王慶香 李迪 張舞杰 葉峰
(華南理工大學(xué)機(jī)械與汽車(chē)工程學(xué)院,廣東廣州510640)
紋理是一種很重要的圖像屬性,它綜合反映了圖像的灰度統(tǒng)計(jì)信息、空間分布信息與結(jié)構(gòu)信息.紋理分析在計(jì)算機(jī)視覺(jué)和圖像處理中占有非常重要的位置,目前廣泛應(yīng)用在工業(yè)檢測(cè)、醫(yī)學(xué)圖像分析及遙感圖像處理等領(lǐng)域.近年來(lái),在有關(guān)紋理圖像的研究中出現(xiàn)了很多種紋理分析方法,常見(jiàn)的有統(tǒng)計(jì)分析的方法(如共生矩陣法[1]、局部二值模式法[2]、各階統(tǒng)計(jì)矩法[3])、建模的方法(如馬爾科夫隨機(jī)場(chǎng)法[4]、基于分形的建模法[5])、信號(hào)處理的方法(如Gabor濾波器法[6]、復(fù)小波法[7]、小波包法[8-10]).在信號(hào)處理方法中,小波多通道濾波器理論是近年來(lái)受關(guān)注較多的一種[7-12],常規(guī)的小波變換需要降采樣信號(hào),在基于像素特征的紋理分割中,利用降采樣的小波變換難以實(shí)現(xiàn)不同尺度間像素特征的組合.小波包框架變換的濾波器輸出信號(hào)不被降采樣,是適合紋理分割的一種較好的選擇.
紋理分割通常包括兩個(gè)步驟:第1步是抽取一組適當(dāng)?shù)奶卣骷?,所抽取的這組特征集應(yīng)具有較強(qiáng)相異紋理像素的區(qū)分能力;第2步是利用某種聚類(lèi)方法對(duì)所抽取的像素特征集進(jìn)行聚類(lèi)分析,以實(shí)現(xiàn)每個(gè)像素的正確分類(lèi).在基于小波包框架分解的紋理分割方法中,第1步需利用小波包框架分解系數(shù)來(lái)提取特征.常見(jiàn)的紋理特征提取方法有多種,文獻(xiàn)[12]利用了1種子帶系數(shù)特征提取方法,文獻(xiàn)[10]利用了3種子帶系數(shù)特征提取方法,文獻(xiàn)[8]利用了5種子帶系數(shù)特征提取方法.這些特征提取方法僅反映了局部紋理的灰度值統(tǒng)計(jì)信息,而丟失了紋理的方向以及鄰域像素的依賴(lài)關(guān)系等信息,因此表達(dá)的信息不夠充分,以至于有些紋理像素的誤分割率較高.文中提出了基于梯度方向直方圖均值和標(biāo)準(zhǔn)差的子帶系數(shù)特征提取方法,在分割紋理時(shí)將此方法與像素鄰域平均絕對(duì)偏差法結(jié)合起來(lái)用于提取兩類(lèi)典型特征,以形成一個(gè)區(qū)別能力較強(qiáng)的特征集.實(shí)驗(yàn)證明,這兩類(lèi)特征的組合對(duì)多數(shù)紋理的區(qū)分能力較單獨(dú)的任何一類(lèi)特征均強(qiáng),說(shuō)明這兩類(lèi)特征具有互補(bǔ)性.在第2步的像素聚類(lèi)方法中,常見(jiàn)的有K均值聚類(lèi)和模糊c均值聚類(lèi).這些聚類(lèi)算法在聚類(lèi)過(guò)程中僅根據(jù)像素的多維特征值進(jìn)行聚類(lèi),而沒(méi)有考慮像素的空間位置因素,因此往往造成紋理交界處的誤分類(lèi)像素較多.為解決此問(wèn)題,文中設(shè)計(jì)了一種改進(jìn)的空間模糊c均值聚類(lèi)算法,此算法在聚類(lèi)時(shí)考慮了像素特征值的局部標(biāo)準(zhǔn)差空間分布,應(yīng)用這種改進(jìn)的空間模糊c均值聚類(lèi)方法可減少紋理交界處像素的誤分類(lèi)率.為驗(yàn)證所提出的算法,文中進(jìn)行了幾種實(shí)驗(yàn)測(cè)試,即Fisher線性判別分析實(shí)驗(yàn)、紋理分割實(shí)驗(yàn)與算法速度對(duì)比測(cè)試.
