• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    褶皺石墨帶的電子輸運性質(zhì)

    2011-11-30 10:56:46孔凡杰史友進
    物理化學(xué)學(xué)報 2011年9期
    關(guān)鍵詞:工學(xué)院電導(dǎo)褶皺

    徐 寧 張 超 孔凡杰 史友進

    (1鹽城工學(xué)院物理系,江蘇鹽城224051;2徐州空軍學(xué)院機場工程系,江蘇徐州221000)

    褶皺石墨帶的電子輸運性質(zhì)

    徐 寧1,*張 超2孔凡杰1史友進1

    (1鹽城工學(xué)院物理系,江蘇鹽城224051;2徐州空軍學(xué)院機場工程系,江蘇徐州221000)

    利用遞推格林函數(shù)方法,我們研究了褶皺石墨帶的電子輸運性質(zhì).當石墨帶具有褶皺時,對于鋸齒型石墨帶,在第一個范霍夫奇點內(nèi),發(fā)現(xiàn)了電導(dǎo)隙和伴隨著電導(dǎo)振蕩的微帶.然而,對于金屬性扶手型石墨帶,在費米能附近僅發(fā)現(xiàn)了電導(dǎo)隙,說明扶手型石墨帶發(fā)生了金屬-半導(dǎo)體轉(zhuǎn)變.隨著石墨帶的褶皺加強,無論是鋸齒型還是扶手型石墨帶,平均電導(dǎo)都逐漸減小,并趨于0.結(jié)果有利于我們理解真實構(gòu)型石墨帶的電子輸運性質(zhì),并且有助于設(shè)計基于石墨帶的納米器件.

    緊束縛模型;格林函數(shù);石墨帶;電導(dǎo)

    1 Introduction

    Since the graphene sheets have been successfully isolated by Novoselov,Geim,and co-workers,1,2this new material has attracted a great deal of attention.The electrons in graphene obey the relativistic Dirac equation instead of the Schr?dinger equation.2-8At the room temperature,quantum Hall effect was observed together with large coherence length and high electronic mobility.9,10Therefore,in addition to being a tool for studying fundamental physics,graphene is also of interest for device applications.

    Peierls11,12and Landau et al.13,14predicted theoretically that two dimensional(2D)lattice can not exist at any finite temperature. The numerous followed experiments on thin films have been in accord with the theory.15-17However,although the theory does not allow perfect 2D crystals existing in three dimensional(3D) space,it does not forbid nearly perfect 2D crystals in 3D space. In experiment,a single-atom-thick graphene sheet is usually studied by suspending it on a micron-sized metal grid or by supporting it on a substrate such as SiO2.18-20The sheet is not perfectly flat but contoured with intrinsic ripples.The ripple has been reproduced theoretically by Monte Carlo simulations method.21It is argued that the anharmonic coupling between bending and stretching modes in graphene causes the rippling and is responsible for the stability of the 2D crystal.Theoretical calculations show that the existence of ripples in graphene will give rise to charge inhomogeneities.22,23Charge anisotropies in monolayer graphene have also been recently observed in experiments.23Therefore,one can expect that the ripples in graphene have pronounced effects on electronic structure and thus the transport properties.

    In this work,we carry out a numerical study of transport properties of the corrugated graphene nanoribbons(GNRs) with varying widths,which can be realized either by cutting mechanically exfoliated graphenes,24,25or by patterning epitaxially grown graphenes.26,27For simplicity,we focus here mainly on periodical sine/cosine structure corrugated GNRs,as shown in Fig.1,and many intrinsic physical properties are observed.

    2 Model and method

    To explore the electronic properties of the corrugated graphene ribbon,we divide the graphene ribbon into three regions(as shown in Fig.1):the left lead,the central sample,and the right lead.The width of corrugated GNRs in the central sample is labeled by N,28which is consistent with the width of the two leads. The corrugated GNRs are made of P unit cells,and the number of atoms in a unit cell is 2N.28The fluctuations of GNRs satisfy the sinusoidal function.The position of random carbon atoms in corrugated GNRs fits well to Az=Asin(mAx).A represents the amplitude of the corrugated GNRs.AxandAzare coordinates of carbon atoms along the x and z axes,respectively.

    The electronic properties of GNRs have been explored in the context of various methods.28,29We adopt the simplest tight binding model in this paper,which assume the graphene ribbon to be sp2bonded network.The corresponding single particle Hamiltonian is

    where εiis the on-site potential.To consider the variations of bond length,the constant hopping parameter γ0between the firstneighborsitesismultiplied by a modified factor f(rij)=e-3.37(rij/r0-1).30The value of rijis the bond-length between the sites i and j.are the creation and annihilation operators at site i and j.In our model,εiis set to be zero and hopping parameter γ0=-2.7 eV.

