• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳摻雜花狀納米碳片的制備及其在超級電容器中的應(yīng)用

    2011-11-10 01:00:46易觀貴謝春林莫珊珊賀文啟率劉應(yīng)亮袁定勝黃浪歡譚紹早
    關(guān)鍵詞:花狀電容器納米

    易觀貴 肖 勇 謝春林 莫珊珊 賀文啟 趙 率劉應(yīng)亮 袁定勝 黃浪歡 譚紹早

    (暨南大學(xué)化學(xué)系,納米化學(xué)研究所,廣州 510632)

    鎳摻雜花狀納米碳片的制備及其在超級電容器中的應(yīng)用

    易觀貴 肖 勇 謝春林 莫珊珊 賀文啟 趙 率劉應(yīng)亮*袁定勝 黃浪歡 譚紹早

    (暨南大學(xué)化學(xué)系,納米化學(xué)研究所,廣州 510632)

    本文通過溶劑熱法“一鍋”制備了鎳摻雜的花狀納米碳片(Ni/FCNAs)。借助X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)對該復(fù)合材料的表面形貌和結(jié)構(gòu)進(jìn)行了分析。循環(huán)伏安和恒流充/放電測試結(jié)果表明,Ni/FCNAs具有較大的比電容值且電化學(xué)穩(wěn)定性良好。在電流密度為0.1 A·g-1時,Ni/FCNAs電極的比電容可達(dá)176 F·g-1。本文同時也提出了Ni/FCNAs可能的形成機(jī)理。

    鎳摻雜;納米碳片;溶劑熱;超級電容器

    Electrochemical double layer capacitor(EDLC)has attracted considerable attention because of its wide potential applications in electric vehicles and other high power applications due to its high power density and long cycle life[1-4].Various materials have been tried for developing supercapacitors[5-10],but the application is still limited due to the low energy density.Carbon materials can be promising candidates for supercapacitor applications because of their chemical stability,low-cost,fineconductivity andkinds of existing forms[11].Novel carbon materials,such as carbon nanofibers[12],nanotubes[13],nanospheres[14-16]and nanoflakes[17]have successfully applied for EDLC.Recently,Yuan et al.[18]reported the synthesis of flower-like mesoporouscarbon from metal-organic coordination polymers with high specific surface area and high specific capacitance.Flower-like microconstruction is composed of a number of 1 or 2-dimensoinal subunits with one end aggregating together[19].The microstructure gives rise to a relatively high specific surface area and evenly distributed mesoporosity,which are favorable for their application as electrode material in supercapacitors.

    In recent years,several works have been reported on Ni-doped carbon materials applied as an electrode material for supercapacitors[20-21].Their results show that the doped nickel particles play an important role in improving electrochemical reaction of the Ni-doped carbon materials.Therefore,the Ni-doped carbon materials exhibit an excellent capacitive behavior compared with the pure carbon materials.

    In this paper,we report an easy route for the largescale production ofNi-doped flower-like carbon nanosheet aggregations(Ni/FCNAs)via a one-pot solvothermal method followed by a subsequent calcination process at 900 ℃ in nitrogen atmosphere.The electrochemical capacitive properties for this material have been characterized via cyclic voltammetry and galvanostatic charge/discharge experiments.The results show that the Ni/FCNAs have good electrochemical performance.To the best of our knowledge,there has been no reporton Ni-doped flower-like carbon nanosheet aggregations as electrode materials for supercapacitors.

    1 Experimental

    1.1 Synthesis of flower-like products

    All the chemical reagents were analytically pure and used without further purification.In a typical procedure,0.3 g of Nickelacetate tetrahydrate was introduced to 30 mL of a mixed H2O and ethylene glycol(EG)solution (1 ∶1,V/V).About 0.8 mL of furfural was added under stirring until a reddish-brown solution was obtained.The solution was then transferred into a 40 mL Teflon-lined stainless-steel autoclave that was sealed and heated at 180℃for 24 h before cooled to room temperature.The resulting solid material was collected by centrifugation,washed with deionized water and ethanol,and finally dried at 80℃for 4 h in vacuum.The as-obtained precursor sample was heated to 900℃ at a rate of 2℃·min-1and kept at the final temperature for 3 h in flowing N2.The as-synthesized black wool-like raw product was referred as Ni/FCNAs.For comparison, Nickel-free flower-like carbon nanosheet aggregations was prepared following the similar procedure,the difference was that the precursor was boiled in nitric acid before calcined at 900℃,and the nickel-free material was denoted as FCNAs.

    1.2 Characterization of flower-like products

    The structure of as-prepared product was analyzed by a MSAL-XD2 X-ray diffractometer(Cu Kα,36 kV,20 mA, λ =0.154 060 nm).The morphologies were observed via on a Philips SEM-XL30S scanning electron microscope and a JEOL TEM-2010 transmission electron microscope using an accelerating voltage of 200 kV.The specific surface area was measured via the Micromeritics TriStar 3000 analyzer.

