• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large eddy simulation of water flow over series of dunes

    2011-08-16 09:02:29JunLULinglingWANGHaiZHUHuichaoDAI
    Water Science and Engineering 2011年4期

    Jun LU, Ling-ling WANG* Hai ZHU Hui-chao DAI

    1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    2. Zhangjiagang Water Conservancy Bureau, Zhangjiagang 215600, P. R. China

    Large eddy simulation of water flow over series of dunes

    Jun LU1,2, Ling-ling WANG*1, Hai ZHU1, Hui-chao DAI1

    1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    2. Zhangjiagang Water Conservancy Bureau, Zhangjiagang 215600, P. R. China

    Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors. The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES) model.

    large eddy simulation (LES); dunes; turbulent boundary layer; flow separation

    1 Introduction

    In sandy rivers, dunes and ripples are the most common river bed structures. Flow separation and recirculation are enhanced because of the presence of dunes in river beds, which alter the overall flow resistance and, consequently, affect the transport of sediment and contaminants within the river. Flow separation begins at the dune crest. On the lee side of dunes, there exists a series of recirculation eddies, and on the opposite stoss side, that is, on the upstream of the crest, the flow reattaches (Fourniostis et al. 2009).

    The turbulent open channel flow over a river bottom with dunes has been experimentally and numerically studied under the assumption of a fixed bed without sediment movement. Lyn (1993) reported experimental research on the mean flow and turbulent characteristics over artificial space-periodic one-dimensional river bed structures using a laser Doppler velocimetry (LDV). Wiberg and Nelson (1992) conducted experiments under unidirectional flow over much smaller asymmetric and symmetric riverbed structures, including high-angle and low-angle ripples. Similar experiments have been carried out by many other researchers such as Nelson and Smith (1993) and Ojha and Mazumder (2008). Recently, numerical studieson the developing turbulent flow using a solution of the Reynolds-averaged Navier-Stokes equations (RANS) have been carried out by researchers (Huai et al. 2010; Peric et al. 1988). For example, Huai et al. (2010) used the realizablek-εmodel to simulate the buoyant wall jet, and Peric et al. (1988) numerically simulated theflow over a typical dune using thek-εturbulence model. The influence of sand grain roughness was taken into account with the wall function approach. Comparisons with experiments show that the computed separated and reattached flow over a dune is in good agreement with the experimental data. Similar studies were reported by Mendoza and Shen (1990), who presented an algebraic-stress model with wall functions in place of thek-εmodel. They were able to obtain quite realistic predictions of detailed pressure, velocity, and turbulence profiles. Johns et al. (1993) employed the one-equation turbulence model, with the turbulence model length scale prescribed from an empirical correlation. The comparisons show that the near-wall velocity and turbulence data, particularly the wall shear stress, are not in good agreement with experimental data. Yoon et al. (1995) simulated the flow over a fixed dune using thek-ωturbulence model of Wilcox (1993). Comparisons of model prediction results with measured velocity and turbulence fields, as well as the pressure and friction distributions along the dune, show good agreement. Lu and Wang (2009) compared three differentk-εmodels, the standardk-εmodel, the renormalization group (RNG) model, and the V2F model, for simulating the separated flow passing sills. The results show that, of the three models, the performance of the V2F model is the most encouraging. The commercial computational fluid dynamics (CFD) code FLUENT was employed by Fourniostis et al. (2009) to simulate sub-critical, turbulent, and open-channel flows over a bottom with five dunes using the free surface treatment method based on the rigid-lid approximation. They reported that the numerical prediction results of the mean velocity and turbulence are in good agreement with available experimental data.

    Although the RANS model can provide satisfying prediction results of flow features over dune s, it cannot calculate the power spectrum of hydrodynamic turbulence, which is very important for turbulence research and a rather interesting parameter for some specific engineering applications and refined turbulence structures. In recent years, large eddy simulation (LES) has been used to study hydrodynamic turbulence. For example, the separated flow passing sills have been studied by Lu and Wang (2008). The computed results show that LES is very powerful and encouraging. Therefore, it is possible to use the LES technique to obtain a detailed numerical simulation of open channel flow over a series of dunes.

    2 Governing equations and numerical methods

    2.1 Governing equations inσcoordinates and turbul ence model

    The LES approach inσcoordinates was used by Lin and Li (2002). The equatio ns for the large-scale motion can be obtained by integrating a spatial filter with the Navier-Stokes equations (indicated by an over-bar). With a top-hat filter based on the Boussinesq assumptionand the principle of chain differentiation, the governing equations for the incompressible fluid in general coordinates can be written as

    wheretis time,ξkandξlare the coordinate directions in the transformed space,is the Cartesian coordinate,J-1is the Jacobin factor of the transformation,uiis the Cartesian component of the velocity field,fiis the gravitational force,ρis thewater density,pis the static pressure,νis the kinematic viscosity, andis the subgrid stress.

