辛 菲,許國(guó)志
(北京工商大學(xué)材料與機(jī)械工程學(xué)院,北京100048)
碳納米管增強(qiáng)聚合物納米復(fù)合材料研究進(jìn)展
辛 菲,許國(guó)志*
(北京工商大學(xué)材料與機(jī)械工程學(xué)院,北京100048)
綜述了近幾年國(guó)內(nèi)外在碳納米管增強(qiáng)聚合物納米復(fù)合材料力學(xué)性能方面的研究進(jìn)展,主要介紹了以聚氨酯和聚酰亞胺為基體的復(fù)合材料。討論了碳納米管的各種改性方法及其作用原理,并對(duì)各種改性和制備方法的有效性進(jìn)行了比較。最后,對(duì)碳納米管增強(qiáng)聚合物納米復(fù)合材料的發(fā)展前景進(jìn)行了展望。
聚合物;碳納米管;復(fù)合材料;研究進(jìn)展
近年來(lái)碳納米管(CNT)增強(qiáng)聚合物納米復(fù)合材料領(lǐng)域的發(fā)展非??臁NT本身有著出眾的電學(xué)、熱學(xué)和力學(xué)性能。例如,CNT的拉伸模量和拉伸強(qiáng)度理論上是最強(qiáng)不銹鋼材料的10~100倍。2000年,YU等[1]測(cè)得的單個(gè)多壁碳納米管(MWCNT)的彈性模量在0.27~0.95TPa之間,拉伸強(qiáng)度在11~63GPa之間。單壁碳納米管(SWCNT)的彈性模量在0.32~1.47TPa之間,拉伸強(qiáng)度在10~52GPa之間[2]。這些特性使得CNT成為提高聚合物基復(fù)合材料力學(xué)性能的理想材料。
在聚合物中添加含碳填料用以提高聚合物的力學(xué)性能,降低質(zhì)量或者起導(dǎo)熱作用并不是一種新的方法。炭黑已經(jīng)被廣泛用于增強(qiáng)橡膠和塑料,例如:它被廣泛用在賽車輪胎上來(lái)降低熱磨損。碳纖維也是一種用途廣泛的工業(yè)材料,被廣泛應(yīng)用于汽車、飛機(jī)和自行車等領(lǐng)域。然而,最有潛力的還是CNT,利用其力學(xué)強(qiáng)度已經(jīng)生產(chǎn)出了新的工業(yè)產(chǎn)品。例如,含有CNT的網(wǎng)球拍和高爾夫球桿等運(yùn)動(dòng)器材已經(jīng)在市場(chǎng)上售賣。CNT的生產(chǎn)方法越來(lái)越簡(jiǎn)便,其價(jià)格也越來(lái)越便宜,CNT將會(huì)超過(guò)碳纖維,成為聚合物基復(fù)合材料生產(chǎn)中的主要填料。
目前已經(jīng)有很多關(guān)于CNT增強(qiáng)聚合物納米復(fù)合材料力學(xué)性能的綜述[3-14],但最近CNT增強(qiáng)聚合物納米復(fù)合材料領(lǐng)域又有一些明顯的進(jìn)展。本文將主要介紹近幾年CNT增強(qiáng)聚合物納米復(fù)合材料的發(fā)展?fàn)顩r,特別是其力學(xué)性能。
眾所周知,為了獲得最佳的力學(xué)性能,CNT必須有最好的分散效果。除非CNT與聚合物之間經(jīng)過(guò)非常細(xì)致的加工和處理,否則由于CNT的團(tuán)聚使得CNT之間或者CNT與聚合物鏈之間的載荷傳送非常差,導(dǎo)致界面滑動(dòng),嚴(yán)重影響力學(xué)性能[15]。因此,對(duì)CNT進(jìn)行改性對(duì)其在聚合物中的加工和應(yīng)用都是十分重要的。一般來(lái)說(shuō),通過(guò)改性會(huì)明顯提高CNT的分散性和它與聚合物之間的應(yīng)力應(yīng)變傳遞。對(duì)CNT改性和超聲分散被廣泛用于改善CNT在溶液中的分散狀況[16-22]。
CNT改性主要有2種方法:共價(jià)鍵改性和非共價(jià)鍵改性。
共價(jià)鍵改性可以通過(guò)直接在CNT的側(cè)壁引入化合物或者是添加合適的官能團(tuán)來(lái)達(dá)到目的[10,11,23]。這種改性方法因?yàn)閷p2雜化軌道的碳原子改變成了sp3雜化軌道,使得CNT的外層結(jié)構(gòu)受到破壞,導(dǎo)致其性能如電學(xué)性能等受到影響[24],但是這種改性方法可以提高CNT在溶液和聚合物中的分散度和相容性??傮w來(lái)講,像—COOH和—OH之類的官能團(tuán)可以通過(guò)采用氧氣、空氣、濃硫酸、濃硝酸、鹽酸或者是混酸等氧化劑對(duì)CNT進(jìn)行氧化使之在CNT的側(cè)壁上生成相應(yīng)的官能團(tuán)[25-26]。酸處理的 MWCNT表面存在著一些缺陷點(diǎn),這些缺陷點(diǎn)位于生成的羧酸官能團(tuán)與MWCNT表面相接的C—C鍵上[27-28]。CNT表面羧基基團(tuán)的數(shù)量隨著酸化處理的溫度和時(shí)間的增加而增加[29],同時(shí)也取決于氧化處理的方法和氧化試劑。
—COOH和—OH之類的官能團(tuán)的存在有助于在CNT表面接上有機(jī)化合物[30-32]或無(wú)機(jī)材料,而這些物質(zhì)對(duì)于提高CNT的相容性具有非常重要的作用。CNT的這種改性可以發(fā)生在末端或側(cè)壁,從而提高其在溶液和聚合物中的相容性和分散度[33-34]。SWCNT可以通過(guò)在不同的溫度下與氟氣反應(yīng)使其在側(cè)壁上引入氟原子[35],這種氟改性的CNT在異丙醇或者是二甲基甲酰胺的溶液中超聲后顯示出了非常好的相容性[36-37]。氟改性的CNT也可以與溶于氯仿中的格式試劑或烷基鋰發(fā)生反應(yīng)從而得到側(cè)壁含有烷基的CNT[38]。SWCNT也可以通過(guò)硝基化反應(yīng)[39-40]、烯基化反應(yīng)[40]、芳基化反應(yīng)[41-42]直接在其側(cè)壁上進(jìn)行改性。