    1.3 Electrochemical performance

    The working electrode was prepared by pressing the mixture of active materials、carbon black and 5%-PTFE (75∶15∶10,w/w)onto a foam nickel electrode under 35 MPa.Cyclic voltammetry and galvanostatic charge/discharge measurements were conducted on CHI 660B electrochemical workstation.All experiments were carried out at room temperature in a standard three-compartment cell containing a nickel~foil~electrode as the current collector and an Hg/HgO(6.0 mol·L-1KOH)as a reference electrode and the abovementioned as working electrode.Different sweep rates were employed in cyclic voltammetry within the range of-0.9 to 0.1 V.Cycling stability of Ni/FCNAs was evaluated by repeated cyclic voltammetry at a rate of 20 mV·s-1.

    2 Results and discussion

    2.1 Structural characterization

    Fig.1 XRD patterns of the precursor(a)and Ni/FCNAs(b)

    Fig.1 shows the X-ray diffraction(XRD)patterns of the the precursor and as-synthesized products.The peaks in Fig.1a at about 19°,33°,39°,52°,59°,63°can be indexed to diffraction planes ofβ-Ni(OH)2,respectively.Fig.1b at about 45°,52°and 76°can be assigned to the(111),(200)and (220)planes of the cubic structure of Ni.The broad low intensity peaks were produced by disordered carbon.According to the following Scherrers equation:where D is the average diameter of the crystals in nm,λ is the X-ray wavelength (λ=0.154 060 nm),k is the shape factor (k=0.89),and θ is the Bragg angle in degrees and β=B-b.Here B is the full-width at half maximum (FWHM)and b represents the instrumental line broadening (assuming null instrumental in the paper).The reflecting peaks at 2θ=45°,52°and 76°are chosen to calculate the average diameter,the average size of Ni particles is about 18 nm.

    Typical SEM image of the precursor is shown in Fig.2a.According to the observation of SEM image,flower-like microstructures account for the majority of the precursor,which consists of nanosheets.Fig.2b shows the SEM image of Ni/FCNAs,the flower-like morphology can be maintained during the subsequent calcination step.The nanosheets are just a few nanometers in thickness.Fig.2c shows a SEM image of the product FCNAs.The flower-like morphology is only slightly distorted even though the precursor was boiled in nitric acid before calcined.

    Fig.3a shows a TEM image of Ni/FCNAs.The product is composed of nanosheets that root deeply inside the flower-like aggregation.The dispersion and size of Ni nanoparticles on the carbon materials are further characterized by the high resolution TEM(HRTEM)analysis.Fig.3b shows the typical HTEM image of the Ni/FCNAs.The dark spots with diameters ranging from 10 nm to 25 nm are Ni nanoparticles.Abetter dispersion of Ni nanoparticles on carbon support with narrower size distribution is found.The average size of the particles is estimated to be 18 nm by counting more than 100 Ni particles from the HTEM image,which is consistent with the XRD results.

    Fig.2 SEM images of the precursor(a),Ni/FCNAs(b)and FCNAs(c)

    Fig.3 TEM image(a)and HTEM image(b)of Ni/FCNAs

    Fig.4 Adsorption-desorption isotherms of FCNAs(a)and Ni/FCNAs(b)

    The nitrogen adsorption-desorption isotherms of Ni/FCNAs and FCNAs are shown in Fig.4.The isotherm of typeⅣwith a sharp capillary condensation step is observed and a hysteresis loop near relative pressure of~0.5 in the desorption branch indicates the presence of mesopores.BET specific area of Ni/FCNAs and FCNAs are measured to be 455 m2·g-1and 562 m2·g-1,respectively.

    2.2 Growth mechanism of Ni/FCNAs

    Based on the experimental results,the procedure for the formation of Ni/FCNAs has been proposed in Scheme 1.The procedure can be divided into two steps:(1)Formation of Ni(OH)2nanoplatelets;and (2)the growth of flower-like product.The possible formation mechanism can be explained as following.During the formation of Ni(OH)2nanoplatelets in solvothermal condition,the related reaction equationscan be described as follows[22].

    Scheme 1 Possible mechanism for the formation of Ni/FCNAs

    In the primary stage of the reaction,ethylene glycol (EG)molecules react with Ni2+ions to form coordinated complexes (EG-Ni2+)(Eq.(2)),and the hydrolysis of the acetate group provides OH-ions(Eq.(3)).Ni(OH)2nuclei are formed instantaneously in solution via the reaction between Ni2+cations and OH-anions,which are released through complexationdissociation equilibrium and hydrolysis equilibrium(Eq.(4)).The ions are released slowly through the above-mentioned chemical regulation process,wherefore itisbeneficialto form nanoplatelets.Synchronously,furfural polymerizes to form colloidal carbon spheres and strongly adsorbs on the surface of the Ni(OH)2nanoplatelets.As a result,large Ni(OH)2/polymer nanoplatelets are produced.The nanoplatelets can aggregate into the flower-like morphology through self-assembly process by the driving forces,such as electrostatic and dipolar fields associated with the aggregate,hydrophobic interactions,hydrogen bonds,crystal-face attraction,and van der Waals forces[23].During the subsequent carbonization process,flowerlike morphology can be maintained and nickel ions are reduced to metal nickel,consequently this leads to the formation of Ni/FCNAs.