    In natural open chan nel flow, the free surface elevation varies with time and the bottom is unev en. These cause certain difficulties when conventional Cartesian coordinates are used in the discretization of the domain in the vertical direction. To solve the uneven physical domain, the verticalσ-coordinate transformation is used as follows:

    whereηis the surface elevation,zis the vertical direction in Cartesian coordinates, andhis thestatic water depth. The sub grid stresscan be decomposed into the sum of a tra ce-free factorand a diagonal tensor:

    whereis absorbed in the pressure term andδijis the Kronecker sign. In this study, we modeled t he eddy viscosityνtwith the coherent eddy model (Lu and Wang 2009):

    The coefficientCsis computed by a dynamic procedure. The initial dynamic constant,Cl,is calculated as follows (Germano et al. 1991; Lilly 1992):

    where the test filter width, and the coefficientcan be optimized. The coefficientk′is taken to be, andαis taken to be 0.5.can exhibit long-time negative values which will generate numerical instability. To solve this problem, we first calculated the value ofwith the coherent eddy model proposed by Lu et al. (2010), and then filtered it in space with a box filter as follows:

    whereG(x-ξ) is a smooth function andCl(x,t) is the dynamic constant calculated by Eq. (8). Although the smooth function can be in many forms, a box filter function was used for convenience in this study. Therefore, Eq. (11) can be written as

    In fact, we can repeat the averaging procedure above to make the model coefficient smoother. In addition, the conditionνt+ν≥0 was imposed. This condition ensured that the total resolved dissipation remained positive or at zero.

    2.2 Numerical methods and boundary conditions

    The splitting operator approach was used to numerically solve the governing equations. The momentum equations were split into three steps in each time interval: advection, diffusion, and pressure propagation. The advection step was solved using a combination of the quadratic backward characteristic method and the Lax-Wendroff method. The central difference method was used to solve the diffusion step. The pressure propagation step was used to solve pressure and gravitational forces. In order to satisfy the divergence-free condition as imposed by the continuity equation, the projection method was employed to calculate the pressure and velocity fields to obtain the updated velocity field. The conjugate gradient stabilized (CGSTAB) method was used to solve the above equations.

    The governing equations may be solved only when adequate boundary conditions are provided. Several types of boundary conditions are usually imposed in open channel flow problems. The no-slip boundary condition is imposed on the bottom wall and a zero gradient boundary condition is imposed on the two side walls. At the inflow boundary, the inflow rate with a predetermined velocity distribution with added Gaussian distribution random signals is specified and the gradient of the water surface elevation is assumed to be zero. At the outflow boundary, a convective boundary condition is imposed. A Lagrange-Euler method is used to locate the free surface elevation. Details of these boundary conditions can be found in Lin and Li (2002), Li and Ma (2003), and Lu and Wang (2009).

    3 Study case

    Fig. 1 is a typical domain of open channel flow over a series of twelve identical dunes. The numbers and shape of the dunes shown here correspond to those used in the experiments of Ojha and Mazumder (2008). The experimental channel has a length of 10 m, a width of 0.5 m, and a depth of 0.5 m. The dunes have a mean length ofL= 32 cm and a mean height ofHd=3cm at the crest The angles of the stoss side and lee side slopes of the dunes were 6° and 50°, respectively (Fig. 1). Velocity profiles were measured by an acoustic Doppler velocimeter (ADV). The mean flow depthhis 30 cm, the mean horizontal velocityUis 0.5 m/s, and the dischargeQis 0.04 m3/s. The corresponding Reynolds number is=1.5× 105and the Froude number is.

    Fig. 1 Sketch of computed domain and dune profiles of Ojha and Mazumder (2008)

    The simulation domain was carefully chosen in order to properly set up the inflow and outflow boundaries. To ensure that the inlet flow fully developed, the length of the main channel upstream of the first dune was extended to 0.5 m. The length of the main channel downstream of the last dune was also extended to 0.5 m to avoid the influence caused by the downstream outflow. A non-uniform grid of 451 × 11 × 45 nodes in thex,y, andzdirections, respectively, was used to discretize the computational domain (5 m long, 0.1 m wide, and 0.3 m deep). The expansion ratio of the grid did not exceed 1.01. The time step was 0.000 2 s. The grid and time step were small enough to obtain grid-convergent results. The total computing time was 40 s.