非共價(jià)鍵改性方法最大的優(yōu)點(diǎn)是它不會(huì)破壞CNT的結(jié)構(gòu),同時(shí)也能提高其相容性和可加工性。這種類型的改性主要包括表面活性劑、生物大分子或者是用聚合物包覆等方法。
CNT能夠通過(guò)加入陰離子、陽(yáng)離子或非離子型表面活性劑在水溶液中得到很好的分散[43-46]。陰離子表面活性劑如十二烷基硫酸鈉(SDS)[47-49]和十二烷基苯磺酸鈉(NaDDBS)[50-51]是常用的用來(lái)減少 CNT 在水中團(tuán)聚的表面活性劑。表面活性劑與CNT之間的相互作用依靠表面活性劑本身的結(jié)構(gòu),如它們的烷基鏈長(zhǎng),端基基團(tuán)的大小和電荷等。SDS相對(duì)于NaDDBS和辛基苯基聚氧乙烯醚(Triton X-100)來(lái)說(shuō)和CNT具有較弱的相互作用,這是因?yàn)樗鼪](méi)有苯環(huán)。事實(shí)上苯環(huán)和CNT表面之間的π-π共軛作用明顯提高了表面活性劑分子與碳層的結(jié)合和表面覆蓋度[46]。NaDDBS分散效果好于Triton X-100是因?yàn)樗亩嘶透?xì)長(zhǎng)的烷基鏈。圖1是不同表面活性劑在CNT表面的吸附示意圖[46]。
圖1 不同表面活性劑在CNT表面的吸附示意圖Fig.1 Schematic diagram of surfactants adsorbed onto the CNT surface
也有用蛋白質(zhì)和DNA來(lái)對(duì)CNT進(jìn)行改性的報(bào)道[52]。蛋白質(zhì)的疏水部分對(duì)于其在CNT上的吸附有著重要的作用。現(xiàn)在已經(jīng)能夠通過(guò)可控及獨(dú)特的方法將蛋白質(zhì)吸附在CNT上[53],這種吸附的機(jī)理包含蛋白質(zhì)上的氨基基團(tuán)對(duì)N羥基琥珀酰亞胺的親核取代反應(yīng)。其非共價(jià)鍵改性是通過(guò)sp2雜化軌道使得CNT上的π鍵發(fā)生離域作用與聚合物分子中的π鍵相互作用來(lái)實(shí)現(xiàn)的[53-54]。CNT能夠在非共價(jià)鍵改性之后相容于有機(jī)溶劑[55]或者是水溶液[56]中部分歸功于官能團(tuán)對(duì)它更好的覆蓋度[57]。
非共價(jià)鍵改性的第三種類型是用聚合物對(duì)其進(jìn)行包覆改性。聚合物可以在CNT的周圍形成超大分子[58-60]。Blau等[61-64]制備了共聚物包覆的 CNT,由于這種共聚物生成的包覆層是永久固定的,所以明顯增強(qiáng)了CNT在極性與非極性溶劑以及聚合物中的分散。但是這種方法的主要缺點(diǎn)是包覆分子與CNT之間的作用力較弱,因此在復(fù)合材料中CNT的有效載荷傳遞會(huì)較低。
CNT由于其非常優(yōu)秀的力學(xué)性能和較高的長(zhǎng)徑比使得它成為一種十分優(yōu)秀的增強(qiáng)填料用于研制CNT增強(qiáng)聚合物納米復(fù)合材料。事實(shí)上,已經(jīng)有很多種聚合物用來(lái)作為基體制備這種材料。本文主要介紹其中2種聚合物的CNT增強(qiáng)材料的力學(xué)性能。
聚氨酯(PU)是一種用途十分廣泛的材料,它被廣泛應(yīng)用于涂料、黏結(jié)材料、形狀記憶高分子材料、醫(yī)用材料等領(lǐng)域。PU由交互的硬段和軟段組成,硬段由交互的二異氰酸鹽和擴(kuò)鏈劑分子(如二醇或二胺)組成,軟段由直線長(zhǎng)鏈狀的二醇構(gòu)成,硬段與軟段的熱動(dòng)力學(xué)不穩(wěn)定會(huì)使PU發(fā)生相分離。PU/CNT復(fù)合材料[65-74]最近吸引了大家的關(guān)注,不同 PU/CNT 復(fù)合材料的力學(xué)性能列于表1中[75-84],可見(jiàn),將CNT加入PU中可以大幅提高材料的拉伸強(qiáng)度和拉伸模量。例如,用溶液混合法將酸化的MWCNT加入PU中可以提高材料的拉伸強(qiáng)度和拉伸模量[85-86],如圖2所示。
表1 PU/CNT復(fù)合材料的力學(xué)性能Tab.1 Mechanical properties of PU/CNT composites
圖2 不同CNT添加量時(shí)PU/CNT復(fù)合材料的應(yīng)力應(yīng)變曲線Fig.2 Stress-strain profiles of PU/CNT composites at different CNT contents
從圖2可以看出,含有10%(質(zhì)量分?jǐn)?shù),下同)MWCNT-COOH的PU復(fù)合材料的拉伸強(qiáng)度比未添加的PU增強(qiáng)了108%,比相同添加量的未改性MWCNT的PU復(fù)合材料提高了68%。當(dāng)添加量達(dá)到20%后,PU復(fù)合材料的拉伸強(qiáng)度和拉伸模量分別從原來(lái)的7.6MPa升到了21.3MPa(增幅180%)和50MPa升到了420MPa(增幅740%)。MWCNT上的親水功能基團(tuán)有助于提高其和PU中—CONH—基團(tuán)的相互作用。因此,改性MWCNT和PU基體這種強(qiáng)的相互作用大大增強(qiáng)了MWCNT在PU中的分散程度,同時(shí)也增強(qiáng)了它們之間的界面黏附,從而提高了材料的整體力學(xué)性能。
