• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DAMAGE TOLERANCE AND FATIGUE LIFE ESTIMATION FOR PIPE/ROD BAR STRUCTURE

    2011-10-08 12:09:52DuraHariBahadurWuTieyingWuZhigong

    Dura Hari Bahadur,Wu Tieying,Wu Zhigong

    (College of Energy and Power Engineering,NU AA,29 Yudao Street,Nanjing,210016,P.R.China)

    INTRODUCTION

    Pipe structures are widely used in many engineering applications. Tension pipes are commonly found in engineering applications,such as in aircraft auxiliary power units (APUs)support system,reactor,rotorcraft,machine and machine components,etc. The structures are applied to the random loading spectrum. The cracks greatly reduce the load bearing capacity of pipes.Structure fracture leads airplane in danger.The primary techniques used in fracture mechanics are the finite element method and the line-spring element technique.As far as the crack propagation phase is concerned, the most dominant parameter is the near-crack-tip elastic stress intensity factor. The solutions for the external and internal circumferential cracks are of the same order.In engineering sense they show no significant difference[1].There are relatively few solutions for pipes containing partly elliptical circumferential surface flaws. Similar studies about the circumferential crack propagation in a pipe have been done in Refs.[1-4].

    The crack propagation phase in a pipe is studied in three phases show n in Fig.1.

    (1)PhaseⅠ:The shape of the crack front is nearly elliptical and the crack front only crosses the outer surface of pipe.

    (2)PhaseⅡ: Crack growth shape is near straight lineat the beginning and more complex at later phase.Crack front crosses both the inner and the outer surfaces of pipe.

    (3)PhaseⅢ:Crack growth shape is nearly elliptical and the crack front has just broken through in the opposite inner surface.Practically it cannot sustain any loading.It is very unstable.

    To estimate the crack propagation life under fatigue loading,the following information must be known:

    Fig.1 Crack propagation phases in pipe

    (1)Material properties such as d a/d N curve;

    (2)Fatigue loading spectrum;

    (3)Relations between K I vs crack size under specific loading.The finite element model(FEM)is used to find the relations.

    1 FINITE ELEMENT MODELING

    EFM is the most dominant technique for investigating these structures due to its flexibility in complex structure modeling[1,2,4,5].The crack configuration shown in Fig.2 is described by some non-dimensional parameters,i.e.,the inner to outer diameter ratio of the pipe(D in/D out)and the external crack propagation angle(θ).

    Fig.2 Circumferential cracked pipe under tension loading

    1.1 Crack tip element

    A significant advancement in the use of FEM for linear elastic fracture mechanic (LEFM)problems was simultaneous and independent development of ″quarter-point″e(cuò)lement[6-7].The quarter-point element achieves more accurate result. The singular elements were utilized around the crack front in order to induce a square root singularity of stress/strain field in the vicinity of crack front[8]. The twenty-node iso-parametric brick elements(Solid 95[9])were regarded as crack tip(Fig.3)and the other parts of the model were used with eight-node brick element(Solid 45[9])for the higher computational efficiency.The half-elliptical crack front consists of 20—60 crack tip elements depending on the crack propagation phase.The crack front uses the focused type of mesh with typically 5—10 elements to enclose each crack front element in radial direction as shown in Fig.4.In order to avoid the large number of required analyses and save time,the code in ANSYS Parametric Design Language (ANSYS-APDL) software is developed.

    Fig.3 Twenty-node crack tip element

    Fig.4 Focused type of mesh

    1.2 Boundary condition and loading

    The symmetry conditions in the longitudinal and lateral directions are exploited to reduce the computation and FEM efforts.FEM for a pipe containing the circumferential crack is shown in Fig.5.The loading condition includes the uniform pressure of p=1 MPa on the lower extreme surface of cylinder.Nodes A,B and C of the tip element in Fig.6 are constrained in z-direction to achieve the singularity in the strain[8]. Fig.6 shows the stress distribution on the crack tip,i.e.,ez=Ce/,and the displacement curve of the distorted element,i.e.,uz=Cu,where C e and Cu are constants[8].Moreover,Fig.6 shows the crack tip elements 1—6,where uz1/4 and uzare the crack tip opening displacements of the quarter chord node and the corner node,respectively.