    Fig.1 Schematic of an armchair corrugated GNR connecting to semi-infinite leads

    The transmission coefficient between the left and right leads can be calculated by31

    where ΓL(R)=i[Σ?L(R)-ΣL(R)]are the coupling of the corrugated GNRs to the left and right leads.Gr,ais the retarded and advanced Green function matrices of the device.Based on Landauer-Büttiker theory,the conductance G through the corrugated GNRs is given by G=(2e2/h)T.

    The density of states(DOSs),of the corrugated GNRs is calculated by

    Eq.(1)can be written as a block tridiagonal matrix,which follows thatwith I=1,2,…,P.P is the number of unit cell and I is the random unit cell.To calculate the transmission coefficients of interest,the key of the problem lies in the calculations of submatrixG1,Pin the Green function for a much larger sample.In the present paper,we employed a recursive Green function method to decimate all the intermediate parameters of a much large system.According to the Dyson equationG=G0+G0V^G,a set of recursive formula can be obtained: (i=1,2,…,P-1).In actual calculations,the unit cell can be enlarged in two-,three-and even many-fold size.By using the method,we can calculate effectively the conductance and DOS of a much long disordered irregular system.

    3 Results and discussion

    There are two basic shapes for graphite edges,namely,zigzag and armchair edges.Theoretical calculation and the firstprinciples self-consistent pseudopotenial simulation show that the electronic properties of GNRs depend strongly on the shape of edges.29The GNRs with zigzag shaped edges are metallic with peculiar edge states on both sides of the ribbons regardless of its width.The group velocity of electrons is close to zero in the vicinity of Fermi energy.However,the GNRs with armchair shaped edges can be either metallic or semiconducting depending on their width.The group velocity of electrons is up to 106m·s-1around Fermi energy,which has been confirmed in experiment.29,32Since the ripples in GNRs give rise to redistribution of electrons,22,23one can expect that the ripples in GNRs have pronounced effects on its transport properties.

    Fig.2 (a)Conductance of zigzag corrugated GNRs with m=0,0.8 and 1.6;(b),(c)and(d)the corresponding DOSzigzag ribbon N=8,P=100,A=0.1 nm

    To explore the effects of ripples on the electronic transport,in Fig.2,we first calculate the conductance spectra and DOS of zigzag corrugated GNRs with N=8,P=100,and A=0.1 nm.For comparison,the result of the flat zigzag GNRs is also shown.As expected,the flat zigzag GNRs exhibits the perfect step-like features with one unit of quantum conductance at about EFdue to one open channel.In Fig.2(b),a sharp peak of DOS is observed at about EFdue to states localized at the ribbon edges,which is consistent with the previous results.In the presence of ripples in GNRs,the period 2π/m of ripples in GNRs decreases with m increasing.The charge redistributions induced by the effect of curvature change the conductance spectra dramatically.Two conductance gaps are observed between the first Van Hove singularities at m=0.8,which is close to the beginning of the second subbands.In the vicinity of EF,the ripples almost have no effect on the conductance spectra and the corrugated GNRs remain the ballistic characteristic.With m increasing,the conductance gaps between the first Van Hove singularities,induced by minigaps,move closer to the Fermi energy.It is shown that at m=1.6,the conductance gap is observed at around EF.The corresponding DOSs are shown in Fig.2(b-d).It can be seen that,corresponding to the minigaps,the DOS tends to be zero.Much more resonant peaks are found in conductance spectra.Through comparative analyses of the conductance and the corresponding DOS,we find that the conductance fluctuations are attributed to local resonances created by quasi-bound states.

    Fig.3 (a)Conductance of armchair corrugated GNRs with m=0, 0.5 and 1;(b),(c)and(d)the corresponding DOS armchair ribbon N=14,P=100,A=0.1 nm

    In Fig.3,we plot the conductance spectra and DOS of armchair corrugated GNRs with m=0.5,1,respectively.For comparison,the result of the flat armchair GNRs is also shown.As expected,the flat armchair GNRs exhibit the perfect steplike features with one unit of quantum conductance at about EFdue to one open channel,which is consistent with the previous results.At the edge of very subbands,in Fig.3(b),the DOS peaks are observed due to degeneracy of energy level.In the presence of ripples in GNRs,a conductance dip is observed at around EFfor armchair GNRs with m=0.5.A corresponding DOS dip is observed at around EF,as shown in Fig.3(c).With m increasing,the conductance dip turns into conductance gap and the corresponding DOS is close to zero.This is because the energy bands in the vicinity of EFseparate gradually with m increasing.These results illustrate that armchair GNRs can change from metal to semiconductor by modulating the ripples.