    4 Results and discussion

    Fig. 2 shows the computed horizontal mean velocity profiles at the trough and crest points, respectively, of each dune. Corresponding profiles of the vertical mean velocity are shown in Fig. 3. In the figures, odd and even numbers inside circles represent the positions of velocity profiles at the trough and crest points, respectively (Fig. 1). From Fig. 2 and Fig. 3, it can be seen that the computed velocity results agree well with the experimental data. The most evident feature is that the horizontal mean velocity near the trough points is negative except at the trough of the first dune, which means that reversal flow exists at the trough points. Thecomputed results clearly show that the turbulent boundary layer is developing from the first dune to the seventh dune and it reaches a quasi-steady state after the seventh dune.

    Fig. 2 Horizontal velocityUover dunes (dashed lines are whereU= 0)

    Fig. 3 Vertical velocityWover dunes (dashed lines are whereW= 0)

    To keep the figure readable, the velocity field of two adjacent dunes is shown as in Fig. 4. As can be seen, the spatial development of the turbulent open channel flow over the dunes has the characteristic that the flow separates at the dune crest and reattaches on the stoss side of the next dune. A similar phenomenon was shown by Fourniostis et al. (2009) in their computed results of five dunes. In Fig. 5, a closer view of the velocity vector between the ninth and tenth dunes in the fully developed region is shown to provide a better view of the flow field over a complete trough region. The figure contains both the experimental and corresponding computational velocity vector fields. Agreement is seen to be good within the recirculation zone. According to the flow pattern, three distinct layers are observed: (1) the internal layer at, where the mean horizontal velocity always stays negative; (2) the advecting and diffusing layer at, where the mean streamwise velocity becomes positive but is still much smaller than that in turbulent channel flow without dunes at the same position; and (3) the outer flow layer at, where the mean streamwise velocity is almost the same as in turbulent channel flow with a flat bottom (Ojha and Mazumder 2008).

    Fig. 4 Computed velocity field

    Fig. 5 Velocity field between ninth and tenth dunes

    Fig. 6 shows the spatial development of the Reynolds stressalong the flow over dunes. From Fig. 6, it can be seen that the flow characteristics vary up to the seventh dune, beyond which the entrance effect disappears. That is to say, the turbulence fully develops, because the increment of Reynolds stress intensity (the thickness in Fig. 6) grows much smaller after the seventh dune. Again, this is in qualitative agreement with the experimental observations.

    The reattachment point is determined as the location closest to the bottom at which the mean velocity changes sign. The predicted values at each reattachment point are shown in Fig. 7. From Fig. 7, it can be seen that the first two computed reattachment lengths are much larger than the remaining values. Flow reaches the fully developed state after the seventh dune, which is in agreement with the result mentioned above. The predicted reattachment length is=6.0 at the quasi-steady state (as shown in Fig. 5), which is a little larger than the experimental value of 5.8 (Fourniostis et al. 2009), whereXris the reattachment length. Kasagi and Matsunaga (1995) conducted an experiment of the flow over a backward-facing step with a Reynolds number of 5 540, giving a value of 6.5. With the increasing of the Reynolds number in the range of 1200

    Fig. 6 Distribution of Reynolds shear stress

    Fig. 7 Reattachment length at each dune

    The free surface plays a significant role in the open channel over dunes. The normalized free surface level () over dunes is shown in Fig. 8. From the figure, it can be seen that the average water level rises before the first dune because the existence of the dunes increases the roughness of the channel bottom. In the middle of the channel, free surface elevation fluctuates in accordance with the distribution of dunes on the bottom. The average water level is low due to the reduction of the cross-section area. Near the outflow region where dunes disappear, the free surface tends to increase just like the outlet of a sluice.

    Fig. 8 Free surface elevation over dunes

    In order to analyze the head loss caused by dunes, the energy equation of the cross-section between the inflow and outflow boundaries can be expressed as

    whereZinis the inflow water elevation;Zoutis the outflow water elevation;αinandαoutare coefficients, whereαin=1 andαout=1;PinandPoutare the dynamic water pressures at the inlet and outlet positions, respectively;UinandUoutare the mean stream-wise velocities at the inlet and outlet positions, respectively;gis the gravitational acceleration; andhwis the water head loss.

    From Eq. (13), we find that the head loss between the inflow and outflow sections is about 0.014 m.

    5 Conclusions

    Large eddy simulation of open channel flow over a series of dunes in the sigma coordinates were carried out. The subgrid stress was modeled with the dynamic coherent eddymodel proposed by the authors. The computed velocity profiles are in good agreement with the available experimental data. It was found that turbulence does not reach a fully developed state until at the seventh dune. The computed results show that the length of the separation zone at the fully developed region is about 6Hd, which is a little larger than those in the experiment. The spatially mean free surface level decreases in the flow direction. The head loss caused by dunes is about 0.014 m. With the employment of the sigma coordinates and splitting operator method, the dynamic coherent eddy model proposed by the authors has great advantages in simulating turbulent flows in complex geographic environments, which is of great importance and engineering value to river dynamics simulation.