    Fig.5 Finite element model

    Fig.6 Stress distribution on crack tip and element singularities

    2 FATIGUE CRACK PROPAGATION

    2.1 Iterative crack front propagation

    Most commonly used fatigue crack propagation model is the iterative crack front propagation[3-4].And it is also called the two parameter theoretical model[4]. The model uses the Paris-Erdogan law(Eq.(1))to assume the crack propagation.

    where d a/d N is the crack propagation rate expressed in m/cycle,ΔK I is expressed in Pa?m1/2,C and m are constants.The parameters influencing the crack shape change are[3]:

    (1)The relative crack size a/R(crack depth to radius)and a/L(crack aspect ratio).

    (2)The exponent m in the Paris-Erdogan law.

    (3)Type of loading.

    2.2 Iso-K I crack front propagation

    In FEM calculation of K I for pipe or rod bar,the crack front form is adjusted so that the parameters K I of nodes in the front are equal.Carpinteri[4]noted that the distribution of K I along the crack front is approximately constant for this particular value of the crack aspect ratio and the iso-K I criterion can be successfully applied only when the front of the initial surface defect is nearly circular-arc-shaped.

    According to the iso-K I criterion[4],the surface flaw grows by redistributing K I along the defect front in order to obtain a constant distribution of K I,i.e.,the initial flaw tends to a particular configuration during propagation to satisfy this assumption(constant K I along the crack front).

    For a given angle(θ),the crack tip nodes and their respective stress intensity factors are numbered by i=1,2,3,… and KI1,KI2,KI3,… ,respectively.The acceptable value of K I is

    In order to obtain K I within the acceptable value, an APDL program is created with geometry variables″a″and″b″as shown in Fig.7.Two″DO″loops are used to change the geometry of crack front and calculate K I within the acceptable limit.

    Fig.7 Crack front parameters

    Unlike the iterative crack front propagation geometry,the iso-K I crack front propagation is independent of the initial crack geometry.The iso-K I assumption avoids using the exponent m of Paris-Erdogan law in the calculation of KI,and the relation between K I vs crack size is generic and may be used in any material.

    3 FINITE ELEMENT RESULTS

    3.1 Crack propagation profile

    Once the crack propagates up to a certain relative depth, the subsequent stage is independent of the initial crack aspect ratio[2].FEM results show that the crack profile in the Phase I of any thickness pipe is nearly elliptical.When D in/D out is 0.6—0.9(thin pipe),the crack profile in the early PhaseⅡ is straight line,and withθin creasing the profile is more curved.As D in/D out goes on decreasing to 0.5—0.6(thick pipe),the crack propagation profile is near straight line in the early phase and has more curved in the later phase,so it is extremely difficult to determine.

    The crack propagation profiles in a pipe and a rod are simulated by the iso-KIcriterion,and their distinct difference is shown in Fig.8.Early and later phases of the PhaseⅡ in pipe and rod have distinct crack propagation fringes under fatigue.

    Fig.8 Iso-K I crack propagation profiles

    3.2 Stress intensity factor

    Ref.[10]proposed that the distorted elements are more accurate than the undistorted ones.Thus for obtaining the accurate result crack tip opening displacement(CTOD)is calculated with respect to the distorted element(element 6 in Fig.6).With distorted element different authors have used different nodes to calculate CTOD,the stress intensity factor and hence the fracture life.

    Ref. [7]used the quarter-point node displacement (uz1/4) and quarter-point node distance(r 1/4)to calculate K I.

    Ref.[8]used the corner-node displacement(uz)and the corner-node distance(r)to calculate the stress intensity.

    Under specific loading,KIincreases with the crack growth.For the iso-K I model,only one parameter is enough to describe the crack size.Here,the external crack propagation an gleθ(Fig.2)is used.Fig.9 shows FEM results in pipe and rod bars under specific loading for any material.