    2.3 Electrochemical tests

    For researching the electrochemical performance of the as-synthesized products,we have employed two electrochemical methods involving cyclic voltammetry and galvanostatic charge/discharge.The voltammograms of Ni/FCNAs and FCNAs under different sweep rates are shown in Fig.5a and b,respectively.It is well known that an ideal capacitance behavior of a carbon material electrode is expressed in the form of a rectangular shape on the voltammetry characteristics.As shown in Fig.5a,cyclic voltammogram (CV)of Ni/FCNAs presents a near rectangular shapes with slightly distorted,which is charac teristic of electrochemical capacitor.Note that the slopes of current variation near the vertex potentials are almost verticalatCV,illustrating the excellent behaviour of Ni/FCNAs as electrode materials with very small equivalent series resistance.However,in Fig.5b the slopes of current variation vs potentials are obvious to indicate that forms IR drops in the FCNAs material electrodes.

    Fig.5 CVs of Ni/FCNAs and FCNAs in 6 mol·L-1KOH at room temperature

    The specific capacitances (C)of electrodes is calculated according to the following equation from the measured CVs:where i,w and△v are the sample current,the weight of active materials and the voltage window,respectively.The data calculated from CVs of Ni/FCNAs and FCNAs is summarized in Table 1.A maximum C of 165 F·g-1is obtained for Ni/FCNAs at the sweep rate of 2 mV·s-1.Although the surface area of sample FCNAs is larger than that of the Ni/FCNAs materials,the specific capacitance is only 79 F·g-1at 2 mV·s-1,less than half of that for Ni/FCNAs.Total electroactive sites on the surface of carbon materials are strongly affected not only by the specific surface area for electrolyte accessibility but also by the electrical conductivity for electron transfer.Probably,the higher capacitance of Ni/FCNAs may be due to that the doped metallic nickel considerably may alleviate the electron-conducting resistance and facilitate the electrochemical reaction.The introduction of Ni species imparts a surface polarity to the carbon surface,thus enhancing dipole affinity towards OH-to cause capacitance increase[24].In addition,the surface polarity can improve the wettability of carbon micropores,thus increasing the surface area accessible to electrolyte or hydrated molecules for double-layer formation, thereby increasing the capacitive behavior of the Ni/FCNAs.

    The capacitances per surface area (CSA)were also calculated.It was found that the value of Ni/FCNAs is larger than usually reported for the double-layer capacitance(0.1~0.2 F·m-2)[25].

    The galvanostatic charge/discharge measurements are performed with various current densities in order to further investigate the performances of as-synthesized products.The specific capacitance (C)of the sampleswas calculated according to the following equation:which i,t,w and Δv are the constant current and discharge time and the weight of active materials and the voltage window,respectively.Fig.6a shows the potential-time curves of Ni/FCNAs as well as FCNAs at the constant current density of 0.1 A·g-1.The charge/discharge curves ofNi/FCNAs are linear and symmetrical,and the IR drop is not obvious,which shows good capacitance,highly reversible charge/discharge efficiency.In particular,discharging time of the FCNAs electrode unloaded Ni content was 1 322 s,while that of the Ni/FCNAs electrodes increased 450 s.

    Table 1 Specic gravimetric capacitances(C)and specific capacitances per surface area(CSA)of Ni/FCNAs as well as FCNAs

    Fig.6b is galvanostatic charge/discharge curves of Ni/FCNAs at current densities of 0.1,0.25,0.5 and 1 A·g-1,respectively.The specific capacitance of Ni/FCNAs is 176 F·g-1with the current density of 0.1 A·g-1.The data agrees well with from CV tests.The results show that over two times of capacitance enhancement can be achieved through carbon without Ni and carbon with an appreciable amountNi (the specific capacitance of FCNAs is 86 F·g-1in 0.1 A·g-1).With the increase of current densities from 0.1 A·g-1to 2 A·g-1,the capacitances remained 78%and 71%for Ni/FCNAs and FCNAs(Fig.7a),respectively.

    The cyclic voltammetry experiments were performed at a sweep rate of 20 mV·s-1for 1000 cycles in order to investigate the cycling stability of Ni/FCNAs(Fig.7b)The specific capacitance of Ni/FCNAs is to a 163 F·g-1for the first cycle and the 160 F·g-1after 1000 cycles.Over 98% of the originalspecific capacitance remained for Ni/FCNAs.