    Bardina, J., Ferziger, J. H., and Reynolds, W. C. 1980. Improved subgrid-scale model for large-eddy simulation.Proceedings of the 13th Fluid and Plasma Dynamics Conference.Snowmass: American Institute of Aeronautics and Astronautics.

    Dejoan, A., and Leschziner, M. A. 2004. Large eddy simulation of periodically perturbed separated flow over a backward-facing step.Fluid and Heat Flow, 25(4), 581-592. [doi:10.1016/j.ijheatfluidflow.2004. 03.004]

    Fourniostis, N. T., Toleris, N. E., and Demetracopoulos, A. C. 2009. Numerical computation of turbulence development in flow over sand dunes.Advances in Water Resources and Hydraulic Engineering, Proceedings of 16th IAHR-APD and 3rd IAHR-ISHS, 943-848. Beijing: Tsinghua University Press. [doi:10.1007/978-3-540-89465-0_148]

    Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model.Physics of Fluids, 3(7), 1760-1765. [doi:10.1063/1.857955]

    Huai, W. X., Sheng, Y. P., and Komatsu, T. 2003. Hybrid finite analytic solutions of shallow water circulation.Applied Mathematics and Mechanics (English Edition), 24(9), 1081-1088. [doi:1000-0887(2003)09-0956-07]

    Huai, W. X., Li, Z. W., Qian, Z. D., Zeng, Y. H., Han, J., and Peng, W. Q. 2010. Numerical simulation of horizontal buoyant wall jet.Journal of Hydrodynamics, 22(1), 58-65. [doi:10.1016/S1001-6058(09) 60028-7]

    Johns, B., Soulsby, R. L., and Xing, J. 1993. A comparison of numerical model experiments of free surface flow over topography with flume and field observations.Journal of Hydraulic Research, 31(2), 215-228. [doi:10.1080/00221689309498846]

    Kasagi, N., and Matsunaga, A. 1995. Three-dimensional particle tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow.Fluid and Heat Flow, 16(6), 477-485. [doi:10.1016/0142-727X(95)00041-N]

    Li, C. W., and Ma, F. X. 2003. Large eddy simulation of diffusion of a buoyancy source in ambient water.Applied Mathematical Modeling, 27(8), 649-663. [doi:10.1016/S0307-904X(03)00073-8]

    Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method.Physics of Fluids, 4(3), 633-635. [doi:10.1063/1.858280]

    Lin, P. Z., and Li, C. W. 2002. Aσ-coordinate three-dimensional numerical model for surface wave propagation.International Journal for Numerical Methods in Fluids, 38(11), 1045-1068. [doi:10. 1002/fld.258]

    Lu, J., and Wang, L. L. 2008. Numerical study of large eddy structures-separated flows passing sills.Advances in Water Resources and Hydraulic Engineering, Proceedings of 16th IAHR-APD and 3rd IAHR-ISHS, 1795-1799. Beijing: Tsinghua University Press. [doi:10.1007/978-3-540-89465-0_309]

    Lu, J., and Wang, L. L. 2009. Comparison of several turbulent models for calculating separated flows passing on sill.Advances in Water Science, 20(2), 255-260. (in Chinese)

    Lu, J., Tang, H. W., and Wang, L. L. 2010. A novel dynamic eddy model and its application to LES of turbulent jet with free surface.Science in China, Ser. G, 53(9), 1671-1680. [doi:10.1007/s11433-010-4077-z]

    Lyn, D. A. 1993. Turbulence measurement in open channel flows over artificial bedforms.Journal of Hydraulic Engineering, 119(3), 306-326. [doi:10.1061/(ASCE)0733-9429(1993)119:3(306)]

    Mendoza, C., and Shen, H. W. 1990. Investigation of turbulent flow over dunes. Journal of Hydraulic Engineering, 116(4), 459-477. [doi:10.1061/(ASCE)0733-9429(1990)116:4(459)]

    Nelson, J. M., and Smith, J. D. 1993. Mean flow and turbulence over two-dimensional bed forms.Water Resources Research, 29(12), 3925-3953. [doi:10.1029/93WR01932]

    Ojha, S. P., and Mazumder, B. S. 2008. Turbulence characteristics of flow region over a series of 2-D dune shaped structures.Advance in Water Resources, 31(3), 561-576. [doi:10.1016/j.advwatres.2007.12.001]

    Peric, M., Ruger, M., and Scheuerer, G. 1988.Calculation of the Two-dimensional Turbulent Flow over a Sand Dune Model. Erlangen: University of Erlangen.