    Fig.9 Relation between K I vsθfor different D in/D out

    The stress intensity factor curve is as expected.For the given pipe with fixed D out and different thickness,the thicker pipes are more resistant to the fracture. Fig.9 shows the transition from PhaseⅠ to PhaseⅡ where the increase of K I is significant,and also indicates that in the early phase of the PhaseⅡK I slowly increases,but in the later phase of PhaseⅡ K I exponentially increases.

    4 CRACK PROPAGATION LIFE

    The fatigue crack growth analysis of a component subjected to a constant amplitude loading is rather simple because loading history can be ignored.Numerous fatigue crack growth models have existed which are capable of representing the fatigue rate data.Paris model,Walker model and For man model etc are some of the famous fatigue propagation models.

    4.1 For man model

    For man model improves the Walker model by considering the instability of crack growth when the stress intensity factor approaches its critical value[11].Moreover,it is capable of describing all the region of fatigue crack (i.e., early development of fatigue crack,intermediate crack propagation zone and high growth rate of fatigue crack)and the effect of stress ratio[11].

    For man model is expressed as follows

    whereΔKI=KImax- KImin,C and m are the material properties,K IC is the critical stress intensity factor depending on the material,N the cycle of applied loading,,e min and e max are the minimum and the maximum stress applied to the tensile pipe during the certain period.Stress in a pipe can be obtained in the experiment and the real loading situations.

    4.2 Cumulative damage law

    Two main approaches for cumulative damage are considered:One is the direct postulation of lifetime damage(such as the Miner rule[12]),the other is the residual strength.Miner rule is also called the Palmgren-Miner linear damage hypothesis and expressed as follows

    where nj is the number of cycles under the loading corresponding to the lifetime Nj.

    The linear cumulative damage (LCD)accumulates damage in a linearly additive manner independent of the sequence of the loading applications.Then,the total damage is used to predict the failure.So,the Miner equation(Eq.(6))is very useful and safer to use.However,it is well known that the fatigue life is dependent on the loading sequence. That is the non-linear cumulative damage.Since the loading is a random spectrum in the structures such as APU in airplanes, the loading sequence cannot be uniquely determined.In this case,Miner rule gives a conservative fatigue life[12], and can enforce the safety in airplanes.

    4.3 Visual C++

    The visual C++ code has been developed by using the finite element analysis(FEA)results.Miner rule is used to determine the cumulative damage life of the pipe.The input parameters in the program are D in,D out,θ,C,loading data and m.Fig.10 shows the flow chart of the program.For man model is used to calculate the crack growth life.

    Fig.10 Flow chart of program

    K IC is used for the crack propagation criterion.For the given crack geometry and loading condition, if K I> K IC, the crack propagates rapidly and fails.

    The geometric criterion is used for the failure of pipe.In the Life Est software program—GUI,the critical angle for pipe is set to 110°.For the rod, the equivalent crack depth to 110°circumferential crack angle is taken as the critical crack depth.Normally,in the aircraft structures the pipes are replaced once the crack is visible.From the view point of static design,the pipe with 110°circumferential crack cannot sustain any designed static loading.Finally,GUI is created in VC++ for the more convenience.Fig.11 shows the GUI window of Life Est software.The Life Est program is useful to design the fracture tolerant for the pipe/rod bar structure under tension-tension or tension-compression spectrum.

    Fig.11 GUI window of LifeEst software

    During the operation, APU pipes suffer random loading in which the peak sequence randomly occurs.Based on this kind of loading sequence,a block spectrum can be statistically formed by eliminating small peaks without considering the sequence.For each loading block in the spectrum,there are the maximum force F max and the minimum force F min in certain service time of the spectrum(h).Each loading block has ni cycles.The material properties are known from the experiments or the material handbooks and can be input through GUI.Users can also define the crack initial size and the failure size depending on applications.The software can give the estimated lifetime.

    A distribution example of the loading spectrum is given in Table 1.

    Table 1 Loading spectrum distribution

    Fig.12 shows the relation between life vs circumferential angle(θ)for the thick pipe with D in=20 mm,D out=30 mm and length(10 times of the outer diameter) under the tensile-compression loading spectrum in Table 1.It also shows that the crack propagation life of pipe exponentially decreases.

