張海永
(滁州學(xué)院 數(shù)學(xué)科學(xué)學(xué)院,安徽 滁州 239000)
基于Longstaff-Schwartz模型的亞式信用利差看跌期權(quán)定價(jià)
張海永
(滁州學(xué)院 數(shù)學(xué)科學(xué)學(xué)院,安徽 滁州 239000)
在經(jīng)典的Black-Scholes期權(quán)定價(jià)模型中無風(fēng)險(xiǎn)利率是固定不變的常數(shù),實(shí)際金融市場(chǎng)上的利率是變化的。假設(shè)信用利差和無風(fēng)險(xiǎn)利率均服從Vasicek模型,在此假設(shè)下給出亞式信用利差看跌期權(quán)的定價(jià)公式并利用隨機(jī)過程的相關(guān)理論對(duì)定價(jià)公式進(jìn)行證明。這種研究方法還可以用在具有浮動(dòng)執(zhí)行價(jià)的信用利差看跌期權(quán)。
信用利差;亞式期權(quán);Longstaff-Schwartz模型;定價(jià)
1995年,Longstaff和Schwartz[1]提出無風(fēng)險(xiǎn)利率rt和信用利差st都滿足 Vasicek模型[2],
其中,αr和αs是正常數(shù),分別表示利率和利差的均值回復(fù)速度.γr和γs為正常數(shù),分別表示利率和利差的長期平均水平.σr和σs為常數(shù),分別是它們的波動(dòng)率.{wst,t∈[0,T]}和{wrt,t∈[0,T]}是標(biāo)準(zhǔn)布朗運(yùn)動(dòng)[3],corr(dwst,dwrt)=ρ為常相關(guān)系數(shù).模型 (1),(2)被稱為Longstaff-Schwartz模型,簡(jiǎn)稱LS模型.
本文主要研究在LS模型下怎樣為幾何平均亞式信用利差看跌期權(quán)定價(jià).
定理 在LS模型下,到期日為T執(zhí)行價(jià)格為K的幾何平均亞式信用利差看跌期權(quán)在0時(shí)刻的價(jià)格為
證明 根據(jù)利率的隨機(jī)性,為簡(jiǎn)化計(jì)算我們可以選擇T期遠(yuǎn)期利率的方法進(jìn)行測(cè)度變化.定義如下的Radon-Nikodym導(dǎo)數(shù)[4]為QT測(cè)度:
其中B(t)=e∫t0rudu.根據(jù)Vasicek模型容易知道,到期日為T的零息票無違約債券在時(shí)刻t的價(jià)值為
本文把經(jīng)典期權(quán)定價(jià)公式中固定利率的假設(shè)條件放寬,在Longstaff-Schwartz模型的條件下得到了具有固定執(zhí)行價(jià)的亞式信用利差看跌期權(quán)價(jià)格.事實(shí)上,這種研究方法還可以用在具有浮動(dòng)執(zhí)行價(jià)的信用利差看跌期權(quán).
[1]F.A Longstaff,E.S.Schwartz.Valuing credit derivatives[J].The Journal of Fixed Income,1995,(5):6-12.
[2]Oldrich vasicek.An equilibrium characterization of the term structure[J].Journal of Financial Economics,1977,5:177-188.
[3]王 軍,王 娟.隨機(jī)過程及其在金融領(lǐng)域的應(yīng)用[M].北京:清華大學(xué)出版社,2007:171.
[4]Ma Chunhui,Li Shenggang,Shi Yanwei.Radon-Nikodym theorem in signed Loeb space[J].Wuhan University Journal of Natural Sciences,2010,(5):21-24.
[5]Yan Haifeng,Chen Chunsheng.Girsanov theorem and its application in option pricing[J].Henan Normal University Journal of Natural Sciences,2003,31:123-128.
[6]鄭振龍,陳 蓉.金融工程[M].北京:高等教育出版社,2008:192.
Pricing Asian Credit Spread Put Options Based on Longstaff-Schwartz Model
Zhang Haiyong
(School of Mathematical Sciences,Chuzhou University,Chuzhou 239000,China)
Black-Scholes option pricing model assumes that risk-free rate of interest is constant,which does not adjust to the reality in financial market.Actually,it is variable.This paper improves the hypothesis that riskfree rate of interest is constant and the underlying stock asset follows geometric Brownian motion.This article also assumes that risk-free rate of interest and credit spread satisfy Longstaff-Schwartz model.Then,the pricing formula of geometric-average Asian credit spread put options with fixed strike price is given and proved with some stochastic theory under conditions of the assumption.
Asian options;credit spread;Longstaff-Schwartz model;pricing formula
F830.91
A
1673-1794(2011)05-0008-02
張海永(1981-),男,滁州學(xué)院教師,碩士,研究方向:金融數(shù)學(xué)。
滁州學(xué)院自然科學(xué)研究項(xiàng)目(2010kj011B)
2011-07-22