小波變換是一種多分辨率信號(hào)分析方法,在時(shí)域和頻域都具有表征信號(hào)局部特征的能力.利用小波變換可將圖像分解為不同尺度和方向的分量,便于對(duì)不同信息做不同的處理,因此小波變換在紋理分析方面十分有用[7-12].傳統(tǒng)的小波變換采用的是一種塔型的信號(hào)分解方式,即信號(hào)不斷地在低頻通道上進(jìn)行分解.一般圖像的能量主要集中在低頻段,采用這種分解方式比較合理;但有些紋理圖像的能量主要集中在中頻段,隨著分解層數(shù)的增加,小波逐漸向低頻方向聚焦,因此可能遺漏中頻段的信息.小波包分解則能在所有頻率范圍內(nèi)聚焦,因此用小波包分解提取紋理圖像能量特征更為合適.
式中:p是尺度參數(shù);l是平移參數(shù);m為卷積計(jì)算的中間變量;W0=φ(x),φ(x)為尺度函數(shù);W1=ψ(x),ψ(x)是小波函數(shù);h和g是正交鏡像濾波器組.
不同尺度小波包的逆向反變換關(guān)系式為
類(lèi)似于傅里葉變換,任何函數(shù)f(x)∈L2(R)(L2(R)為平方可積空間)都能被分解到小波包基上.這種分解是函數(shù)同小波包的簡(jiǎn)單內(nèi)積形式.原函數(shù)f(x)應(yīng)用小波包Wr在尺度2p上的重構(gòu)形式為
式中,
對(duì)于離散信號(hào),小波包可以按照下面的形式進(jìn)行高效的分解:
利用方程(1)和(2),上一尺度的系數(shù)可用式(7)和(8)進(jìn)行計(jì)算:
對(duì)于二維的紋理圖像信號(hào),可以使用二維小波包進(jìn)行分解,二維小波包基函數(shù)能通過(guò)兩個(gè)沿水平或垂直方向的一維小波包基的內(nèi)積獲得.二維小波包的分解結(jié)果可看作完全樹(shù)結(jié)構(gòu),在此樹(shù)結(jié)構(gòu)中每一個(gè)父節(jié)點(diǎn)都有4個(gè)子節(jié)點(diǎn)分別對(duì)應(yīng)1個(gè)低頻信息和3個(gè)細(xì)節(jié)信息(水平、垂直、對(duì)角線方向),每一個(gè)節(jié)點(diǎn)的分解過(guò)程可表示為
式中,[·]↑2q表示以因子2q進(jìn)行上采樣.式(10)表示在每次迭代過(guò)程中都對(duì)濾波器hq(k)和gq(k)擴(kuò)張一次.
在每一步的分解過(guò)程中,利用上采樣所得濾波器與上一級(jí)分解信號(hào)作卷積可得當(dāng)前的分解信號(hào),其中每一級(jí)的分解復(fù)雜度都是相同的.
利用小波包框架分解所得信號(hào)具有如下的特點(diǎn):(1)分解所得的子信號(hào)與原始信號(hào)的長(zhǎng)度相同;(2)由于分解過(guò)程中沒(méi)有對(duì)信號(hào)進(jìn)行下采樣,分解得到的子信號(hào)具有平移不變性;(3)子信號(hào)中包含了對(duì)原始信號(hào)的中頻信息的描述.這些特性對(duì)于順利實(shí)現(xiàn)基于像素特征的紋理分割都非常重要.