    Fig.4 Conductance of corrugated GNRs with varying width and length in central sample(a)and(c)are the zigzag corrugated GNRs;(b)and(d)are the armchair corrugated GNRs.

    To explore the quantum-size effect on transport properties, in Fig.4,we plot conductance as a function of energy in corrugated GNRs with varying width and length in central sample. In these samples,the amplitude and period of corrugated GNRs are 0.1 nm and 2π/m≈0.628 nm,respectively.From Fig.4,it can be seen that the width N plays an important role in determining the conductance spectra.For corrugated zigzag GNRs,it changes from metal to semiconductor with the width N,while for armchair corrugated GNRs,it remains to be semiconducting properties.Aconductance gap is found in the vicinity of EF.At the higher energy region,the conductance changes dramatically for both the zigzag and armchair ribbons.The overall averaged conductance increases with N,just as expected.This is because the number of paths by which electrons can travel across the central sample increases with width N.In addition,it is shown that the conductance spectra vary slightly with the number P of central sample.Much more resonant peaks are observed due to resonance of quasi-localized states.

    4 Conclusions

    In summary,we have studied the transport properties of corrugated graphene nanoribbons by using Landauer-Büttiker formula,based on tight binding model.Our results show that the ripples in graphenes have an important effect on conductance of corrugated graphene nanoribbons.It is shown that in the presence of ripples,the minigaps with zero conductance and minibands with conductance fluctuations are formed for zigzag ribbions among the first Van Hove singularity.The corresponding DOS is zero for minigaps due to energy bands separating.While for metal armchair ribbons,a conductance gap is observed in the vicinity of Fermi energy,which is corresponding to a metal-semiconductor transition.With the fluctuation of ripples intensifying,the overall averaged conductance tends to be zero for both the zigzag and armchair ribbons.These results are useful for better understanding the properties of realistic graphene nanoribbons,and will be helpful for designing nanodevices based on graphene.

    (1)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.; Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A. Science 2004,306,666.

    (2) Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.; Katsnelson,M.;Grigorieva,I.V.;Dubonos,S.V.;Firsov,A.A. Nature 2005,438,197.

    (3)Zhang,Y.;Tan,Y.W.;Stormer,H.L.;Kim,P.Nature 2005,438, 202.

    (4) Nomura,K.;MacDonald,A.H.Phys.Rev.Lett.2007,98, 076602.

    (5) Tworzydlo,J.;Trauzettel,B.;Titov,M.;Rycerz,A.;Beenakker, C.W.J.Phys.Rev.Lett.2006,96,246802.

    (6)Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.

    (7) Katsnelson,M.L.;Novoselov,K.S.Solid State Commun.2007, 143,3.

    (8) Vazquez de Parga,A.L.;Calleja,F.;Borca,B.;Passegg,M.C. G.;Hinarejos,J.J.,Jr.;Guinea,F.;Miranda,R.Phys.Rev.Lett. 2008,100,056807.

    (9) Gusynin,V.P.;Sharapov,S.G.Phys.Rev.Lett.2005,95, 146801.

    (10) Peres,N.M.R.;Guinea,F.;Castro Neto,A.H.Phys.Rev.B 2006,73,125411.

    (11) Peierls,R.E.Helv.Phys.Acta 1934,7,81.

    (12) Peierls,R.E.Ann.Inst.H.Poincare 1935,5,177.

    (13) Landau,L.D.Zur Theorie der Phasenumwandlungen II.Phys. Z.1937,11,26.

    (14) Landau,L.D.;Lifshitz,E.M.Statistical Physics Part I; Pergamon:Oxford,1980;Sections 137 and 138.

    (15) Venables,J.A.;Spiller,G.D.T.;Hanbucken,M.Rep.Prog. Phys.1984,47,399.

    (16) Zinkeallmang,M.;Feldman,L.C.;Grabow,M.H.Surf.Sci. Rep.1992,16,377.

    (17) Evans,J.W.;Thiel,P.A.;Bartelt,M.C.Surf.Sci.Rep.2006,61, 1.

    (18) Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.; Booth,T.J.;Roth,S.Nature 2007,446,60.

    (19) Ishigami,M.J.;Chen,J.H.;Cullen,W.G.;Fuhrer,M.S.; Williams,E.D.Nano Lett.2007,7,1643.