    Fig.12 Life estimation for thick pipe

    Fig.13 shows the influence of the critical angle on the fracture life of pipe structures containing circumferential crack angle 1°.It also shows that the assumed 110°as a critical crack geometry angle is quite safe.For the given pipe with circumferential crack angle 1°under the loading spectrum in Table 1,the total life beyond the critical crack angle 30°is constant and is safe to calculate the fracture life.

    Fig.13 Total life estimation

    5 CONCLUSIONS

    (1)The iso-K I criterion is independent of the material property and is useful for the study of crack propagation in a pipe or a rod under simple loading.Using the iso-K I criterion,the profiles can present the fatigue crack fringe.

    (2)As the crack propagates from the PhaseⅠ to the PhaseⅡ,the stress intensity factor significantly increases.

    (3)The crack propagation profiles on a pipe and a rod are distinctly different in the early and later phases of the PhaseⅡ.

    (4)The developed software is useful if the loading spectrum is known.It is also easy to be modified for other types of crack and structure since it is implemented by object-oriented programming(OOP)language.

    [1] Bergman M. Stress intensity factors for circumferential surface cracks in pipes[J].Fatigue and Fracture of Engineering Materials and Structures,1995,18:1155-1172.

    [2] Potte C,Albaladejo S.Stress intensity factors and influence functions for circumferential surface cracks in pipes[J].Engineering Fracture Mechanics,1991,39:641-650.

    [3] Couroneau N,Royer J.Simplified model for the fatigue growth analysis of surface cracks in round bars under modeⅠ [J].International Journal of Fatigue,1998,20(10):711-718.

    [4] Carpinteri A,Brighenti R.Circumferential surface flaws in pipes under cyclic axial loading [J].Engineering Fracture Mechanics,1998,60(4):383-396.

    [5] Raju I S,Newman J C.Stress intensity factors for circumferential surface cracks in pipes and rods[J].Fracture Mechanics,1986,60(4):789-805.

    [6] Henshell R D,Shaw K G.Crack tip finite elements are unnecessary[J]. International Journal for Numerical Methods in Engineering,1975,9:495-507.

    [7] Barsoum R S.Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements[J].International Journal for Numerical Methods in Engineering,1977,11:85-98.

    [8] Wu T,Bathias C.Application of fracture mechanics concepts in ultrasonic fatigue[J]. Engineering Fracture Mechanics,1994,47(5):683-690.

    [9] ANSYS company.ANSYS12.0 user’s manual[M].USA:ANSYS Company,2010.

    [10]Shahani A R,Habibi SE.Stress intensity factor in a hollow cylinder containing a circumferential semi-elliptical crack subjected to combined loading[J].International Journal of Fatigue,2007,29(1):128-140.

    [11]Beden S M,Abdullah S,Ariffin A K.Review of fatigue crack propagation models for metallic components[J]. European Journal of Scientific Research,2009,28(3):364-397.

    [12]Christensen R M.An evaluation of linear cumulative damage(Miner′s law)using kinetic crack growth theory[J].Mechanics of Time-Dependent Materials,2002,6(4):363-377.