    Fig.6 Galvanostatic charge/discharge curves of Ni/FCNAs and FCNAs with current 0.1 A·g-1(a)and of Ni/FCNAs(b)with currents of 0.1,0.2,0.5,1 and 2 A·g-1

    Fig.7 Dependence of specific capacitances on the different current density for Ni/FCNAs and FCNAs electrodes(a)and cycle life for Ni/FCNAs measured at 20 mV·s-1(b)

    3 Conclusions

    Ni-doped flower-like carbon nanosheet aggregations was successfully prepared via a one-pot solvothermal method followed by a subsequent calcination process at 900℃in nitrogen atmosphere.The asproduced Ni/FCNAs possess a specific surface area of 493.6 m2·g-1after the precursors were calcined at 900℃.The experimental results show that the specific capacitance of the Ni/FCNAs is176 F·g-1at the current density of 0.1 A·g-1and the retained capacitance is up to 160 F·g-1at 20 mV·s-1after 1 000 cycles,which will make Ni/FCNAs the potential material for supercapacitors.

    [1]Lee J,Yoon S,Hyeon T,et al.Chem.Commun.,1999,21:2177-2178

    [2]Moriguchi I,Koga Y,Matsukura R,et al.Chem.Commun.,2002,24:1844-1854

    [3]Lee J,Yoon S,Oh S M,et al.Adv.Mater.,2000,12:359-362

    [4]MI Hong-Yu(米紅宇),ZHANG Xiao-Gang(張校剛),WANG Xin-Lei(王興磊),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(1):159-163

    [5]Liu F J.J.Power Sources,2008,182:383-388

    [6]SHEN Lai-Fa(申來法),ZHANG Xiao-Gang(張校剛),YUAN Chang-Zhou(原長洲),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(9):1601-1606

    [7]WANG Xiao-Fen(王曉峰),WANG Da-Zhi(王大志),LIANG Ji(梁吉).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2003,19(2):137-141

    [8]Zhao D D,Xu M W,Zhou W J,et al.Electrochim.Acta,2008,53:2699-2705

    [9]QIAO Song(喬松),SUN Gang-Wei(孫剛偉),ZHANG Jian-Hua(張建華),et al.Carbon Techniques(Tansu Jishu),2010,29(1):14-19

    [10]DU Xuan(杜嬛),WANG Cheng-Yang(王成揚(yáng)),CHEN Ming-Ming(陳明鳴),et al.J.Inorg.Mater.(Wuji Cailiao Xuebaoi),2010,23(6):1193-1198

    [11]Frackowiak E.Phys.Chem.Chem.Phys.,2007,9:1774-1785

    [12]Kim C,Park S H,Lee W J,et al.Electrochim.Acta,2004,50:877-881

    [13]Wang L,Li C,Zhou Q,et al.Physica B,2007,398:18-22

    [14]Li F,Zou Q Q,Xia Y Y.J.Power Sources,2008,177:546-552

    [15]Li H P,Zhao N Q,He C N,et al.J.Alloys Compd.,2008,465:387

    [16]Yuan D S,Chen J X,Zeng J H,et al.Electrochem.Commun.,2008,10:1067-1070

    [17]Yuan D S,Chen J X,Hu X C,et al.Int.J.Electrochem.Sci.,2008,3:1268-1276

    [18]Yuan D S,Chen J X,Tan S X,et al.Electrochem.Commun.,2009,11:1191-1194

    [19]ShenJM,Feng YT.J.Phys.Chem.C,2008,112:13114-13120

    [20]Li J,Liu E H,Li W,et al.J.Alloys Compd.,2009,478:371-374

    [21]Wu M S,Lin K H.J.Phys.Chem.C,2010,114:6190-6196

    [22]Wang L,Zhao Y,Lai Q Y,et al.J.Alloys Compd.,2010,495:82-87

    [23]Xu L P,Ding Y S,Chen C H,et al.Chem.Mater.,2008,20:308-316

    [24]Tai Y L,Teng H.Carbon,2004,42:2335-2342

    [25]Rojo J M,Fuertes A B,Pico F.J.Power Sources,2004,133:329-336

    Synthesis of Ni-doped Flower-Like Carbon Nanosheet Aggregations for Supercapacitors

    YI Guan-GuiXIAO Yong XIE Chun-Lin MO Shan-Shan HE Wen-QiZHAO Shuai LIU Ying-Liang*YUAN Ding-Sheng HUANG Lang-Huan TAN Shao-Zao
    (Department of Chemistry and Institute of Nanochemistry,Jinan University,Guangzhou 510632,China)

    Ni-doped flower-like carbon nanosheet aggregations (Ni/FCNAs)were synthesized via a one-pot solvothermal method followed by a subsequent calcination process at 900℃in nitrogen atmosphere.The surface morphologies and structures of composites were examined by scanning electron microscope (SEM),transmission electron microscope (TEM)and X-ray diffraction (XRD).Cyclic voltammetry and galvanostatic charge/discharge experiments were adopted to investigate their electrochemical behaviors.The results show that the doped nickel particles could enhance both specific capacitance and electrochemical stability.The Ni/FCNAs show large specific capacitance up to 176 F·g-1with the current density of 0.1 A·g-1.The possible formation mechanism of Ni/FCNAs has also been proposed on the basis of experimental results.