    Wiberg, P. L., and Nelson, J. M. 1992. Unidirectional flow over asymmetric and symmetric ripples.Geophysical Research, 97(8), 12745-12761. [doi:10.1029/92JC01228]

    Wilcox, D. C. 1993.Turbulence Modeling for CFD. La Canada: DCW Industries.

    Yoon, J. Y., Patel, V. C., and Ettema, R. 1995. Numerical model of flow in ice-covered channels.Journal of Hydraulic Engineering, 122(1), 19-26. [doi:10.1061/(ASCE)0733-9429(1996)122:1(19)]

    This work was supported by the National Natural Science Foundation of China (Grant No. 51179058), the National Science Fund for Distinguished Young Scholars (Grants No. 51125034 and 50925932), the Special Fund for Public Welfare of the Water Resources Ministry of China (Grant No. 201201017), and the 111 Project (Grant No. B12032).

    *Corresponding author (e-mail:wanglingling@hhu.edu.cn)

    Received Jan. 7, 2011; accepted Aug. 20, 2011

    久久精品熟女亚洲av麻豆精品| 国产在线免费精品| 电影成人av| 菩萨蛮人人尽说江南好唐韦庄| 两个人看的免费小视频| 亚洲三区欧美一区| 成年动漫av网址| 少妇裸体淫交视频免费看高清 | 日本色播在线视频| 亚洲情色 制服丝袜| 欧美精品亚洲一区二区| 蜜桃在线观看..| 欧美精品人与动牲交sv欧美| 成人国语在线视频| 亚洲欧美清纯卡通| 十八禁高潮呻吟视频| www.av在线官网国产| 国产精品成人在线| 黑人欧美特级aaaaaa片| 国产日韩欧美视频二区| 91麻豆精品激情在线观看国产 | 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| 色婷婷av一区二区三区视频| 精品高清国产在线一区| 精品人妻一区二区三区麻豆| 肉色欧美久久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 王馨瑶露胸无遮挡在线观看| 丝袜喷水一区| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 老司机亚洲免费影院| 久久久国产欧美日韩av| 性色av乱码一区二区三区2| 免费在线观看黄色视频的| 一级毛片电影观看| 日韩中文字幕欧美一区二区 | 久久久久久久精品精品| 亚洲 国产 在线| 精品人妻熟女毛片av久久网站| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 国产av国产精品国产| 老汉色∧v一级毛片| 亚洲久久久国产精品| 男的添女的下面高潮视频| 大片电影免费在线观看免费| 777久久人妻少妇嫩草av网站| 欧美97在线视频| 亚洲国产精品一区二区三区在线| √禁漫天堂资源中文www| 777久久人妻少妇嫩草av网站| 国产精品香港三级国产av潘金莲 | 免费看av在线观看网站| 五月开心婷婷网| 精品福利永久在线观看| 男女边吃奶边做爰视频| 亚洲国产欧美在线一区| 女警被强在线播放| 18禁黄网站禁片午夜丰满| 观看av在线不卡| 又大又黄又爽视频免费| 国产成人一区二区三区免费视频网站 | 亚洲成色77777| 亚洲av日韩在线播放| 一级,二级,三级黄色视频| 两性夫妻黄色片| 美女主播在线视频| 成人国语在线视频| 亚洲国产精品一区三区| 99国产精品一区二区三区| 在线观看人妻少妇| 男女下面插进去视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边抽搐一进一出视频| 久久久精品免费免费高清| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 赤兔流量卡办理| 亚洲五月婷婷丁香| 一区二区三区四区激情视频| 丝瓜视频免费看黄片| 90打野战视频偷拍视频| 2018国产大陆天天弄谢| 一边摸一边抽搐一进一出视频| 激情视频va一区二区三区| 只有这里有精品99| 麻豆国产av国片精品| 日韩大片免费观看网站| 91精品国产国语对白视频| 蜜桃国产av成人99| 精品国产一区二区三区四区第35| 久久久精品免费免费高清| 国产免费福利视频在线观看| 亚洲免费av在线视频| 少妇 在线观看| 久久久久久人人人人人| 午夜影院在线不卡| 在线看a的网站| 亚洲人成电影免费在线| 黄色怎么调成土黄色| 一级黄色大片毛片| 国产在线观看jvid| 亚洲,欧美,日韩| 男女下面插进去视频免费观看| 在线观看免费日韩欧美大片| 人人妻人人澡人人看| www.