    草草在线视频免费看| www.www免费av| 又大又爽又粗| 成人手机av| 色av中文字幕| 日韩国内少妇激情av| 麻豆成人午夜福利视频| 法律面前人人平等表现在哪些方面| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频| 久久久久国产精品人妻aⅴ院| 亚洲精品国产区一区二| 一进一出好大好爽视频| 色精品久久人妻99蜜桃| 精品久久蜜臀av无| 国产成人精品久久二区二区免费| 丝袜在线中文字幕| 美女高潮喷水抽搐中文字幕| 人成视频在线观看免费观看| 99久久综合精品五月天人人| 日韩精品中文字幕看吧| www日本黄色视频网| 成在线人永久免费视频| 久久这里只有精品19| 亚洲欧美日韩高清在线视频| 少妇粗大呻吟视频| 老汉色av国产亚洲站长工具| 欧美色视频一区免费| 欧美大码av| 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| 制服丝袜大香蕉在线| 美女 人体艺术 gogo| 亚洲在线自拍视频| 精品一区二区三区视频在线观看免费| 亚洲国产精品999在线| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线| 精品国内亚洲2022精品成人| 妹子高潮喷水视频| 亚洲国产欧洲综合997久久, | 午夜久久久在线观看| 在线国产一区二区在线| 99国产极品粉嫩在线观看| 国产精品九九99| 精品熟女少妇八av免费久了| 精品卡一卡二卡四卡免费| 国产精品综合久久久久久久免费| 99精品欧美一区二区三区四区| 最近最新免费中文字幕在线| 黄色丝袜av网址大全| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆 | 99国产精品一区二区蜜桃av| 日本在线视频免费播放| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| 熟女少妇亚洲综合色aaa.| 国产成+人综合+亚洲专区| 精品人妻1区二区| 久久久久久国产a免费观看| 最近在线观看免费完整版| 久久久久久久久免费视频了| 国产爱豆传媒在线观看 | 久久午夜亚洲精品久久| 成人18禁高潮啪啪吃奶动态图| 色婷婷久久久亚洲欧美| 午夜a级毛片| 国内毛片毛片毛片毛片毛片| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| av在线播放免费不卡| 满18在线观看网站| 国产成人啪精品午夜网站| 久久久久国产精品人妻aⅴ院| 国产男靠女视频免费网站| 90打野战视频偷拍视频| 夜夜夜夜夜久久久久| 女人爽到高潮嗷嗷叫在线视频| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 欧美日本视频| av在线播放免费不卡| 欧美黑人巨大hd| 国产亚洲欧美精品永久| 亚洲av五月六月丁香网| 亚洲激情在线av| 丝袜人妻中文字幕| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| aaaaa片日本免费| netflix在线观看网站| av天堂在线播放| 极品教师在线免费播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 亚洲片人在线观看| 桃红色精品国产亚洲av| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 免费高清视频大片| 精品无人区乱码1区二区| 欧美乱码精品一区二区三区| 久久99热这里只有精品18| 午夜福利在线观看吧| 久久午夜综合久久蜜桃| 亚洲国产高清在线一区二区三 | www国产在线视频色| 天天一区二区日本电影三级| 香蕉av资源在线| 成人亚洲精品一区在线观看| 性欧美人与动物交配| 亚洲va日本ⅴa欧美va伊人久久| 在线视频色国产色| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 国产爱豆传媒在线观看 | 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 国产一卡二卡三卡精品| 午夜精品在线福利| 久久久久久久久中文| 国产野战对白在线观看| 视频在线观看一区二区三区| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 成人午夜高清在线视频 | 亚洲久久久国产精品| 国产伦一二天堂av在线观看| 女人高潮潮喷娇喘18禁视频| 嫩草影院精品99| 成人亚洲精品av一区二区| 国产黄片美女视频| 亚洲精品美女久久久久99蜜臀| 精品欧美国产一区二区三| 亚洲av片天天在线观看| 国产不卡一卡二| 欧美黑人巨大hd| 国产成人av激情在线播放| 日韩免费av在线播放| 国产精品精品国产色婷婷| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 亚洲,欧美精品.