    Ni-doped;carbon nanosheet;solvothermal;supercapacitors

    TB333;TB383

    A

    1001-4861(2011)04-0764-07

    2010-08-24。收修改稿日期:2010-11-09。

    國家-廣東聯(lián)合基金(No.U0734005);國家自然科學(xué)青年基金(No.20906037);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(No.21610102)資助項(xiàng)目。*

    。 E-mail:tliuyl@jnu.edu.cn;會員登記號:S060017521P。

    猜你喜歡
    花狀電容器納米
    納米潛艇
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    電容器的實(shí)驗(yàn)教學(xué)
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應(yīng)用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補(bǔ)償電容器的應(yīng)用
    山東冶金(2019年5期)2019-11-16 09:09:38
    石墨烯在超級電容器中的應(yīng)用概述
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    納米SiO2的制備與表征
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    三維花狀Fe2(MoO4)3微米球的水熱制備及電化學(xué)性能
    波多野结衣av一区二区av| 免费高清在线观看日韩| 一级黄色大片毛片| 一区二区三区乱码不卡18| 久久久久精品国产欧美久久久 | 男女下面插进去视频免费观看| 在线观看免费视频网站a站| a级毛片黄视频| 中文字幕最新亚洲高清| 成人国产av品久久久| 两个人看的免费小视频| 中文精品一卡2卡3卡4更新| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区久久| 免费日韩欧美在线观看| 欧美激情久久久久久爽电影 | 脱女人内裤的视频| 女人爽到高潮嗷嗷叫在线视频| 欧美人与性动交α欧美软件| 国产精品1区2区在线观看. | 亚洲一区二区三区欧美精品| 欧美日韩视频精品一区| 99久久精品国产亚洲精品| 老司机午夜十八禁免费视频| 国产精品免费大片| 国产99久久九九免费精品| 久久热在线av| www.熟女人妻精品国产| 美女扒开内裤让男人捅视频| 黄色怎么调成土黄色| 两性午夜刺激爽爽歪歪视频在线观看 | 视频在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 久久影院123| 欧美人与性动交α欧美软件| 亚洲精品在线美女| av在线老鸭窝| 男人添女人高潮全过程视频| 欧美午夜高清在线| 亚洲伊人色综图| 在线观看一区二区三区激情| 欧美精品高潮呻吟av久久| 人妻 亚洲 视频| 久久精品人人爽人人爽视色| 国产免费现黄频在线看| 久久精品成人免费网站| 欧美日韩福利视频一区二区| 天天操日日干夜夜撸| 日韩中文字幕欧美一区二区| 超碰成人久久| 久久中文看片网| 国产又爽黄色视频| 狠狠精品人妻久久久久久综合| 国产精品久久久久久精品电影小说| 啦啦啦视频在线资源免费观看| 人人澡人人妻人| 爱豆传媒免费全集在线观看| 亚洲天堂av无毛| 日韩人妻精品一区2区三区| 亚洲精品中文字幕一二三四区 | 18禁观看日本| 亚洲专区国产一区二区| 久久精品国产综合久久久| 50天的宝宝边吃奶边哭怎么回事| 欧美中文综合在线视频| 首页视频小说图片口味搜索| 欧美人与性动交α欧美精品济南到| 最近最新中文字幕大全免费视频| 精品少妇黑人巨大在线播放| 欧美黑人精品巨大| 国产亚洲精品第一综合不卡| 久久人人97超碰香蕉20202| 日韩一区二区三区影片| 欧美日韩精品网址| 亚洲一区中文字幕在线| 国产精品熟女久久久久浪| 亚洲av成人一区二区三| 高潮久久久久久久久久久不卡| √禁漫天堂资源中文www| 欧美黄色淫秽网站| 午夜精品久久久久久毛片777| 久久久久国内视频| 亚洲中文av在线| kizo精华| 日韩视频在线欧美| 精品亚洲成国产av| 91字幕亚洲| 国产精品一二三区在线看| www.