復(fù)合材料力學(xué)性能同時(shí)也取決于CNT酸處理時(shí)的溫度。添加90℃處理的MWCNT的復(fù)合材料比添加140℃處理的MWCNT的復(fù)合材料的拉伸模量有更大的提升,這說(shuō)明強(qiáng)烈的表面處理會(huì)降低力學(xué)性能[29]。Kuan等[80]將用氨基改性的 MWCNT 加入到水性PU中,他們發(fā)現(xiàn)添加量為4份時(shí),材料的拉伸模量由77MPa提高到了131MPa(增幅70%),拉伸強(qiáng)度由5.1MPa提高到18.9MPa(增幅270%)。氨基改性CNT和PU之間形成的共價(jià)鍵有助于提高界面強(qiáng)度和拉伸強(qiáng)度。CNT的種類對(duì)于提升材料的力學(xué)性能也有影響,MWCNT對(duì)于提高材料的模量更為有效,而SWCNT更有助于提高材料的拉伸長(zhǎng)度和拉伸強(qiáng)度。這兩者對(duì)于PU的不同的增強(qiáng)效果與CNT在多羥基化合物中的分散的剪切變稀指數(shù)和形狀系數(shù)有關(guān)。
聚合物接枝也是一種十分有效的提高分散度和材料力學(xué)性能的方法,因?yàn)檫@種方法可以在聚合物與CNT之間形成很強(qiáng)的化學(xué)鍵。Xia等[87]用同位聚合法制備了聚已酸內(nèi)酯基聚氨酯接枝的SWCNT(PU-g-SWCNT)和聚丙二醇接枝的 MWCNT(PPG-g-MWCNT),并將它們與PU制備成了PU復(fù)合材料。這2種材料的力學(xué)性能都有提高。PU中添加0.7%PU-g-SWCNT,其彈性模量相對(duì)于純PU和未接枝PU/SWCNT復(fù)合材料分別提高了約278%和188%。這是由于PU-g-SWCNT和PPG-g-MWCNT有更好的分散效果和更強(qiáng)的CNT和PU之間的界面相互作用。Wang等[77]也發(fā)現(xiàn)PU中添加1%~10%的PU改性的 MWCNT(PU-g-MWCNT)時(shí)會(huì)使拉伸強(qiáng)度提升63%~210%。儲(chǔ)能模量和軟段的玻璃化溫度(Tg)會(huì)隨著PU-g-MWCNT的添加量的提高而提高。復(fù)合材料軟段的Tg從-20℃移至-5℃,這顯示PU-g-MWCNT與PU基體中的軟段無(wú)定形區(qū)兼容。最近Mc Clory等[79]報(bào)道了用加成聚合反應(yīng)制備的熱固性PU/MWCNT納米復(fù)合材料。添加0.1%和1%MWCNT到PU中,其彈性模量分別提高了97%和561%,然而,無(wú)論是0.1%還是1%MWCNT的添加量,其極限的拉伸強(qiáng)度都提高了397%。在這種復(fù)合材料中,添加0.1%CNT相比純PU,其斷裂伸長(zhǎng)率從83%提高到了302%。
也有用熔融加工方法制備的復(fù)合材料纖維的力學(xué)性能提高的報(bào)道。材料纖維的彈性模量相比純PU纖維提高了27倍。Sen等[78]研究了用靜電紡絲技術(shù)制備的含有SWCNT的PU薄膜。酯基改性的PU/SWCNT薄膜的拉伸強(qiáng)度提高了104%,正切切線模量提高了250%。因此,這些在力學(xué)性能上的加強(qiáng)可以歸因于CNT在整個(gè)聚合物基體中的高分散度以及CNT與PU之間良好的界面相互作用。
聚酰亞胺(PI)由于其良好的介電性質(zhì),柔韌性,較高的Tg,優(yōu)異的熱穩(wěn)定性和輻射電阻特性而使其具有多種用途,如:封裝材料、電路板和層間介質(zhì)等。PI在聚合物基CNT納米復(fù)合材料中可以充當(dāng)十分優(yōu)秀的聚合物基體[88-89]。不同PI復(fù)合材料的力學(xué)性能如表2所示[88,90-96],大部分的研究都報(bào)道了添加 CNT 可以提高PI的力學(xué)性能。例如,含有5%MWCNT-COOH的同位聚合的PI相比純PI在拉伸模量和拉伸強(qiáng)度上都有提高[91],分別提高了33%和7%。然而,相比純PI,未改性PI/CNT納米復(fù)合材料只顯示出了很小的增強(qiáng)作用。PI與MWCNT-COOH之間強(qiáng)的相互作用或許可以使PI/MWCNT-COOH材料在拉伸強(qiáng)度和拉伸模量上獲得更大的增強(qiáng)。
表2 PI/CNT復(fù)合材料的力學(xué)性能Tab.2 Mechanical properties of PI/CNT composites