| 日本一区二区免费在线视频| 婷婷亚洲欧美| 欧美激情极品国产一区二区三区| 99久久综合精品五月天人人| 99久久久亚洲精品蜜臀av| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久久久久 | cao死你这个sao货| 亚洲 欧美一区二区三区| 97碰自拍视频| 国产成人影院久久av| 久久青草综合色| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 精品久久久久久久久久久久久 | 中亚洲国语对白在线视频| 怎么达到女性高潮| 波多野结衣av一区二区av| 国产精品久久久久久人妻精品电影| svipshipincom国产片| 999久久久精品免费观看国产| 国产av不卡久久| 国产单亲对白刺激| 老司机靠b影院| 欧美激情 高清一区二区三区| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| www.熟女人妻精品国产| 午夜福利欧美成人| 美女午夜性视频免费| 亚洲,欧美精品.| 国产亚洲精品久久久久5区| 麻豆av在线久日| 91麻豆av在线| 欧美成人免费av一区二区三区| 伦理电影免费视频| 怎么达到女性高潮| 12—13女人毛片做爰片一| 亚洲中文av在线| 少妇裸体淫交视频免费看高清 | 一区二区日韩欧美中文字幕| 国产欧美日韩精品亚洲av| 69av精品久久久久久| 女警被强在线播放| 中文字幕久久专区| 韩国精品一区二区三区| 久久精品91无色码中文字幕| 久久久久免费精品人妻一区二区 | 女警被强在线播放| 婷婷精品国产亚洲av| 女性生殖器流出的白浆| 国产人伦9x9x在线观看| 男女午夜视频在线观看| 香蕉国产在线看| av电影中文网址| 国产蜜桃级精品一区二区三区| 久久九九热精品免费| 在线观看舔阴道视频| 黄色女人牲交| 亚洲欧美激情综合另类| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 成人手机av| 又黄又粗又硬又大视频| 免费高清视频大片| 在线播放国产精品三级| 美女大奶头视频| 青草久久国产| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 国产亚洲欧美精品永久| 美国免费a级毛片| 国产免费男女视频| 国产亚洲av高清不卡| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久亚洲av鲁大| 欧美激情 高清一区二区三区| 亚洲熟妇中文字幕五十中出| 久久久久国内视频| 亚洲欧美精品综合久久99| 亚洲av片天天在线观看| 亚洲一区二区三区色噜噜| 亚洲,欧美精品.| 国产精品 国内视频| 十分钟在线观看高清视频www| 日韩欧美国产在线观看| 欧美激情久久久久久爽电影| 人人妻人人澡欧美一区二区| 国产精品九九99| 91麻豆av在线| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 在线观看www视频免费| 欧美日韩亚洲综合一区二区三区_| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 一夜夜www| 久久人妻av系列| 神马国产精品三级电影在线观看 | 国内精品久久久久久久电影| 麻豆久久精品国产亚洲av| 亚洲国产欧美一区二区综合| 亚洲国产精品合色在线| 久久久久久大精品| 91老司机精品| 国产精品免费一区二区三区在线| 日韩有码中文字幕| 亚洲五月色婷婷综合| 91av网站免费观看| 成人欧美大片| 久久精品影院6| 色尼玛亚洲综合影院| 久久久国产欧美日韩av| 欧美性长视频在线观看| 国产爱豆传媒在线观看 | 琪琪午夜伦伦电影理论片6080| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添小说| 欧美性长视频在线观看| 成人特级黄色片久久久久久久| 国产又色又爽无遮挡免费看| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 亚洲熟妇中文字幕五十中出| 精品午夜福利视频在线观看一区| 婷婷亚洲欧美| 亚洲av成人不卡在线观看播放网| 欧美成人性av电影在线观看| 国产成人av激情在线播放| 精品久久久久久,| 久9热在线精品视频| 国产亚洲精品一区二区www| 美女高潮喷水抽搐中文字幕| 后天国语完整版免费观看| 色综合欧美亚洲国产小说| 又黄又粗又硬又大视频| 嫩草影视91久久| 久久精品影院6| 国产欧美日韩一区二区精品| 人人澡人人妻人| 午夜激情av网站| 国产成年人精品一区二区| 亚洲成av人片免费观看| 波多野结衣巨乳人妻| 久久久国产欧美日韩av| 久久亚洲真实| 成人18禁在线播放| 亚洲中文字幕日韩| 99精品欧美一区二区三区四区| 欧美黑人巨大hd| 看免费av毛片| 婷婷精品国产亚洲av在线| 