張志凱
(1.內(nèi)蒙古工業(yè)大學(xué) 理學(xué)院,內(nèi)蒙古 呼和浩特 010051;2.肇慶學(xué)院 計(jì)算機(jī)學(xué)院,廣東 肇慶 526061)
具有間斷點(diǎn)的Sturm-Liouville問(wèn)題的自伴邊界條件
張志凱1,2
(1.內(nèi)蒙古工業(yè)大學(xué) 理學(xué)院,內(nèi)蒙古 呼和浩特 010051;2.肇慶學(xué)院 計(jì)算機(jī)學(xué)院,廣東 肇慶 526061)
在研究二階Sturm-Liouville問(wèn)題的邊界條件時(shí),通常會(huì)將這些邊界條件分為分離型、耦合型及特殊的退化型3種類型.在研究具有間斷點(diǎn)的Sturm-Liouville問(wèn)題的自伴邊界條件時(shí),可考慮將其分為2種情況:在間斷點(diǎn)處有轉(zhuǎn)化條件和在間斷點(diǎn)處沒有轉(zhuǎn)化條件時(shí)自伴邊界條件的分類.
Sturm-Liouville問(wèn)題;自伴邊界條件;間斷點(diǎn)
本文在導(dǎo)師王忠教授的悉心指導(dǎo)下完成,筆者在此深表謝意!
[1] KONG Q,WU H,ZETTL A.Geometric aspects of Sturm-Liouville problems I.Structures on spaces of boundary conditions[J].Proceedings of the Royal Society of Edinburgh,2000,130A:561-589.
[2] CAO Xifang,WANG Zhong,WU Hongyou.On the boundary conditions in self-adjoint multi-interval Sturm-Liouville problems[J].Linear Algebra and its Applications,2009,430(11/12):2 877-2 889.
[3] ALTINISIK N,KADAKAL M,MUKHTAROV O S.Eignvalues and eignfunctions of discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary conditions[J].Acta Mathematica Hunger,2004,102(1/2):159-175.
Self-adjoint Boundary of Sturm-Liouville Problem Conditions with a Discontinuous Point
ZHANG Zhikai1,2
(1.College of Science,Inner Mongolia University of Technology,Hohhot,Inner Mongolia 010051,China;2.School of Computer Science,Zhaoqing University,Zhaoqing,Guangdong 526061,China)
In the study of second order Sturm-Liouville problems,these boundary conditions are generally divided into separated type and the coupled type as well as the special degradation type.In the study of discontinuous point Sturm-Liouville problems with self-adjoint boundary conditions,it's classified into two kinds,namely converting conditions in discontinuous points,and no converting conditions from self-adjoint boundary in discontinuous points.
Sturm-Liouville problem;self-adjoint boundary conditions;discontinuous points
O175.3
A
1009-8445(2011)02-0001-07
(責(zé)任編輯:陳 靜)
2010-12-20
廣東省自然科學(xué)基金資助項(xiàng)目(9251064101000015)
張志凱(1985-),男,山東濰坊人,內(nèi)蒙古工業(yè)大學(xué)與肇慶學(xué)院聯(lián)合培養(yǎng)碩士研究生.