正如之前討論過(guò)的,用含有—COOH基團(tuán)的酸處理得到的改性MWCNT,其含有的—COOH基團(tuán)有助于增進(jìn)和PI鏈段中—O—基團(tuán)的相互作用。另一項(xiàng)研究顯示了含有等離子體改性MWCNT的PI復(fù)合材料的拉伸模量和拉伸強(qiáng)度有緩慢的增加[93]。在PI中添加0.5%的等離子體改性MWCNT可以將拉伸模量從2.17GPa提高到4.56GPa,拉伸強(qiáng)度從124.5MPa提高到249MPa,分別提高110%和100%。這個(gè)令人印象深刻的結(jié)果歸功于在等離子體改性MWCNT和PI之間形成了化學(xué)鍵。當(dāng)改性MWCNT含量更高時(shí)(高于0.5%),拉伸模量和拉伸強(qiáng)度反而下降,這個(gè)結(jié) 果 與 其 他 的 報(bào) 道 相 符[92,97]。Zhu 等[92]發(fā) 現(xiàn),PI/MWCNT復(fù)合材料的拉伸強(qiáng)度在MWCNT含量小于5%時(shí)隨著MWCNT含量的增加而升高,之后繼續(xù)增加MWCNT含量,其拉伸強(qiáng)度開始下降。加入5%MWCNT的PI/MWCNT復(fù)合材料的拉伸強(qiáng)度相比純PI提高了40%,這歸因于MWCNT在納米復(fù)合材料中的良好分散。當(dāng)MWCNT含量更高時(shí),MWCNT不能獲得較好的分散,團(tuán)聚成大的集束導(dǎo)致了拉伸強(qiáng)度的下降。Jiang等[97]也發(fā)現(xiàn)添加1.89% (體積分?jǐn)?shù))MWCNT的PI/MWCNT復(fù)合材料的彈性模量有明顯的提高,但繼續(xù)增加MWCNT的含量,則彈性模量開始下降。
有研究指出,在很低的SWCNT含量下(0.30%),PI/SWCNT 復(fù)合材料的力學(xué)性能相比純PI表現(xiàn)出了輕微的升高(拉伸強(qiáng)度升高5%,彈性模量升高18%),然而在更高的SWCNT含量下(1%),PI/SWCNT復(fù)合材料的力學(xué)性能顯示出了明顯的提升(拉 伸 強(qiáng) 度 升 高 9%,彈 性 模 量 升 高 90%)[90]。PI/CNT復(fù)合材料的力學(xué)性能取決于對(duì)CNT的改性方式。在較低含量的MWCNT(最大到0.99%)的情況下,氨基改性PI/CNT復(fù)合材料的拉伸性能高于酸改性PI/CNT復(fù)合材料[95]。然而,在MWCNT含量超過(guò)2.44%時(shí),酸改性PI/CNT復(fù)合材料的拉伸性能要好于氨基改性PI/CNT復(fù)合材料。酸改性CNT可以和PI分子中的CO鍵形成氫鍵。然而,氨基改性CNT和聚酰胺酸的成鍵會(huì)降低它的亞胺化反應(yīng)。聚酰胺酸的力學(xué)性能低于PI,同時(shí)聚酰胺酸也比PI更脆。因此,在PI中添加氨基改性CNT會(huì)影響PI基體的力學(xué)性能。通過(guò)添加乙烯基三乙氧基硅烷改性MWCNT對(duì)PI進(jìn)行增強(qiáng)[94]的研究發(fā)現(xiàn),0.5%的添加量就可以將拉伸模量和拉伸強(qiáng)度分別提高60%和61%。拉伸性能的提升取決于乙烯基三乙氧基硅烷和MWCNT的比例。當(dāng)乙烯基三乙氧基硅烷與MWCNT的比例為2∶1時(shí),復(fù)合材料顯示出了比其他比例的材料更好的拉伸性能,因?yàn)橹挥羞@個(gè)比例能夠在PI基體中構(gòu)建互穿網(wǎng)絡(luò)。
許多其他的研究也發(fā)現(xiàn)了復(fù)合材料的模量有所增加,但拉伸強(qiáng)度卻沒(méi)有增加也沒(méi)有降低[96,98]。相比純的聚合物,CNT的加入會(huì)導(dǎo)致復(fù)合材料模量的增加和拉伸強(qiáng)度的下降(18%)。然而,彈性模量的增加是很少的,例如,添加14.3%CNT只能使其提高37%[98]。PI/SWCNT納米復(fù)合材料力學(xué)性能的提高取決于樣品的類型,如薄膜、棒形和纖維[96]。拉伸模量、極限強(qiáng)度和斷裂伸長(zhǎng)率對(duì)于添加1%SWCNT的薄膜都有增加。對(duì)于擠出的復(fù)合材料棒材(直徑約1mm),力學(xué)性能沒(méi)有明顯的改變。但是當(dāng)擠出的棒材被拉成更小的直徑時(shí),其力學(xué)性能有了明顯的改變。這是因?yàn)殡S著纖維直徑的下降,后續(xù)的纖維拉伸過(guò)程產(chǎn)生了不斷增加的徑向排列。
過(guò)去幾年,在CNT增強(qiáng)聚合物納米復(fù)合材料領(lǐng)域取得了長(zhǎng)足的進(jìn)展,大量的新型材料被研制出來(lái),這些材料都有著出色的力學(xué)性能。在這些材料中,共價(jià)鍵改性的CNT對(duì)于增強(qiáng)聚合物來(lái)說(shuō)是一種極好的添加劑,它可以在CNT與聚合物之間達(dá)到優(yōu)良的應(yīng)力應(yīng)變傳遞。這些改性的關(guān)鍵都是找到一種方法來(lái)提高CNT在聚合物中的分散度。盡管有各種各樣的方法來(lái)實(shí)現(xiàn)分散度的提高,但是在提高分散度和改善界面性能方面仍然有許多機(jī)遇與挑戰(zhàn)。其中一個(gè)挑戰(zhàn)就是達(dá)到CNT的最優(yōu)改性,這樣可以使CNT與聚合物基體之間的界面性質(zhì)達(dá)到最佳,并同時(shí)提升CNT的分散度。
在實(shí)際應(yīng)用中,熔融加工是最常用的制備CNT增強(qiáng)聚合物納米復(fù)合材料的方法,而其中的問(wèn)題仍然需要解決。為了獲得最好的性能,選擇合適的CNT的改性方法、合適的聚合物基體、適當(dāng)?shù)募庸l件如溫度、剪切速率和混合時(shí)間等都是十分重要的??偟膩?lái)說(shuō),更好地分散在聚合物中的CNT以及改善它們之間的界面性質(zhì)是研發(fā)出高性能聚合物基復(fù)合材料的關(guān)鍵。
[1] Yu M F,Lourie O,Dyer M J,et al.Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load[J].Science,2000,5453(287):637-640.