搡老妇女老女人老熟妇| 国产成人av激情在线播放| 一a级毛片在线观看| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| a级毛片a级免费在线| 50天的宝宝边吃奶边哭怎么回事| 黄色女人牲交| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看| 99热6这里只有精品| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 99久久久亚洲精品蜜臀av| 十八禁人妻一区二区| 欧美不卡视频在线免费观看 | 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 两性夫妻黄色片| 国产精品98久久久久久宅男小说| 久久久久久久精品吃奶| 国产乱人伦免费视频| 搡老妇女老女人老熟妇| 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 精品一区二区三区av网在线观看| 午夜福利一区二区在线看| 亚洲一区高清亚洲精品| 国产男靠女视频免费网站| 午夜激情福利司机影院| 亚洲真实伦在线观看| 国产极品粉嫩免费观看在线| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 亚洲欧美精品综合一区二区三区| 免费观看人在逋| 国产熟女xx| 视频区欧美日本亚洲| 中文字幕久久专区| www.999成人在线观看| 黄片播放在线免费| 长腿黑丝高跟| 窝窝影院91人妻| 日韩三级视频一区二区三区| 日日夜夜操网爽| 哪里可以看免费的av片| 可以在线观看毛片的网站| 国产精品一区二区三区四区久久 | 美女大奶头视频| 国产单亲对白刺激| 久久狼人影院| www.精华液| 亚洲精品久久成人aⅴ小说| 精品久久久久久成人av| 日本 av在线| 午夜福利成人在线免费观看| 黄色女人牲交| 男女那种视频在线观看| 哪里可以看免费的av片| 国产成人精品久久二区二区免费| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱码精品一区二区三区| 亚洲精品中文字幕一二三四区| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 精品卡一卡二卡四卡免费| 久久久精品欧美日韩精品| 91九色精品人成在线观看| 久久久久久久午夜电影| 中文字幕高清在线视频| 极品教师在线免费播放| 女性被躁到高潮视频| av视频在线观看入口| 色婷婷久久久亚洲欧美| 18美女黄网站色大片免费观看| 欧美日韩精品网址| 国产成人影院久久av| 亚洲电影在线观看av| 男人的好看免费观看在线视频 | 午夜福利一区二区在线看| 国产精品 欧美亚洲| 久久天堂一区二区三区四区| 日韩大尺度精品在线看网址| 国产三级黄色录像| 9191精品国产免费久久| 欧美成人性av电影在线观看| 久久国产精品影院| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 18美女黄网站色大片免费观看| 老熟妇乱子伦视频在线观看| 18禁美女被吸乳视频| 国产成人av激情在线播放| 亚洲自拍偷在线| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲三区欧美一区| 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 免费看十八禁软件| 一本综合久久免费| 亚洲中文av在线| 亚洲第一电影网av| 亚洲真实伦在线观看| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 免费电影在线观看免费观看| 老司机午夜十八禁免费视频| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 亚洲一区二区三区不卡视频| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 黄色 视频免费看| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人| 99re在线观看精品视频| 热99re8久久精品国产| 亚洲中文字幕日韩| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 久99久视频精品免费| 2021天堂中文幕一二区在线观 | 亚洲一区高清亚洲精品| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 免费电影在线观看免费观看| 精品久久久久久久人妻蜜臀av| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 老鸭窝网址在线观看| 精品国产亚洲在线| 亚洲欧美激情综合另类| 国产一区在线观看成人免费| 