自偷自拍.com| 国产亚洲精品第一综合不卡| 人妻 亚洲 视频| kizo精华| 欧美老熟妇乱子伦牲交| 另类亚洲欧美激情| 久久久水蜜桃国产精品网| 捣出白浆h1v1| 性高湖久久久久久久久免费观看| 亚洲精品国产精品久久久不卡| 91av网站免费观看| 亚洲欧美一区二区三区黑人| 色94色欧美一区二区| 亚洲精品国产精品久久久不卡| 久热这里只有精品99| 国产精品久久久人人做人人爽| 精品国产一区二区三区四区第35| 波多野结衣av一区二区av| 99久久人妻综合| 黑人巨大精品欧美一区二区蜜桃| 中文字幕制服av| 啦啦啦啦在线视频资源| 99热全是精品| 亚洲三区欧美一区| 亚洲欧美日韩另类电影网站| 美女国产高潮福利片在线看| 国产成+人综合+亚洲专区| 王馨瑶露胸无遮挡在线观看| 免费一级毛片在线播放高清视频 | 侵犯人妻中文字幕一二三四区| 91老司机精品| 天堂8中文在线网| 国产片内射在线| 婷婷丁香在线五月| av网站在线播放免费| 一本—道久久a久久精品蜜桃钙片| 日本vs欧美在线观看视频| 精品久久久久久电影网| av网站在线播放免费| 欧美另类一区| 亚洲欧洲日产国产| 黄色怎么调成土黄色| 大片电影免费在线观看免费| 高清av免费在线| √禁漫天堂资源中文www| 久久99热这里只频精品6学生| 男女高潮啪啪啪动态图| 我的亚洲天堂| 久久久久精品国产欧美久久久 | 精品国内亚洲2022精品成人 | 欧美精品啪啪一区二区三区 | 搡老熟女国产l中国老女人| 亚洲av国产av综合av卡| 纵有疾风起免费观看全集完整版| 免费观看人在逋| 人人妻人人爽人人添夜夜欢视频| 久久av网站| 亚洲精品粉嫩美女一区| 精品人妻在线不人妻| 国产真人三级小视频在线观看| 丝袜在线中文字幕| 国产精品久久久久成人av| 热99re8久久精品国产| 中亚洲国语对白在线视频| 国产精品成人在线| 国产成人欧美在线观看 | 欧美精品亚洲一区二区| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久人人做人人爽| 黑丝袜美女国产一区| 亚洲五月婷婷丁香| 老司机午夜福利在线观看视频 | 黄频高清免费视频| 天天操日日干夜夜撸| 美女大奶头黄色视频| 日本一区二区免费在线视频| 国产一区二区三区在线臀色熟女 | 不卡av一区二区三区| 亚洲成人手机| 99九九在线精品视频| a 毛片基地| 男人爽女人下面视频在线观看| 国产av国产精品国产| 首页视频小说图片口味搜索| 一区二区三区精品91| 亚洲成人国产一区在线观看| 91av网站免费观看| 欧美日韩成人在线一区二区| 中亚洲国语对白在线视频| 桃红色精品国产亚洲av| 黄片大片在线免费观看| 国产精品久久久人人做人人爽| 午夜福利,免费看| 国产欧美亚洲国产| 欧美在线一区亚洲| 1024视频免费在线观看| 啦啦啦 在线观看视频| 亚洲人成电影观看| 一本色道久久久久久精品综合| 精品高清国产在线一区| 一级a爱视频在线免费观看| 在线观看www视频免费| 日本欧美视频一区| 成年动漫av网址| 大陆偷拍与自拍| 精品国产一区二区久久| 久久久久久久久免费视频了| 老司机深夜福利视频在线观看 | 久久狼人影院| 久久久水蜜桃国产精品网| 青草久久国产| 国产高清国产精品国产三级| 中文字幕精品免费在线观看视频| 久久精品国产a三级三级三级| 一区福利在线观看| 中文字幕人妻丝袜一区二区| 日韩视频一区二区在线观看| 免费看十八禁软件| 亚洲一码二码三码区别大吗| 成年美女黄网站色视频大全免费| 国产伦人伦偷精品视频| 交换朋友夫妻互换小说| 国产免费福利视频在线观看| 亚洲欧美一区二区三区黑人| 国产精品av久久久久免费| 最近中文字幕2019免费版| 午夜福利在线免费观看网站| 久久人妻熟女aⅴ| 久久久久久久久久久久大奶| 男女边摸边吃奶| 69精品国产乱码久久久| 99热国产这里只有精品6| av福利片在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区在线观看av| 久久久久国产一级毛片高清牌| 性少妇av在线| 多毛熟女@视频| 男女国产视频网站| 黄色怎么调成土黄色| 精品少妇内射三级| 中文字幕精品免费在线观看视频| 在线观看人妻少妇| 免费观看人在逋| 超色免费av| 亚洲av男天堂| 精品欧美一区二区三区在线| 最新在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区 | 精品人妻熟女毛片av久久网站| 考比视频在线观看| 99国产精品免费福利视频| 男女下面插进去视频免费观看| 欧美人与性动交α欧美精品济南到| 精品久久蜜臀av无| 99热网站在线观看| 一级片'在线观看视频| 正在播放国产对白刺激| 免费不卡黄色视频| av又黄又爽大尺度在线免费看| 久久影院123| 超碰成人久久| 在线 av 中文字幕| 中文字幕制服av| 精品亚洲成国产av| 91精品三级在线观看| 色94色欧美一区二区| 国产免费福利视频在线观看| 午夜老司机福利片| 亚洲精品国产色婷婷电影| 久久 成人 亚洲| 在线观看www视频免费| 在线观看免费视频网站a站| 十八禁网站网址无遮挡| 国产福利在线免费观看视频| 男女边摸边吃奶| 少妇人妻久久综合中文| 国产精品秋霞免费鲁丝片| e午夜精品久久久久久久| 午夜激情久久久久久久| 日本av手机在线免费观看| 夜夜骑夜夜射夜夜干| 制服诱惑二区| 99精品久久久久人妻精品| 夫妻午夜视频| 国产精品一区二区免费欧美 | 另类精品久久| 久久狼人影院| 99精国产麻豆久久婷婷| 又大又爽又粗| 国产av又大| 一级片'在线观看视频| 精品国产乱子伦一区二区三区 | 狠狠精品人妻久久久久久综合| 日韩 欧美 亚洲 中文字幕| 欧美激情极品国产一区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲黑人精品在线| 亚洲男人天堂网一区| 三上悠亚av全集在线观看| 老司机靠b影院| 国产精品久久久人人做人人爽| 最近中文字幕2019免费版| 日本撒尿小便嘘嘘汇集6| 久久99热这里只频精品6学生| 亚洲欧美激情在线| tube8黄色片| 