[2] Yu M F,F(xiàn)iles B S,Arepalli S,et al.Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties[J].Physical Review Letters,2000,84(24):5552-5555.
[3] Thostenson E T,Ren Z F,Chou T W.Advances in the Science and Technology of Carbon Nanotubes and Their Composites:A Review[J].Composites Science and Technology,2001,61(13):1899-1912.
[4] Baughman R H,Zakhidov A A,Heer W A.Carbon Nanotubes—The Route Toward Applications [J].Science,2002,5582(297):787-792.
[5] Andrews R,Weisenberger M C.Carbon Nanotube Polymer Composites[J].Current Opinion in Solid State and Materials Science,2004,8(1):31-37.
[6] Breuer O,Sundararaj U.Big Returns from Small Fibers:A Review of Polymer/Carbon Nanotube Composites[J].Polymer Composites,2004,25(6):630-645.
[7] Harris P J F.Carbon Nanotube Composites[J].International Materials Reviews,2004,49(1):31-43.
[8] Wang C C,Guo Z X,F(xiàn)u S K,et al.Polymers Containing Fullerene or Carbon Nanotube Structures[J].Progress in Polymer Science(Oxford),2004,29(11):1079-1141.
[9] Xie X L,Mai Y W,Zhou X P.Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix:A Review [J].Materials Science and Engineering R:Reports,2005,49(4):89.
[10] Coleman J N,Khan U,Blau W J,et al.Small but Strong:A Review of the Mechanical Properties of Carbon Nanotube-polymer Composites [J].Carbon,2006,44(9):1624-1652.
[11] Coleman J N,Khan U,Gun′ko Y K.Mechanical Reinforcement of Polymers Using Carbon Nanotubes [J].Advanced Materials,2006,18(6):689-706.
[12] Moniruzzaman M,Winey K I.Polymer Nanocomposites Containing Carbon Nanotubes [J]. Macromolecules,2006,39(16):5194-5205.
[13] Li C,Thostenson E T,Chou T W.Sensors and Actua-tors Based on Carbon Nanotubes and Their Composites:A Review[J].Composites Science and Technology,2008,68(6):1227-1249.
[14] Endo M,Strano M S,Ajayan P M.Potential Applications of Carbon Nanotubes [J].Topics in Applied Physics,2008,111:13-62.
[15] Velasco-Santos C,Martinez-Hernandez A L,Castano V M.Carbon Nanotube-polymer Nanocomposites:The Role of Interfaces[J].Composite Interfaces,2005,11(8/9):567-586.
[16] Cadek M,Coleman J N,Barron V,et al.Morphological and Mechanical Properties of Carbon-nanotube-reinforced Semicrystalline and Amorphous Polymer Composites[J].Applied Physics Letters,2002,81(27):5123-5125.
[17] Sandler J K W,Pegel S,Cadek M,et al.A Comparative Study of Melt Spun Polyamide-12Fibres Reinforced with Carbon Nanotubes and Nanofibres[J].Polymer,2004,45(6):2001-2015.
[18] Coleman J N,Cadek M,Blake R,et al.High-performance Nanotube-reinforced Plastics:Understanding the Mechanism of Strength Increase [J].Advanced Functional Materials,2004,14(8):791-798.
[19] Dalmas F,Chazeau L,Gauthier C,et al.Multiwalled Carbon Nanotube/Polymer Nanocomposites:Processing and Properties[J].Journal of Polymer Science,Part B:Polymer Physics,2005,43(10):1186-1197.
[20] Dufresne A,Paillet M,Putaux J L,et al.Processing and Characterization of Carbon Nanotube/Poly(styreneco-butyl acrylate)Nanocomposites[J].Journal of Materials Science,2002,37(18):3915-3923.
[21] Kilbride B E,Coleman J N,F(xiàn)raysse J,et al.Experimental Observation of Scaling Laws for Alternating Current and Direct Current Conductivity in Polymer-carbon Nanotube Composite Thin Films[J].Journal of Applied Physics,2002,92(7):4024-4030.
[22] Mc Carthy B,Coleman J N,Czerw R,et al.A Microscopic and Spectroscopic Study of Interactions Between Carbon Nanotubes and a Conjugated Polymer[J].Journal of Physical Chemistry B,2002,106(9):2210-2216.
[23] Singh P,Campidelli S,Giordani S,et al.Organic Functionalisation and Characterisation of Single-walled Carbon Nanotubes[J].Chemical Society Reviews,2009,38(8):2214-2230.