久久久久精品国产欧美久久久| 免费电影在线观看免费观看| 一级毛片高清免费大全| 欧美性猛交╳xxx乱大交人| 国产精品国产高清国产av| a在线观看视频网站| ponron亚洲| 欧美中文日本在线观看视频| 亚洲激情在线av| 怎么达到女性高潮| 少妇裸体淫交视频免费看高清 | 亚洲一区二区三区色噜噜| 久久这里只有精品19| www日本黄色视频网| 成人18禁高潮啪啪吃奶动态图| 天堂动漫精品| 国产成+人综合+亚洲专区| 国产精品 国内视频| 国产99白浆流出| 99久久国产精品久久久| 男女下面进入的视频免费午夜 | 国产在线观看jvid| 两个人看的免费小视频| 欧美性猛交黑人性爽| 亚洲国产精品合色在线| 制服诱惑二区| 亚洲av成人不卡在线观看播放网| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 国产在线精品亚洲第一网站| av在线天堂中文字幕| 国产精品98久久久久久宅男小说| 香蕉国产在线看| 精品人妻1区二区| √禁漫天堂资源中文www| 哪里可以看免费的av片| 亚洲最大成人中文| 真人一进一出gif抽搐免费| 欧美+亚洲+日韩+国产| 色av中文字幕| 变态另类丝袜制服| 又黄又爽又免费观看的视频| 后天国语完整版免费观看| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 久久精品国产99精品国产亚洲性色| 亚洲精品在线观看二区| 亚洲欧美激情综合另类| 男女午夜视频在线观看| 99久久国产精品久久久| 国产精品综合久久久久久久免费| 真人一进一出gif抽搐免费| 999精品在线视频| 一本久久中文字幕| 又紧又爽又黄一区二区| 久久久国产成人免费| 亚洲国产精品999在线| 两个人看的免费小视频| 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 大香蕉久久成人网| 午夜福利在线在线| 日本三级黄在线观看| 国产欧美日韩精品亚洲av| 超碰成人久久| 成人手机av| 无遮挡黄片免费观看| 黑人欧美特级aaaaaa片| 日本免费a在线| 男男h啪啪无遮挡| 女性生殖器流出的白浆| 国产伦一二天堂av在线观看| 91国产中文字幕| 无遮挡黄片免费观看| 男女那种视频在线观看| 午夜亚洲福利在线播放| 久久精品91蜜桃| 国产精品亚洲av一区麻豆| 亚洲男人天堂网一区| 国产免费男女视频| 欧美色视频一区免费| 久久国产精品男人的天堂亚洲| 最近最新中文字幕大全电影3 | 91老司机精品| 亚洲七黄色美女视频| 悠悠久久av| 免费看日本二区| 亚洲av美国av| 国产精品乱码一区二三区的特点| 在线观看免费日韩欧美大片| 精品久久久久久,| 我的亚洲天堂| 性色av乱码一区二区三区2| 一区二区三区激情视频| 狂野欧美激情性xxxx| 十八禁网站免费在线| 亚洲国产精品合色在线| 免费在线观看黄色视频的| 久热这里只有精品99| 亚洲av片天天在线观看| 桃红色精品国产亚洲av| 国产在线观看jvid| 成人欧美大片| 最近最新免费中文字幕在线| 国产av在哪里看| 中文在线观看免费www的网站 | 久久久久久亚洲精品国产蜜桃av| 欧美午夜高清在线| 国产成+人综合+亚洲专区| tocl精华| 久久精品夜夜夜夜夜久久蜜豆 | 欧美日韩瑟瑟在线播放| 精品熟女少妇八av免费久了| 两个人免费观看高清视频| 亚洲av中文字字幕乱码综合 | 欧美一区二区精品小视频在线| 成年女人毛片免费观看观看9| 久久天堂一区二区三区四区| 国产成+人综合+亚洲专区| 男人操女人黄网站| avwww免费| 精品卡一卡二卡四卡免费| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 人妻丰满熟妇av一区二区三区| 久久中文字幕人妻熟女| 999精品在线视频| 亚洲avbb在线观看| 女性生殖器流出的白浆| 午夜两性在线视频| 99久久综合精品五月天人人| 久久久久久国产a免费观看| 国产精品亚洲一级av第二区| 可以免费在线观看a视频的电影网站| 美女高潮喷水抽搐中文字幕| 成人国产综合亚洲| 免费在线观看成人毛片| 黄片小视频在线播放| 久久精品亚洲精品国产色婷小说| 国产色视频综合| 男女下面进入的视频免费午夜 | 精品乱码久久久久久99久播| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 精品国产美女av久久久久小说| 一区二区三区国产精品乱码| 国产精华一区二区三区| avwww免费| 好看av亚洲va欧美ⅴa在| 欧美成狂野欧美在线观看| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 丝袜人妻中文字幕| 精品电影一区二区在线| 久久久国产成人精品二区| 欧美国产精品va在线观看不卡| 午夜福利欧美成人| 亚洲avbb在线观看| www.999成人在线观看| 一本综合久久免费| 嫁个100分男人电影在线观看| 国产精品98久久久久久宅男小说|