亚洲人成77777在线视频| 后天国语完整版免费观看| 久久人人爽av亚洲精品天堂| 日韩 亚洲 欧美在线| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 国产高清videossex| 亚洲精品国产av成人精品| 老熟妇乱子伦视频在线观看 | 青青草视频在线视频观看| 国产亚洲一区二区精品| av欧美777| 成人黄色视频免费在线看| 久久综合国产亚洲精品| 日韩中文字幕欧美一区二区| 深夜精品福利| 18在线观看网站| 色视频在线一区二区三区| 国产日韩欧美视频二区| 午夜福利视频在线观看免费| 国产亚洲欧美在线一区二区| 这个男人来自地球电影免费观看| 两性夫妻黄色片| 精品一区在线观看国产| 精品少妇一区二区三区视频日本电影| 亚洲成人国产一区在线观看| 欧美日韩成人在线一区二区| 国产亚洲午夜精品一区二区久久| 国产免费视频播放在线视频| 又紧又爽又黄一区二区| 999久久久国产精品视频| 精品人妻熟女毛片av久久网站| 狠狠狠狠99中文字幕| 国产极品粉嫩免费观看在线| 色视频在线一区二区三区| 精品福利观看| 精品亚洲成国产av| 美女脱内裤让男人舔精品视频| 一级片免费观看大全| bbb黄色大片| 两人在一起打扑克的视频| 国产男人的电影天堂91| 97人妻天天添夜夜摸| 亚洲少妇的诱惑av| 一本一本久久a久久精品综合妖精| 亚洲欧美精品自产自拍| 日本一区二区免费在线视频| 免费一级毛片在线播放高清视频 | 黄片大片在线免费观看| 丝袜在线中文字幕| 午夜免费观看性视频| 亚洲黑人精品在线| 成人黄色视频免费在线看| 夫妻午夜视频| 99国产精品一区二区三区| 午夜免费成人在线视频| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 看免费av毛片| 在线观看www视频免费| 国产一区二区三区综合在线观看| 成年人黄色毛片网站| 制服人妻中文乱码| 丰满饥渴人妻一区二区三| 少妇被粗大的猛进出69影院| 欧美亚洲 丝袜 人妻 在线| 色视频在线一区二区三区| av线在线观看网站| 99国产综合亚洲精品| 日本猛色少妇xxxxx猛交久久| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲| 国产男女超爽视频在线观看| 极品人妻少妇av视频| 国产成+人综合+亚洲专区| 99国产极品粉嫩在线观看| 高清黄色对白视频在线免费看| 久久久久久亚洲精品国产蜜桃av| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 嫁个100分男人电影在线观看| 看免费av毛片| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 日本av手机在线免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区二区三区在线| 制服诱惑二区| svipshipincom国产片| 一区二区三区激情视频| 国产一区二区三区综合在线观看| 亚洲国产欧美在线一区| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 国产成人欧美在线观看 | 久久亚洲精品不卡| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频 | 中亚洲国语对白在线视频| av天堂久久9| 狂野欧美激情性bbbbbb| 亚洲视频免费观看视频| 精品熟女少妇八av免费久了| 王馨瑶露胸无遮挡在线观看| tube8黄色片| 亚洲精品日韩在线中文字幕| 看免费av毛片| 免费在线观看影片大全网站| 在线看a的网站| 国产亚洲欧美精品永久| 一二三四在线观看免费中文在| 亚洲国产精品999| 久久香蕉激情| xxxhd国产人妻xxx| 亚洲伊人色综图| 国产福利在线免费观看视频| 搡老乐熟女国产| av线在线观看网站| 亚洲av日韩在线播放| 久久 成人 亚洲| av线在线观看网站| 黄频高清免费视频| 国产日韩一区二区三区精品不卡| 国产精品影院久久| 超色免费av| 大片免费播放器 马上看| av视频免费观看在线观看| 桃花免费在线播放| 手机成人av网站| 捣出白浆h1v1| 欧美日韩一级在线毛片| 咕卡用的链子| 波多野结衣av一区二区av| 免费看十八禁软件| 国产成人精品久久二区二区免费| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| 欧美大码av| 成人国产一区最新在线观看| 精品国产一区二区三区久久久樱花| 高清av免费在线| 丰满饥渴人妻一区二区三| 国产成人精品在线电影| 国产高清国产精品国产三级| 成人国产一区最新在线观看| 中国美女看黄片| 欧美久久黑人一区二区| 午夜精品国产一区二区电影| av有码第一页| 国产福利在线免费观看视频| 精品一区二区三区av网在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 水蜜桃什么品种好| 在线天堂中文资源库| 爱豆传媒免费全集在线观看| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 国产亚洲av高清不卡| 国产免费现黄频在线看| 欧美日韩亚洲国产一区二区在线观看 | 欧美少妇被猛烈插入视频| 999精品在线视频| 免费观看人在逋| 午夜免费鲁丝| 免费高清在线观看日韩| 亚洲avbb在线观看| 欧美+亚洲+日韩+国产| av网站免费在线观看视频| 美女福利国产在线| 美女中出高潮动态图| 黄片大片在线免费观看| 一区二区三区乱码不卡18| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 桃花免费在线播放| 国产精品免费视频内射| 一个人免费在线观看的高清视频 | 50天的宝宝边吃奶边哭怎么回事| av在线老鸭窝| 男女之事视频高清在线观看| 国产精品一区二区免费欧美 | 在线观看免费午夜福利视频| 无限看片的www在线观看| 国产精品二区激情视频| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 日韩大码丰满熟妇| 国产亚洲精品一区二区www | svipshipincom国产片| 欧美日韩亚洲高清精品| 精品福利永久在线观看| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 啦啦啦啦在线视频资源| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 国产精品久久久人人做人人爽| 女人精品久久久久毛片| 好男人电影高清在线观看| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 国内毛片毛片毛片毛片毛片| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区四区第35| 黄色片一级片一级黄色片| 午夜两性在线视频| 亚洲一码二码三码区别大吗| 免费一级毛片在线播放高清视频 | 国产成人av激情在线播放| 午夜影院在线不卡| 最黄视频免费看| 国产在视频线精品| 成年人免费黄色播放视频| 欧美中文综合在线视频| 在线观看人妻少妇| 成年人黄色毛片网站| 老司机在亚洲福利影院| 国产精品自产拍在线观看55亚洲 | 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 1024视频免费在线观看| 99国产精品一区二区三区| 女性生殖器流出的白浆| 91老司机精品| 亚洲成人国产一区在线观看| 欧美中文综合在线视频| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 国产日韩欧美视频二区| cao死你这个sao货| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| 久久久国产一区二区| 国产日韩欧美亚洲二区| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | 老熟妇仑乱视频hdxx| a在线观看视频网站| 狂野欧美激情性bbbbbb| 最近最新中文字幕大全免费视频| 精品国产国语对白av| 国产一区二区激情短视频 | 亚洲精品久久成人aⅴ小说| 欧美黄色淫秽网站| av天堂在线播放| 亚洲伊人久久精品综合| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 黄色视频在线播放观看不卡| 久久精品国产亚洲av高清一级| 色播在线永久视频| www.av在线官网国产| 看免费av毛片| 男女床上黄色一级片免费看| 青青草视频在线视频观看| 国产精品久久久人人做人人爽| 亚洲国产中文字幕在线视频| 亚洲国产毛片av蜜桃av| 一本色道久久久久久精品综合| 欧美+亚洲+日韩+国产| 久久香蕉激情| 亚洲精品在线美女| 国产色视频综合| 精品少妇一区二区三区视频日本电影| 视频在线观看一区二区三区| 韩国高清视频一区二区三区| 这个男人来自地球电影免费观看| 动漫黄色视频在线观看| 91国产中文字幕| 国产亚洲一区二区精品| 亚洲人成电影观看| 欧美成人午夜精品| 91国产中文字幕| 亚洲三区欧美一区| 中国美女看黄片| 黑人巨大精品欧美一区二区mp4| 日韩人妻精品一区2区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 视频在线观看一区二区三区| 亚洲专区国产一区二区| 久久精品成人免费网站| 国产老妇伦熟女老妇高清| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 侵犯人妻中文字幕一二三四区| tocl精华| 亚洲专区中文字幕在线| 亚洲伊人久久精品综合| 亚洲国产毛片av蜜桃av| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 中国国产av一级| 久久av网站| 一级毛片精品| 午夜福利免费观看在线| 一本综合久久免费| 欧美精品人与动牲交sv欧美| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到| 丝袜在线中文字幕| 精品一区二区三区四区五区乱码| av天堂在线播放| 91麻豆av在线| 欧美黑人精品巨大| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 国精品久久久久久国模美| 午夜福利免费观看在线| 我要看黄色一级片免费的| 最近最新中文字幕大全免费视频|