    (20) Stolyarova,E.;Rim,K.T.;Ryu,S.;Maultzsch,J.;Kim,P.;Brus, L.E.;Heinz,T.F.;Hybertsen,M.S.;Flynn,G.W.Proc.Natl. Acad.Sci.U.S.A.2007,104,9209.

    (21) Fasolino,A.;Los,J.H.;Katsnelson,M.I.Nat.Mater.2007,6, 858.

    (22) Kim,E.A.;Castro Neto,A.H.Europhys.Lett.2008,84,57007.

    (23) Martin,J.;Akerman,N.;Ulbricht,G.;Lohmann,T.;Smet,J.H.; von Klitzing,K.;Yacoby,A.Nat.Phys.2008,4,144.

    (24) Hiura,H.Appl.Surf.Sci.2004,222,374.

    (25)Zhang,Y.;Tan,Y.W.;St?rmer,H.L.;Kim,P.Nature 2005,438, 201.

    (26)Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Naud, C.;Mayo,D.;Li,T.B.;Hass,J.;Marchenkov,A.N.;Conrad,E. H.;First,P.N.;de Heer,W.A.Science 2006,312,1191.

    (27) Berger,C.;Song,Z.;Li,T.;Li,X.;Ogbazghi,A.Y.;Feng,R.; Dai,Z.;Marchenkov,A.N.;Conrad,E.H.;First,P.N.;de Heer, W.A.J.Phys.Chem.B 2004,108,19912.

    (28) Li,T.C.;Lu,S.P.Phys.Rev.B 2008,77,085408.

    (29) Son,Y.W.;Cohen,M.L.;Louie,S.G.Phys.Rev.Lett.2006,97, 216803.

    (30) Pereira Vitor,M.;Castro Neto,A.H.Phys.Rev.B 2009,80, 045401.

    (31) Xu,N.;Ding,J.W.;Xing,D.Y.J.Appl.Phys.2008,103, 083710.

    (32) Kobayashi,Y.;Fukui,K.;Enoki,T.;Kusakabe,K.Phys.Rev.B 2006,73,125415.

    April 11,2011;Revised:June 3,2011;Published on Web:June 20,2011.

    Transport Properties of Corrugated Graphene Nanoribbons

    XU Ning1,*ZHANG Chao2KONG Fan-Jie1SHI You-Jin1
    (1Department of Physics,Yancheng Institute of Technology,Yancheng 224051,Jiangsu Province,P.R.China;
    2Engineering Department of Airport,Xuzhou Air College,Xuzhou 221000,Jiangsu Province,P.R.China)

    We studied the transport properties of corrugated graphene nanoribbons by the recursive Green function method.We show that in the presence of ripples the minigaps with zero conductance and minibands with conductance fluctuations form in the zigzag ribbons among the first Van Hove singularity. For the metal armchair ribbons a conductance gap is present in the vicinity of the Fermi energy,which corresponds to a metal-semiconductor transition.With the fluctuation of ripples intensifying the overall averaged conductance decreases for both the zigzag and armchair ribbons and it tends to be zero.These results are useful for a better understanding of the electronic transport properties of realistic graphene nanoribbons and will be helpful for the design of nanodevices based on graphene.

    Tight-binding model;Green function;Graphene-nanoribbon;Conductance

    O649;O488

    ?Corresponding author.Email:xuning79530@126.com;Tel:+86-515-88168221.

    This project was supported by the National Natural Science Foundation of China(10874052),Foundation for theAuthor of National Excellent

    Doctoral Dissertation of China(200726),Natural Science Foundation of Jiangsu Province,China(BK2010499),Natural Science Fund for Colleges and Universities in Jiangsu Province,China(11KJB140012),and General Program of Yancheng Institute of Technology,China(XKY2011014).

    國家自然科學(xué)基金(10874052),全國優(yōu)秀博士學(xué)位論文基金(200726),江蘇省自然科學(xué)基金(BK2010499),江蘇省高校自然科學(xué)研究基金(11KJB140012)和鹽城工學(xué)院面上項目(XKY2011014)資助