[24] Park H,Zhao J,Lu J P.Effects of Sidewall Functionalization on Conducting Properties of Single Wall Carbon Nanotubes[J].Nano Letters,2006,6(5):916-919.
[25] Liu J,Rinzler A G,Dai H,et al.Fullerene Pipes[J].Science,1998,5367(280):1253-1256.
[26] Zhang X,Sreekumar T V,Liu T,et al.Properties and Structure of Nitric Acid Oxidized Single Wall Carbon Nanotube Films[J].Journal of Physical Chemistry B,2004,108(42):16435-16440.
[27] Cho J W,Kim J W,Jung Y C,et al.Electroactive Shape-memory Polyurethane Composites Incorporating Carbon Nanotubes[J].Macromolecular Rapid Communications,2005,26(5):412-416.
[28] Zhang Y,Shi Z,Gu Z,et al.Structure Modification of Single-wall Carbon Nanotubes [J].Carbon,2000,38(15):2055-2059.
[29] Georgakilas V,Kordatos K,Prato M,et al.Organic Functionalization of Carbon Nanotubes [J].Journal of the American Chemical Society,2002,124(5):760-761.
[30] Hemon M A,Chen J,Hu H,et al.Dissolution of Single-walled Carbon Nanotubes[J].Advanced Materials,1999,11(10):834-840.
[31] Chen J,Hamon M A,Hu H,et al.Solution Properties of Single-walled Carbon Nanotubes[J].Science,1998,5386(282):95-98.
[32] Chen J,Rao A M,Lyuksyutov S,et al.Dissolution of Full-length Single-walled Carbon Nanotubes[J].Journal of Physical Chemistry B,2001,105(13):2525-2528.
[33] Niyogi S,Hamon M A,Hu H,et al.Chemistry of Single-walled Carbon Nanotubes[J].Accounts of Chemical Research,2002,35(12):1105-1113.
[34] Zhou O,F(xiàn)leming R M,Murphy D W,et al.Defects in Carbon Nanostructures[J].Science,1994,5154(263):1744-1747.
[35] Mickelson E T,Huffman C B,Rinzler A G,et al.Fluorination of Single-wall Carbon Nanotubes [J].Chemical Physics Letters,1998,296(1/2):188-194.
[36] Mickelson E T,Chiang I W,Zimmerman J L,et al.Solvation of Fluorinated Single-wall Carbon Nanotubes in Alcohol Solvents[J].Journal of Physical Chemistry B,1999,103(21):4318-4322.
[37] Kelly K F,Chiang I W,Mickelson E T,et al.Insight into the Mechanism of Sidewall Functionalization of Single-walled Nanotubes:an STM Study [J].Chemical Physics Letters,1999,313(3/4):445-450.
[38] Boul P J,Liu J,Mickelson E T,et al.Reversible Sidewall Functionalization of Buckytubes [J].Chemical Physics Letters,1999,310(3/4):367-372.
[39] Bahr J L,Mickelson E T,Bronikowski M J,et al.Dissolution of Small Diameter Single-wall Carbon Nanotubes in Organic Solvents [J].Chemical Communications,2001,(2):193-194.
[40] Holzinger M,Vostrowsky O,Hirsch A,et al.Sidewall Functionalization of Carbon Nanotubes[J].Angewandte Chemie—International Edition,2001,40 (21):4002-4005.
[41] Bahr J L,Yang J,Kosynkin D V,et al.Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:a Bucky Paper Electrode [J].Journal of the American Chemical Society,2001,123(27):6536-6542.
[42] Bahr J L,Tour J M. Highly Functionalized Carbon Nanotubes Using In-situ Generated Diazonium Compounds[J].Chemistry of Materials,2001,13 (11):3823-3824.
[43] Paredes J I,Burghard M.Dispersions of Individual Single-walled Carbon Nanotubes of High Length[J].Langmuir,2004,20(12):5149-5152.
[44] Duesberg G S,Muster J,Krstic V,et al.Chromatographic Size Separation of Single-wall Carbon Nanotubes[J].Applied Physics A:Materials Science and Processing,1998,67(1):117-119.
[45] Moore V C,Strano M S,Haroz E H,et al.Individually Suspended Single-walled Carbon Nanotubes in Various Surfactants[J].Nano Letters,2003,3 (10):1379-1382.
[46] Islam M F,Rojas E,Bergey D M,et al.High Weight Fraction Surfactant Solubilization of Single-wall Carbon Nanotubes in Water[J].Nano Letters,2003,3 (2):269-273.
[47] Yurekli K,Mitchell C A,Krishnamootri R.Small Angle Neutron Scattering from Surfactant Assisted Aqueous Dispersion of Carbon Nanotubes[J].Journal of the A-merican Chemical Society,2004,126(32):9902-9903.
[48] Jiang L,Gao L,Sun J.Production of Aqueous Colloidal Dispersions of Carbon Nanotubes[J].Journal of Colloid and Interface Science,2003,260(1):89-94.
[49] Poulin P,Vigolo B,Launois P.Films and Fibers of Oriented Single Wall Nanotubes [J].Carbon,2002,40(10):1741-1749.
[50] Safar G A M,Ribeiro H B,Malard L M,et al.Optical Study of Porphyrin-doped Carbon Nanotubes [J].Chemical Physics Letters,2008,462(1/3):109-111.
[51] Tan Y,Resasco D E.Dispersion of Single-walled Carbon Nanotubes of Narrow Diameter Distribution[J].Journal of Physical Chemistry B,2005,109(30):14454-14460.
[52] Guo Z,Sadler P J,Tsang S C.Immobilization and Visualization of DNA and Proteins on Carbon Nanotubes[J].Advanced Materials,1998,10(9):701-703.
