三四社区在线视频社区8| 狠狠婷婷综合久久久久久88av| 在线观看午夜福利视频| 国产亚洲欧美98| 黑丝袜美女国产一区| 国产成人一区二区三区免费视频网站| 亚洲自偷自拍图片 自拍| 一边摸一边做爽爽视频免费| 亚洲精品久久成人aⅴ小说| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 校园春色视频在线观看| 777久久人妻少妇嫩草av网站| 欧美午夜高清在线| 欧美精品一区二区免费开放| 久久青草综合色| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 不卡一级毛片| av欧美777| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品一区二区www | 日韩欧美三级三区| 国产一区二区三区在线臀色熟女 | 亚洲人成77777在线视频| 少妇 在线观看| 国产淫语在线视频| 久久久久久久午夜电影 | 精品国产国语对白av| 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 亚洲av日韩在线播放| 正在播放国产对白刺激| 韩国av一区二区三区四区| 飞空精品影院首页| 欧美av亚洲av综合av国产av| 国产欧美亚洲国产| 交换朋友夫妻互换小说| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 国产成人免费无遮挡视频| 日本五十路高清| 精品国产一区二区三区久久久樱花| 国产成人免费观看mmmm| 久久国产亚洲av麻豆专区| 日日爽夜夜爽网站| 高清欧美精品videossex| 久久精品aⅴ一区二区三区四区| 天天添夜夜摸| 国产欧美日韩综合在线一区二区| 国产高清国产精品国产三级| 欧美国产精品va在线观看不卡| 丰满的人妻完整版| 欧美精品人与动牲交sv欧美| 人人妻人人添人人爽欧美一区卜| 一边摸一边抽搐一进一出视频| 国产精品国产av在线观看| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 亚洲第一av免费看| 午夜精品在线福利| 国产人伦9x9x在线观看| 黄色a级毛片大全视频| 一二三四在线观看免费中文在| 欧美激情高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 黄色成人免费大全| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 怎么达到女性高潮| 搡老岳熟女国产| 狠狠婷婷综合久久久久久88av| 老司机午夜十八禁免费视频| 中文字幕av电影在线播放| 亚洲自偷自拍图片 自拍| 亚洲专区中文字幕在线| 久久天堂一区二区三区四区| 电影成人av| 国产精品久久电影中文字幕 | 亚洲中文日韩欧美视频| 热re99久久精品国产66热6| 国产不卡av网站在线观看| 亚洲七黄色美女视频| 国产人伦9x9x在线观看| 国产精品免费一区二区三区在线 | 亚洲五月婷婷丁香| 国产高清videossex| 免费少妇av软件| 欧美成狂野欧美在线观看| 精品福利观看| 日韩三级视频一区二区三区| 亚洲熟女精品中文字幕| 色尼玛亚洲综合影院| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 亚洲欧美激情在线| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| 国产成人精品无人区| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 亚洲国产毛片av蜜桃av| 亚洲精品国产一区二区精华液| 涩涩av久久男人的天堂| 国产精品成人在线| 精品国内亚洲2022精品成人 | 男女午夜视频在线观看| 精品无人区乱码1区二区| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 亚洲第一欧美日韩一区二区三区| videos熟女内射| 国产成人精品久久二区二区91| 91老司机精品| 一进一出抽搐gif免费好疼 | 亚洲精品国产区一区二| av有码第一页| 首页视频小说图片口味搜索| 亚洲精品成人av观看孕妇| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 久久中文字幕一级| a级毛片黄视频| 中文字幕人妻丝袜制服| 国精品久久久久久国模美| 成年动漫av网址| 成人影院久久| 老熟妇仑乱视频hdxx| 久久中文看片网| 一区二区三区精品91| 亚洲国产精品一区二区三区在线| 久久久国产成人精品二区 | 在线国产一区二区在线| 极品少妇高潮喷水抽搐| 久9热在线精品视频| 九色亚洲精品在线播放| 久久精品成人免费网站| 国产亚洲精品一区二区www | 欧美日韩成人在线一区二区| 女同久久另类99精品国产91| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频| 男女午夜视频在线观看| av网站在线播放免费| 美女视频免费永久观看网站| 热99re8久久精品国产| www日本在线高清视频| 欧美在线一区亚洲| 国产成人免费无遮挡视频| 午夜福利免费观看在线| 国产精品一区二区免费欧美| 欧美日韩中文字幕国产精品一区二区三区 | 国产蜜桃级精品一区二区三区 | 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 成人影院久久| 一级黄色大片毛片| 久久久精品免费免费高清| 人成视频在线观看免费观看| 日韩欧美在线二视频 | 老司机靠b影院| 精品一区二区三区四区五区乱码|