熟女人妻精品国产| 美女福利国产在线| 咕卡用的链子| 久久人人爽人人片av| 国产av一区二区精品久久| 精品国产一区二区三区久久久樱花| 日本午夜av视频| √禁漫天堂资源中文www| 美国免费a级毛片| 黑人巨大精品欧美一区二区蜜桃| 18禁国产床啪视频网站| 亚洲九九香蕉| 亚洲欧美成人综合另类久久久| 在线观看国产h片| a级毛片黄视频| av在线老鸭窝| 精品视频人人做人人爽| 国产一区二区三区综合在线观看| 久久精品国产亚洲av高清一级| 欧美精品一区二区免费开放| 国产欧美日韩综合在线一区二区| 精品欧美一区二区三区在线| 久久久久久久久免费视频了| 高清欧美精品videossex| 麻豆乱淫一区二区| 老熟女久久久| 考比视频在线观看| 成年人免费黄色播放视频| 天堂中文最新版在线下载| 男人操女人黄网站| 成人亚洲精品一区在线观看| 国产熟女午夜一区二区三区| 大片免费播放器 马上看| 无遮挡黄片免费观看| 精品福利永久在线观看| 啦啦啦在线免费观看视频4| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区| 丝袜美足系列| 一区福利在线观看| 久久精品久久久久久噜噜老黄| 一本大道久久a久久精品| 国产主播在线观看一区二区 | 亚洲成人手机| 两个人免费观看高清视频| 中文欧美无线码| 少妇猛男粗大的猛烈进出视频| 波多野结衣av一区二区av| 久久免费观看电影| av国产久精品久网站免费入址| 日韩电影二区| 亚洲欧美成人综合另类久久久| 老司机影院成人| 亚洲精品一二三| 欧美日韩一级在线毛片| 中文字幕精品免费在线观看视频| 欧美黑人欧美精品刺激| 一区二区三区精品91| 久久这里只有精品19| 波多野结衣av一区二区av| 亚洲九九香蕉| 一级毛片 在线播放| 日本91视频免费播放| 午夜福利,免费看| 国产精品国产三级专区第一集| 天堂8中文在线网| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 中文字幕最新亚洲高清| 激情视频va一区二区三区| 国产一区二区激情短视频 | 一级片免费观看大全| 国产欧美日韩综合在线一区二区| 日韩av免费高清视频| 一边亲一边摸免费视频| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 深夜精品福利| 99精品久久久久人妻精品| 国产男女内射视频| 我要看黄色一级片免费的| 蜜桃国产av成人99| 80岁老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 别揉我奶头~嗯~啊~动态视频 | 中文字幕高清在线视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美色中文字幕在线| 久久久国产精品麻豆| 久久九九热精品免费| 亚洲欧洲精品一区二区精品久久久| 99国产精品99久久久久| 无遮挡黄片免费观看| 国产精品偷伦视频观看了| 一区二区三区乱码不卡18| 国产欧美日韩一区二区三 | 日韩中文字幕视频在线看片| 自线自在国产av| 久久免费观看电影| 2021少妇久久久久久久久久久| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 久久人人97超碰香蕉20202| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 免费少妇av软件| 婷婷色综合大香蕉| 精品免费久久久久久久清纯 | 午夜影院在线不卡| 亚洲熟女精品中文字幕| 亚洲专区国产一区二区| 亚洲国产精品一区二区三区在线| netflix在线观看网站| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 大型av网站在线播放| 久久影院123| 日本五十路高清| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| h视频一区二区三区| 操出白浆在线播放| 丰满饥渴人妻一区二区三| 香蕉丝袜av| 黑人欧美特级aaaaaa片| 赤兔流量卡办理| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 天堂中文最新版在线下载| 亚洲情色 制服丝袜| 亚洲第一av免费看| 免费不卡黄色视频| 激情视频va一区二区三区| 久久中文字幕一级| 午夜日韩欧美国产| 久久久久精品人妻al黑| 免费av中文字幕在线| 中文字幕亚洲精品专区| 香蕉国产在线看| 久久久久网色| 狠狠婷婷综合久久久久久88av| 天堂8中文在线网| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 久久国产精品影院| 免费女性裸体啪啪无遮挡网站| 一区二区三区四区激情视频| 国产精品二区激情视频| 夫妻午夜视频| 久久久久久免费高清国产稀缺| 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 亚洲情色 制服丝袜| 美女国产高潮福利片在线看| 日韩 欧美 亚洲 中文字幕| 国产福利在线免费观看视频| 日韩大片免费观看网站| 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| 亚洲av欧美aⅴ国产| www.