[53] Chen R J,Zhang Y,Wang D,et al.Noncovalent Sidewall Functionalization of Single-walled Carbon Nanotubes for Protein Immobilization[J].Journal of the American Chemical Society,2001,123(16):3838-3839.
[54] Lordi V,Yao N.Molecular Mechanics of Binding in Car-bon Nanotube-polymer Composites[J].Journal of Materials Research,2000,15(12):2770-2779.
[55] O′Connell M J,Boul P,Ericson L M,et al.Reversible Water-solubilization of Single-walled Carbon Nanotubes by Polymer Wrapping [J].Chemical Physics Letters,2001,342(3/4):265-271.
[56] Steuerman D W,Star A,Narizzano R,et al.Interactions Between Conjugated Polymers and Single-walled Carbon Nanotubes[J].Journal of Physical Chemistry B,2002,106(12):3124-3130.
[57] Star A,Stoddart J F,Steuerman D,et al.Preparation and Properties of Polymer-wrapped Single-walled Carbon Nanotubes[J].Angewandte Chemie-International Edition,2001,40(9):1721-1725.
[58] Cheng F,Imin P,Maunders C,et al.Soluble,Discrete Supramolecular Complexes of Single-walled Carbon Nanotubes with Fluorene-based Conjugated Polymers[J].Macromolecules,2008,41(7):2304-2308.
[59] Yang L,Zhang B,Liang Y,et al.In Situ Synthesis of Amylose/Single-walled Carbon Nanotubes Supramolecular Assembly [J].Carbohydrate Research,2008,343(14):2463-2467.
[60] Ogoshi T,Yamagishi T A,Nakamoto Y.Supramolecular Single-walled Carbon Nanotubes(SWCNTs)Network Polymer Made by Hybrids of SWCNTs and Water-soluble Calix[8]Arenas [J].Chemical Communications,2007,(45):4776-4778.
[61] Curran S A,Ajayan P M,Blau W J,et al.A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene)and Carbon Nanotubes:a Novel Material for Molecular Optoelectronics[J].Advanced Materials,1998,10(14):1091-1093.
[62] Coleman J N,Dalton A B,Curran S,et al.Phase Separation of Carbon Nanotubes and Turbostratic Graphite U-sing a Functional Organic Polymer[J].Advanced Materials,2000,12(3):213-216.
[63] Mc Carthy B,Coleman J N,Czerw R,et al.Microscopy Studies of Nanotube-conjugated Polymer Interactions[J].Synthetic Metals,2001,121(1/3):1225-1226.
[64] Dalton A B,Stephan C,Coleman C S J N,et al.Selective Interaction of a Semiconjugated Organic Polymer with Single-wall Nanotubes [J].Journal of Physical Chemistry B,2000,104(43):10012-10016.
[65] Sahoo N G,Jung Y C,So H H,et al.Synthesis of Polyurethane Nanocomposites of Functionalized Carbon Nanotubes by In-situ Polymerization Methods[J].Journal of the Korean Physical Society,2007,51(S1):1-6.
[66] Potschke P,Haussler L,Pegel S,et al.Thermoplastic Polyurethane Filled with Carbon Nanotubes for Electrical Dissipative and Conductive Applications[J].KGK Kautschuk Gummi Kunststoffe,2007,60(9):432-437.
[67] Lee C H,Liu J Y,Chen S L,et al.Miscibility and Properties of Acid-treated Multi-walled Carbon Nanotubes/Polyurethane Nanocomposites[J].Polymer Journal,2007,39(2):138-146.
[68] Koerner H,Liu W,Alexander M,et al.Deformationmorphology Correlations in Electrically Conductive Carbon Nanotube-thermoplastic Polyurethane Nanocomposites[J].Polymer,2005,46(12):4405-4420.
[69] Ryszkowska J,Jurczyk-Kowalska M,Szymborski T,et al.Dispersion of Carbon Nanotubes in Polyurethane matrix[J].Physica E:Low-Dimensional Systems and Nanostructures,2007,39(1):124-127.
[70] Meng Q,Hu J,Zhu Y.Shape-memory Polyurethane/Multiwalled Carbon Nanotube Fibers[J].Journal of Applied Polymer Science,2007,106(2):837-848.
[71] Chen X H,Chen X J,Lin M,et al.Functionalized Multi-walled Carbon Nanotubes Prepared by In Situ Polycondensation of Polyurethane [J].Macromolecular Chemistry and Physics,2007,208(9):964-972.
[72] Xiong J W,Zheng Z,Qin X,et al.The Thermal and Mechanical Properties of a Polyurethane/Multi-walled Carbon Nanotube Composite [J].Carbon,2006,44(13):2701-2707.
[73] Kwon J Y,Kim H D.Preparation and Properties of Acid-treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites [J].Journal of Applied Polymer Science,2005,96(2):595-604.
[74] Sahoo N G,Jung Y C,Cho J W.Electroactive Shape Memory Effect of Polyurethane Composites Filled with Carbon Nanotubes and Conducting Polymer [J].Materials and Manufacturing Processes,2007,22(4):419-423.
[75] Buffa F,Abraham G A,Grady B P,et al.Effect of Nanotube Functionalization on the Properties of Singlewalled Carbon Nanotube/Polyurethane Composites [J].Journal of Polymer Science,Part B:Polymer Physics,2007,45 (4):490-501.
[76] He H,Zhang Y,Gao C,et al.Clicked Magnetic Nanohybrids with a Soft Polymer Interlayer [J].Chemical Communications,2009,(13):1655-1657.
[77] Wang T L,Tseng C G.Polymeric Carbon Nanocomposites from Multiwalled Carbon Nanotubes Functionalized with Segmented Polyurethane [J].Journal of Applied Polymer Science,2007,105(3):1642-1650.