    猜你喜歡
    工學(xué)院電導(dǎo)褶皺
    《鹽城工學(xué)院學(xué)報(自然科學(xué)版)》征稿簡則
    《鹽城工學(xué)院學(xué)報(自然科學(xué)版)》征稿簡則
    《鹽城工學(xué)院學(xué)報(自然科學(xué)版)》征稿簡則
    《鹽城工學(xué)院學(xué)報(自然科學(xué)版)》征稿簡則
    動漫人物衣服褶皺的畫法(1)
    基于IEC標準的電阻表(阻抗表)和電導(dǎo)表的技術(shù)要求研究
    電子制作(2018年14期)2018-08-21 01:38:38
    一點褶皺
    Coco薇(2017年6期)2017-06-24 23:08:56
    基于電導(dǎo)增量法的模型預(yù)測控制光伏MPPT算法
    RNA干擾HeLa細胞IKCa1基因?qū)χ须妼?dǎo)鈣激活鉀通道電流的影響
    復(fù)雜褶皺構(gòu)造分析與找煤
    老汉色∧v一级毛片| 免费在线观看完整版高清| 国产精品日韩av在线免费观看| 欧美在线黄色| 可以免费在线观看a视频的电影网站| 成人高潮视频无遮挡免费网站| aaaaa片日本免费| 精品久久蜜臀av无| 亚洲av成人精品一区久久| 日日夜夜操网爽| 久久久久免费精品人妻一区二区| 精品不卡国产一区二区三区| 久久久久久人人人人人| av欧美777| 亚洲18禁久久av| 中文字幕人妻丝袜一区二区| 极品教师在线免费播放| 免费搜索国产男女视频| 国产成人aa在线观看| 亚洲人成电影免费在线| 特大巨黑吊av在线直播| 国内精品久久久久精免费| 国产伦在线观看视频一区| 国产精品98久久久久久宅男小说| 日韩精品青青久久久久久| 在线视频色国产色| 黄色视频不卡| 丝袜美腿诱惑在线| 99在线视频只有这里精品首页| 三级毛片av免费| 狂野欧美白嫩少妇大欣赏| 99久久综合精品五月天人人| 中文字幕高清在线视频| 欧美三级亚洲精品| 一a级毛片在线观看| 亚洲18禁久久av| 国产黄色小视频在线观看| 嫁个100分男人电影在线观看| 很黄的视频免费| 国产精品永久免费网站| 亚洲专区字幕在线| 男人舔女人的私密视频| 欧美日本亚洲视频在线播放| 床上黄色一级片| 制服丝袜大香蕉在线| 亚洲五月婷婷丁香| 亚洲男人的天堂狠狠| 国产成人av激情在线播放| 亚洲av中文字字幕乱码综合| 欧美三级亚洲精品| 久久精品国产亚洲av香蕉五月| 国产一区二区激情短视频| 欧美日韩亚洲综合一区二区三区_| 午夜免费激情av| 亚洲人与动物交配视频| 黑人欧美特级aaaaaa片| 777久久人妻少妇嫩草av网站| 亚洲成人免费电影在线观看| 老熟妇仑乱视频hdxx| 啦啦啦免费观看视频1| 深夜精品福利| 麻豆av在线久日| 18美女黄网站色大片免费观看| 久久久久性生活片| 国产伦一二天堂av在线观看| 日韩欧美精品v在线| 色综合站精品国产| 国内精品久久久久久久电影| 国产午夜精品论理片| 日韩精品青青久久久久久| 久久香蕉国产精品| 三级毛片av免费| 一级毛片精品| 人人妻,人人澡人人爽秒播| 一二三四社区在线视频社区8| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 国产成+人综合+亚洲专区| 午夜福利高清视频| 舔av片在线| 国产成人一区二区三区免费视频网站| 在线观看舔阴道视频| 午夜福利高清视频| 天天添夜夜摸| 夜夜夜夜夜久久久久| 久久久久久久久中文| 999久久久国产精品视频| 国产av不卡久久| 1024手机看黄色片| 男男h啪啪无遮挡| 麻豆久久精品国产亚洲av| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 欧美久久黑人一区二区| ponron亚洲| 99在线人妻在线中文字幕| 男人的好看免费观看在线视频 | 麻豆久久精品国产亚洲av| 88av欧美| 国内精品久久久久久久电影| 久久久久国产精品人妻aⅴ院| 丁香欧美五月| 麻豆av在线久日| 正在播放国产对白刺激| 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 日韩欧美免费精品| 色尼玛亚洲综合影院| 国产精品一区二区精品视频观看| 99精品欧美一区二区三区四区| 男人的好看免费观看在线视频 | 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看| www.999成人在线观看| 禁无遮挡网站| xxx96com| 久久精品人妻少妇| videosex国产| 91麻豆av在线| 全区人妻精品视频| 久久久国产精品麻豆| 日本一区二区免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 一边摸一边做爽爽视频免费| 伊人久久大香线蕉亚洲五| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 亚洲精品一区av在线观看| 深夜精品福利| 国产av又大| 国产又黄又爽又无遮挡在线| av免费在线观看网站| 