熟女人妻精品国产| 亚洲欧美一区二区三区国产| 赤兔流量卡办理| 免费人妻精品一区二区三区视频| 国产视频首页在线观看| 妹子高潮喷水视频| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 中文字幕高清在线视频| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 国产午夜精品一二区理论片| 夫妻午夜视频| 一区二区日韩欧美中文字幕| 国产精品人妻久久久影院| 成年av动漫网址| 亚洲人成电影观看| 一级黄片播放器| 男女免费视频国产| av不卡在线播放| 久久女婷五月综合色啪小说| 亚洲精品av麻豆狂野| 亚洲第一青青草原| 免费av中文字幕在线| 天天影视国产精品| 操美女的视频在线观看| 18禁观看日本| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看 | 少妇人妻 视频| 亚洲专区国产一区二区| 中国美女看黄片| 免费在线观看日本一区| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看 | 日韩 欧美 亚洲 中文字幕| 男的添女的下面高潮视频| 黄色a级毛片大全视频| 97在线人人人人妻| 人成视频在线观看免费观看| 亚洲精品国产色婷婷电影| 999精品在线视频| 国产高清不卡午夜福利| 91麻豆av在线| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 久久九九热精品免费| 91精品伊人久久大香线蕉| 日本91视频免费播放| 国产黄色免费在线视频| 亚洲专区国产一区二区| 日韩av在线免费看完整版不卡| 五月天丁香电影| 国产av精品麻豆| 中文字幕高清在线视频| 国产高清不卡午夜福利| 王馨瑶露胸无遮挡在线观看| 99国产综合亚洲精品| 亚洲av片天天在线观看| 最近中文字幕2019免费版| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区综合在线观看| 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 久久精品国产综合久久久| 国产精品九九99| xxxhd国产人妻xxx| 国产精品九九99| 亚洲,一卡二卡三卡| 国产欧美日韩精品亚洲av| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀 | 久久精品人人爽人人爽视色| 好男人视频免费观看在线| videosex国产| 亚洲av片天天在线观看| 亚洲九九香蕉| 超碰成人久久| 亚洲av欧美aⅴ国产| 手机成人av网站| 久久精品国产亚洲av高清一级| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 亚洲精品自拍成人| 亚洲三区欧美一区| 一区在线观看完整版| 欧美亚洲日本最大视频资源| 欧美日韩一级在线毛片| 三上悠亚av全集在线观看| 日本午夜av视频| 成人三级做爰电影| 国产一区有黄有色的免费视频| 精品国产一区二区久久| 国产野战对白在线观看| 国产成人欧美在线观看 | 国产男女内射视频| 赤兔流量卡办理| 伦理电影免费视频| 男女床上黄色一级片免费看| av在线播放精品| 国产在线免费精品| 午夜91福利影院| 国产精品av久久久久免费| 精品国产国语对白av| 乱人伦中国视频| 国产极品粉嫩免费观看在线| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 精品人妻1区二区| 最新在线观看一区二区三区 | 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 亚洲欧美成人综合另类久久久| 日韩制服丝袜自拍偷拍| 99热网站在线观看| 精品一区二区三卡| 国产片内射在线| 黄片小视频在线播放| 久久综合国产亚洲精品| 黄色一级大片看看| 女人爽到高潮嗷嗷叫在线视频| 大陆偷拍与自拍| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 老司机影院成人| 美女大奶头黄色视频| 一级a爱视频在线免费观看| 久久天躁狠狠躁夜夜2o2o | 视频区图区小说| 日韩制服丝袜自拍偷拍| 最新在线观看一区二区三区 | h视频一区二区三区| 国产激情久久老熟女| 午夜福利乱码中文字幕| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 成年人午夜在线观看视频| 老鸭窝网址在线观看| 国产视频一区二区在线看| 青草久久国产| 国产欧美日韩一区二区三区在线| 一级毛片 在线播放| 国产xxxxx性猛交| 国产精品免费大片| 国产91精品成人一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 国产高清国产精品国产三级| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av高清一级| 国产精品99久久99久久久不卡| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 欧美日韩一级在线毛片| 丝袜喷水一区| 亚洲精品国产色婷婷电影| 