[78] Sen R,Zhao B,Perea D,et al.Preparation of Single Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning[J].Nano Letters,2004,4(3):459-464.
[79] Mc Clory C,Mc Nally T,Brennan G P,et al.Thermosetting Polyurethane Multiwalled Carbon Nanotube Composites[J].Journal of Applied Polymer Science,2007,105(3):1003-1011.
[80] Kuan H C,Ma C C M,Chang W P,et al.Synthesis,Thermal,Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite [J].Composites Science and Technology,2005,65(11/12):1703-1710.
[81] Kwon J,Kim H.Comparison of the Properties of Waterborne Polyurethane/Multiwalled Carbon Nanotube and Acid-treated Multiwalled Carbon Nanotube Composites Prepared by In Situ Polymerization[J].Journal of Polymer Science,Part A:Polymer Chemistry,2005,43(17):3973-3985.
[82] Kwon J Y,Kim H D.Preparation and Properties of Acid-treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites [J].Journal of Applied Polymer Science,2005,96(2):595-604.
[83] Guo S Z,Zhang C,Wang W Z,et al.Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites[J].Polymers and Polymer Composites,2008,16(8):501-507.
[84] Sahoo N G,Jung Y C,So H H,et al.Synthesis of Polyurethane Nanocomposites of Functionalized Carbon Nanotubes by In-situ Polymerization Methods[J].Journal of the Korean Physical Society,2007,51(S1):1-6.
[85] Sahoo N G,Jung Y C,Yoo H J,et al.Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites[J].Macromolecular Chemistry and Physics,2006,207(19):1773-1780.
[86] Sahoo N G,Jung Y C,Yoo H J,et al.Influence of Carbon Nanotubes and Polypyrrole on the Thermal,Mechanical and Electroactive Shape-memory Properties of Polyurethane Nanocomposites [J].Composites Science and Technology,2007,67(9):1920-1929.
[87] Xia H,Song M,Jin J,et al.Poly(propylene glycol)-grafted Multi-walled Carbon Nanotube Polyurethane[J].Macromolecular Chemistry and Physics,2006,207(21):1945-1952.
[88] Yuen S M,Ma C C M,Chiang C L,et al.Preparation and Morphological,Electrical,and Mechanical Properties of Polyimide-grafted MWCNT/Polyimide Composite[J].Journal of Polymer Science,Part A:Polymer Chemistry,2007,45(15):3349-3358.
[89] Ounaies Z,Park C,Wise K E,et al.Electrical Properties of Single Wall Carbon Nanotube Reinforced Polyimide Composites[J].Composites Science and Technolo-gy,2003,63(11):1637-1646.
[90] Yu A,Hu H,Bekyarova E,et al.Incorporation of Highly Dispersed Single-walled Carbon Nanotubes in a Polyimide Matrix[J].Composites Science and Technology,2006,66(9):1187-1194.
[91] So H H,Cho J W,Sahoo N G.Effect of Carbon Nanotubes on Mechanical and Electrical Properties of Polyimide/Carbon Nanotubes Nanocomposites[J].European Polymer Journal,2007,43(9):3750-3756.
[92] Zhu B K,Xie S H,Xu Z K,et al.Preparation and Properties of the Polyimide/Multi-walled Carbon Nanotubes Nanocomposites[J].Composites Science and Technology,2006,66(3/4):548-554.
[93] Chou W J,Wang C C,Chen C Y.Characteristics of Polyimide-based Nanocomposites Containing Plasmamodified Multi-walled Carbon Nanotubes [J].Composites Science and Technology,2008,68 (10/11):2208-2213.
[94] Yuen S M,Ma C H M,Chiang C L,et al.Poly(vinyltriethoxysilane)Modified MWCNT/Polyimide Nanocom-posites—Preparation,Morphological,Mechanical,and Electrical Properties [J].Journal of Polymer Science,Part A:Polymer Chemistry,2008,46(3):803-816.
[95] Yuen S M,Ma C C M,Lin Y Y,et al.Preparation,Morphology and Properties of Acid and Amine Modified Multiwalled Carbon Nanotube/Polyimide Composite[J].Composites Science and Technology,2007,67(11/12):2564-2573.
[96] Siochi E J,Working D C,Park C,et al.Melt Processing of SWNT-polyimide Nanocomposite Fibres[J].Composites Part B:Engineering,2004,35(5):439-446.
[97] Jiang X,Bin Y,Matsuo M.Electrical and Mechanical Properties of Polyimide-carbon Nanotubes Composites Fabricated by In Situ Polymerization [J].Polymer,2005,46(18):7418-7424.
[98] Ogasawara T,Ishida Y,Ishikawa T,et al.Characterization of Multi-walled Carbon Nanotube/Phenylethynyl Terminated Polyimide Composites[J].Composites Part A:Applied Science and Manufacturing,2004,35(1):67-74.
Research Progress in Carbon Nanotubes Reinforced Polymer Nanocomposites
XIN Fei,XU Guozhi*
(School of Materials and Mechanical Engineering,Beijing Technology and Business University,Beijing 100048,China)
In this article,the recent progress in mechanical properties of carbon nanotubes(CNT)reinforced polymer composites was reviewed,with particular attention to polyurethane and polyimide based composites.Various functionalization methods in the modification of CNT were discussed,and the effectiveness of different processing techniques were compared.Finally,a future outlook for the development of CNT reinforced polymer composites was given.
polymer;carbon nanotube;composite;research progress
TQ322.3
A
1001-9278(2011)08-0001-09
2011-04-12
北京市屬高等學(xué)校人才強(qiáng)教計(jì)劃資助項(xiàng)目(PHR200907108)
*聯(lián)系人,xgzhi@btbu.edu.cn