在线观看一区二区三区| 色播亚洲综合网| 欧美极品一区二区三区四区| 国产乱人伦免费视频| 亚洲美女黄片视频| 狠狠狠狠99中文字幕| 性欧美人与动物交配| 欧美日韩国产亚洲二区| 搡老岳熟女国产| 在线观看美女被高潮喷水网站 | 999久久久国产精品视频| 天堂√8在线中文| 午夜精品在线福利| 日日摸夜夜添夜夜添小说| 亚洲va日本ⅴa欧美va伊人久久| 久久国产乱子伦精品免费另类| 欧美性猛交╳xxx乱大交人| 久久久精品国产亚洲av高清涩受| 国产熟女xx| 亚洲精品在线观看二区| 久久香蕉国产精品| 999精品在线视频| 国产精品一区二区三区四区久久| 1024手机看黄色片| 脱女人内裤的视频| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 亚洲欧美激情综合另类| 欧美性长视频在线观看| 久久这里只有精品中国| 日本一二三区视频观看| 成人欧美大片| 人人妻人人澡欧美一区二区| 欧美成人性av电影在线观看| 日本三级黄在线观看| 一二三四在线观看免费中文在| 在线永久观看黄色视频| 久久久久国内视频| 免费在线观看日本一区| 国产精品影院久久| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| av在线播放免费不卡| 69av精品久久久久久| 日本三级黄在线观看| 一区二区三区激情视频| 亚洲精品国产精品久久久不卡| 麻豆成人午夜福利视频| netflix在线观看网站| 欧美日本亚洲视频在线播放| 日韩av在线大香蕉| 欧美久久黑人一区二区| 人妻夜夜爽99麻豆av| 国产精品九九99| 99热6这里只有精品| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 在线观看午夜福利视频| 国产精品电影一区二区三区| 国产亚洲精品第一综合不卡| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 精品电影一区二区在线| 亚洲 欧美 日韩 在线 免费| 黄片大片在线免费观看| 91在线观看av| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 欧美激情久久久久久爽电影| 亚洲片人在线观看| 禁无遮挡网站| 久久 成人 亚洲| 男人舔奶头视频| 日韩欧美免费精品| 级片在线观看| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 亚洲全国av大片| 91av网站免费观看| 国产精品 欧美亚洲| 亚洲中文字幕日韩| 亚洲av电影在线进入| 91麻豆av在线| 999久久久精品免费观看国产| 麻豆国产97在线/欧美 | 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 国产成人欧美在线观看| 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 法律面前人人平等表现在哪些方面| 妹子高潮喷水视频| 亚洲九九香蕉| 中文字幕最新亚洲高清| 波多野结衣高清无吗| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 国产一区在线观看成人免费| tocl精华| 超碰成人久久| 久久久久久久久久黄片| 不卡av一区二区三区| 两个人免费观看高清视频| 好男人在线观看高清免费视频| 亚洲av成人一区二区三| 国产蜜桃级精品一区二区三区| 后天国语完整版免费观看| 亚洲成av人片在线播放无| 色噜噜av男人的天堂激情| 欧美乱妇无乱码| 黑人操中国人逼视频| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 欧美性长视频在线观看| 国产av不卡久久| 久久久久国产一级毛片高清牌| 国产视频一区二区在线看| 露出奶头的视频| 蜜桃久久精品国产亚洲av| 老熟妇仑乱视频hdxx| 免费观看人在逋| 男女那种视频在线观看| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 91在线观看av| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9| 欧美成人午夜精品| 午夜亚洲福利在线播放| 91大片在线观看| 国产精品影院久久| 在线观看美女被高潮喷水网站 | 三级国产精品欧美在线观看 | 91麻豆av在线| 天天躁夜夜躁狠狠躁躁| 男人的好看免费观看在线视频 | 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 九色成人免费人妻av| www.