亚洲久久久国产精品| 少妇猛男粗大的猛烈进出视频| 国产精品av久久久久免费| 国产老妇伦熟女老妇高清| 电影成人av| 欧美性长视频在线观看| 国产成人精品在线电影| 91麻豆av在线| 多毛熟女@视频| 涩涩av久久男人的天堂| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 又粗又硬又长又爽又黄的视频| 亚洲少妇的诱惑av| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 久久天躁狠狠躁夜夜2o2o | 国产欧美日韩精品亚洲av| 在线观看国产h片| 欧美黑人精品巨大| 十分钟在线观看高清视频www| 成人国产一区最新在线观看 | 999久久久国产精品视频| 十分钟在线观看高清视频www| 久久免费观看电影| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 亚洲国产看品久久| 丰满迷人的少妇在线观看| 日韩熟女老妇一区二区性免费视频| 中文字幕精品免费在线观看视频| 视频在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性xxxx| 久久天堂一区二区三区四区| 美女福利国产在线| 欧美在线一区亚洲| 男女国产视频网站| 成年人免费黄色播放视频| 一本久久精品| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 一边亲一边摸免费视频| 日本黄色日本黄色录像| 日本欧美国产在线视频| 在线观看免费日韩欧美大片| 欧美日韩亚洲高清精品| av又黄又爽大尺度在线免费看| 国产主播在线观看一区二区 | 一级毛片黄色毛片免费观看视频| 欧美精品亚洲一区二区| av福利片在线| 男人添女人高潮全过程视频| 高潮久久久久久久久久久不卡| 午夜福利在线免费观看网站| 亚洲欧美中文字幕日韩二区| 男人操女人黄网站| 午夜影院在线不卡| 我的亚洲天堂| 免费观看av网站的网址| 一区二区三区激情视频| 免费不卡黄色视频| 1024香蕉在线观看| 好男人视频免费观看在线| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 中文字幕色久视频| 亚洲久久久国产精品| 国产在视频线精品| 超色免费av| 十八禁高潮呻吟视频| www.熟女人妻精品国产| 国产成人精品在线电影| 久热爱精品视频在线9| 久久精品久久久久久噜噜老黄| 久久国产精品男人的天堂亚洲| 国产成人av激情在线播放| 香蕉丝袜av| 亚洲成人免费电影在线观看 | 国产精品久久久人人做人人爽| 国产1区2区3区精品| 久久精品国产亚洲av高清一级| 国产无遮挡羞羞视频在线观看| 欧美黄色淫秽网站| 免费在线观看完整版高清| 女人爽到高潮嗷嗷叫在线视频| 婷婷色麻豆天堂久久| 人人妻,人人澡人人爽秒播 | 国产又爽黄色视频| 久久人人爽av亚洲精品天堂| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 亚洲免费av在线视频| 黄片小视频在线播放| 一本久久精品| 青草久久国产| 天天影视国产精品| 亚洲 欧美一区二区三区| 满18在线观看网站| 中文字幕制服av| 国产精品免费大片| 视频区欧美日本亚洲| 国产精品免费视频内射| 性少妇av在线| 蜜桃在线观看..| 欧美日韩国产mv在线观看视频| 视频在线观看一区二区三区| 精品人妻1区二区| 成人18禁高潮啪啪吃奶动态图| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区黑人| 国产高清视频在线播放一区 | 美女国产高潮福利片在线看| 在线观看免费午夜福利视频| 久热这里只有精品99| 午夜日韩欧美国产| 日韩大码丰满熟妇| av在线老鸭窝| 脱女人内裤的视频| 一级片免费观看大全| 久久精品国产a三级三级三级| 国产片内射在线| 亚洲九九香蕉| 老司机靠b影院| 亚洲国产中文字幕在线视频| 久久精品人人爽人人爽视色| 午夜两性在线视频| 久久久久国产一级毛片高清牌| 久久鲁丝午夜福利片| 中文乱码字字幕精品一区二区三区| 女警被强在线播放| 国产不卡av网站在线观看| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| 亚洲第一av免费看| 久久 成人 亚洲| a级毛片在线看网站| 老熟女久久久| 久久久久久久久免费视频了| 大型av网站在线播放| www.自偷自拍.com| 久久热在线av| 大型av网站在线播放| 亚洲av成人不卡在线观看播放网 | 日韩中文字幕欧美一区二区 | 在线精品无人区一区二区三| 手机成人av网站| 性少妇av在线| 久久精品国产亚洲av涩爱| 黄色视频在线播放观看不卡| 日韩一卡2卡3卡4卡2021年| 一本一本久久a久久精品综合妖精| 中文乱码字字幕精品一区二区三区| 少妇人妻 视频| 免费在线观看完整版高清| 中文乱码字字幕精品一区二区三区| 亚洲av成人精品一二三区| 蜜桃在线观看..| 欧美国产精品va在线观看不卡| 女警被强在线播放| 国产伦理片在线播放av一区| 久久久久网色| 国产成人91sexporn| 亚洲av美国av| 手机成人av网站| e午夜精品久久久久久久| 亚洲精品美女久久av网站| 一级黄色大片毛片| xxx大片免费视频| 亚洲av电影在线进入| 丰满饥渴人妻一区二区三|