精华液| 日本五十路高清| 黄片大片在线免费观看| 三级男女做爰猛烈吃奶摸视频| 舔av片在线| 亚洲在线自拍视频| 国产精品一及| 人妻久久中文字幕网| 少妇粗大呻吟视频| 久久午夜亚洲精品久久| 亚洲成人免费电影在线观看| 精品久久久久久久末码| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 国产99久久九九免费精品| 岛国视频午夜一区免费看| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 国产视频一区二区在线看| 欧美成人性av电影在线观看| 搞女人的毛片| 天天添夜夜摸| 一级毛片高清免费大全| 免费高清视频大片| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 99在线视频只有这里精品首页| 久久久久国产精品人妻aⅴ院| 国产一区二区三区在线臀色熟女| 可以在线观看毛片的网站| 精品国产美女av久久久久小说| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 欧美黑人巨大hd| 国产亚洲精品一区二区www| 日韩欧美一区二区三区在线观看| 午夜成年电影在线免费观看| 搡老岳熟女国产| 免费在线观看亚洲国产| 日本黄大片高清| 又大又爽又粗| 国产精品免费视频内射| 色播亚洲综合网| 国产亚洲精品一区二区www| 国产私拍福利视频在线观看| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 国产日本99.免费观看| 免费在线观看影片大全网站| 91国产中文字幕| 一级黄色大片毛片| 亚洲精品久久国产高清桃花| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 91在线观看av| 俄罗斯特黄特色一大片| 亚洲成av人片在线播放无| 免费高清视频大片| 脱女人内裤的视频| 亚洲精品粉嫩美女一区| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 99热6这里只有精品| 国产爱豆传媒在线观看 | 亚洲真实伦在线观看| 久久久国产成人免费| 中文亚洲av片在线观看爽| 免费搜索国产男女视频| 亚洲午夜精品一区,二区,三区| 久久中文字幕人妻熟女| 国产精品亚洲美女久久久| 亚洲人成77777在线视频| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 50天的宝宝边吃奶边哭怎么回事| www.999成人在线观看| 级片在线观看| 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 特大巨黑吊av在线直播| 少妇粗大呻吟视频| 青草久久国产| 在线观看免费视频日本深夜| 桃红色精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 免费观看人在逋| 一本精品99久久精品77| 久久精品91蜜桃| 欧美又色又爽又黄视频| 男女下面进入的视频免费午夜| 又大又爽又粗| 精品高清国产在线一区| 亚洲电影在线观看av| 成人三级黄色视频| 国产精品免费一区二区三区在线| 亚洲中文av在线| 高清毛片免费观看视频网站| 一本大道久久a久久精品| 国产精品一及| 欧美丝袜亚洲另类 | 婷婷丁香在线五月| 日韩欧美 国产精品| 国产成人精品无人区| 日日摸夜夜添夜夜添小说| 亚洲美女视频黄频| 国产成人aa在线观看| 婷婷精品国产亚洲av| 色综合站精品国产| 91大片在线观看| www日本黄色视频网| 久久久久国产一级毛片高清牌| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 午夜a级毛片| svipshipincom国产片| 国产精品av视频在线免费观看| 欧美国产日韩亚洲一区| 国产成年人精品一区二区| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 99精品在免费线老司机午夜| 精品久久久久久久毛片微露脸| 亚洲av片天天在线观看| 一个人免费在线观看电影 | 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 国产高清激情床上av| 久久伊人香网站| 久久婷婷人人爽人人干人人爱| 国产精品 欧美亚洲| 久久精品国产清高在天天线| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 国产av麻豆久久久久久久| av有码第一页| 香蕉久久夜色| 人成视频在线观看免费观看| 熟女电影av网| 久久久国产成人免费| 嫩草影视91久久| 免费在线观看亚洲国产| 国产一区二区在线观看日韩 | 夜夜爽天天搞| 在线观看www视频免费| 香蕉国产在线看| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 搡老岳熟女国产| www.精华液| 国产精品免费一区二区三区在线| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添小说| 成在线人永久免费视频| 成年版毛片免费区| 欧美成狂野欧美在线观看| 18禁观看日本| 久久久久久亚洲精品国产蜜桃av| 国产不卡一卡二| 日韩欧美国产在线观看| 国产一区二区激情短视频| 在线国产一区二区在线| 51午夜福利影视在线观看| 亚洲av五月六月丁香网| 日本一二三区视频观看| 国产三级中文精品| 成人亚洲精品av一区二区| 香蕉av资源在线| 国产精品电影一区二区三区| 免费观看人在逋| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 亚洲全国av大片| 欧美中文日本在线观看视频| 亚洲美女视频黄频| 国产99久久九九免费精品| 亚洲人成77777在线视频| 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 亚洲精品在线美女| 欧美色欧美亚洲另类二区| 欧美av亚洲av综合av国产av| 一本精品99久久精品77| 欧美性猛交黑人性爽| 高清在线国产一区| 亚洲欧美日韩无卡精品| 在线播放国产精品三级| 亚洲成人国产一区在线观看| 国产激情欧美一区二区| 久久人妻福利社区极品人妻图片| 精品福利观看| tocl精华| 日韩成人在线观看一区二区三区| 中文字幕最新亚洲高清| 九九热线精品视视频播放| 亚洲最大成人中文| 嫁个100分男人电影在线观看| 国产高清视频在线播放一区| 欧美3d第一页| 亚洲激情在线av| 免费在线观看日本一区| 性色av乱码一区二区三区2| 婷婷精品国产亚洲av| 国产熟女午夜一区二区三区| 国产亚洲精品第一综合不卡| 欧洲精品卡2卡3卡4卡5卡区| 九色成人免费人妻av| 国产免费男女视频| 岛国在线免费视频观看| www日本在线高清视频| 老鸭窝网址在线观看| 国产一区二区三区视频了| 国产亚洲欧美98| 婷婷六月久久综合丁香| 精品国内亚洲2022精品成人| 日韩欧美免费精品| 一区二区三区激情视频| 国产97色在线日韩免费| 在线永久观看黄色视频| 看黄色毛片网站| 大型av网站在线播放| 身体一侧抽搐| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 在线观看舔阴道视频| 18美女黄网站色大片免费观看| 天天躁夜夜躁狠狠躁躁| www.精华液| 国产精品九九99| 日韩精品中文字幕看吧| 久久久国产成人免费| 国产在线观看jvid| 久久久久久久久免费视频了| 俄罗斯特黄特色一大片| 国产视频一区二区在线看| 很黄的视频免费| 久久亚洲精品不卡| 99国产精品99久久久久| 亚洲国产精品成人综合色| 999精品在线视频| 免费看日本二区| 国产成年人精品一区二区| 国产成+人综合+亚洲专区| 又大又爽又粗| 2021天堂中文幕一二区在线观| svipshipincom国产片| 亚洲国产欧美人成| 欧美精品亚洲一区二区| 女警被强在线播放| 黄色女人牲交| 91在线观看av| 黄片大片在线免费观看| 亚洲自拍偷在线| 91大片在线观看| 久久中文字幕人妻熟女| 久久精品91蜜桃| 少妇的丰满在线观看| 18禁黄网站禁片免费观看直播| 欧美极品一区二区三区四区| 亚洲国产精品合色在线| 村上凉子中文字幕在线| 无人区码免费观看不卡| 久久人人精品亚洲av| 精品欧美一区二区三区在线| 亚洲真实伦在线观看| 精品久久蜜臀av无| 久久婷婷人人爽人人干人人爱| 精品午夜福利视频在线观看一区| 国产av在哪里看| e午夜精品久久久久久久| 午夜a级毛片| 成人精品一区二区免费| 最近最新中文字幕大全免费视频| 国产精品综合久久久久久久免费| 欧美极品一区二区三区四区| 欧美一区二区国产精品久久精品 | 一进一出好大好爽视频| 久久久久免费精品人妻一区二区| 51午夜福利影视在线观看| 99久久久亚洲精品蜜臀av| 欧美极品一区二区三区四区| 视频区欧美日本亚洲| 日韩精品中文字幕看吧| 99在线视频只有这里精品首页| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| 一本久久中文字幕| 人人妻人人澡欧美一区二区| 久久久精品大字幕| 99国产精品一区二区蜜桃av| 此物有八面人人有两片| 国产高清videossex| 国产一区二区激情短视频| av福利片在线观看| 国产区一区二久久| 久久精品影院6| 国语自产精品视频在线第100页| 久久久久性生活片| 在线免费观看的www视频| 看片在线看免费视频| 中亚洲国语对白在线视频| av天堂在线播放| 色尼玛亚洲综合影院| 嫩草影院精品99| 妹子高潮喷水视频| 亚洲男人的天堂狠狠| av有码第一页| 国产乱人伦免费视频| 一进一出抽搐动态| 丰满人妻一区二区三区视频av | 午夜激情福利司机影院| 精品国产美女av久久久久小说| 午夜日韩欧美国产| 国产精品 国内视频| 精品人妻1区二区| 日韩欧美国产在线观看| 亚洲精品中文字幕一二三四区| 亚洲电影在线观看av| 精品欧美一区二区三区在线| 国产精品九九99| 午夜两性在线视频| 色av中文字幕| 99热只有精品国产| 久久久久国产精品人妻aⅴ院| 18禁黄网站禁片午夜丰满| 亚洲激情在线av| 老司机深夜福利视频在线观看| 国产成人aa在线观看| 美女黄网站色视频| 色老头精品视频在线观看| 欧美色欧美亚洲另类二区| 国产av不卡久久| 国产视频一区二区在线看| 色综合欧美亚洲国产小说|