利用小波包框架與利用金字塔結(jié)構(gòu)的分解相比,能得到更全面的子帶特征,但是隨著分解級(jí)數(shù)的增長(zhǎng),所得到的子帶數(shù)目也會(huì)以指數(shù)級(jí)增加.為減少后續(xù)步驟的計(jì)算量,采用恰當(dāng)?shù)姆椒ㄟx擇較優(yōu)的子帶是有必要的.若使用最優(yōu)基的搜索技術(shù)在小波包框架分解結(jié)果中選擇合適的子帶,計(jì)算量會(huì)很大.為找出合適的子帶且使計(jì)算過(guò)程不至于太復(fù)雜,文中采用了一種與文獻(xiàn)[12]中M帶小波包框架自適應(yīng)分解算法近似的算法,這種算法的主要依據(jù)是子帶紋理能量的最大化標(biāo)準(zhǔn).對(duì)于尺寸為L(zhǎng)1×L2的圖像,某一子帶系數(shù)T(i,j)的平均能量定義為
實(shí)際上,能量的平均幅值是隨著分解深度增加而呈指數(shù)級(jí)增長(zhǎng)的.為了在不同尺度間形成統(tǒng)一的衡量標(biāo)準(zhǔn),文中將各子帶的平均能量值乘以因子進(jìn)行了歸一化處理.
在如圖1所示的分解過(guò)程中,為達(dá)到識(shí)別重要子帶的目的,通道是否進(jìn)一步分解要根據(jù)它能否產(chǎn)生更多的信息決定.原始圖像先進(jìn)行一級(jí)分解成為4個(gè)子帶(沒(méi)有降采樣).對(duì)于各子帶,若其能量與上一級(jí)子帶能量的比值大于α,則需進(jìn)一步分解;或者若其能量與當(dāng)前尺度所有子帶能量的比值大于β,也需進(jìn)一步分解.這種計(jì)算的最大分解級(jí)數(shù)限制為3級(jí),分解過(guò)程中僅保留能量符合要求的子帶,結(jié)果將形成一套樹(shù)形結(jié)構(gòu)的小波包基.這種高效的分解方式能將分解結(jié)果聚焦到一個(gè)合適的頻率,且對(duì)絕大多數(shù)紋理圖像的處理性能較好.
圖1 紋理圖像的非全樹(shù)結(jié)構(gòu)分解示意圖Fig.1 Schematic drawing of incomplete decomposition tree structure for texture image
在上述過(guò)程中,α、β值的選取是非常關(guān)鍵的,過(guò)小則分解過(guò)程中會(huì)保留較多的子帶,這對(duì)紋理分割來(lái)說(shuō)會(huì)產(chǎn)生較多冗余信息且后續(xù)步驟的計(jì)算量也會(huì)很大;過(guò)大則在后續(xù)計(jì)算結(jié)果中所得到的信息量可能不足,從而導(dǎo)致像素誤分割率較高.文中對(duì)這兩個(gè)值的選取進(jìn)行了多次實(shí)驗(yàn),最終所采用的方法為:先分別計(jì)算出第1層的水平和垂直分解系數(shù)(即第2和第3個(gè)分解系數(shù)H、V)能量占據(jù)當(dāng)前尺度總能量(即當(dāng)前尺度所有子帶系數(shù)能量之和)的比值β11和β12,然后β取β11與β12二者中的最小值,α則取固定的經(jīng)驗(yàn)值0.45.此取值方法對(duì)于實(shí)驗(yàn)中所選紋理圖像的處理產(chǎn)生了較好的效果.
特征提取方法對(duì)實(shí)現(xiàn)可靠的紋理分類(lèi)或分割來(lái)說(shuō)至關(guān)重要.一種好的特征描述方法應(yīng)該具有同類(lèi)像素特征值一致而異類(lèi)像素差異較大的特性.原始小波分解系數(shù)僅代表一種非完整的紋理信息描述,即把紋理信息分成不同的頻率成分而不具備局部的統(tǒng)計(jì)信息.因此,為了把原始紋理圖像區(qū)分成不同區(qū)域,需要對(duì)各分解系數(shù)進(jìn)行一種非線性變換,以使不同類(lèi)型的紋理具有不同的平均亮度和二階統(tǒng)計(jì).
目前針對(duì)小波包框架分解的特征提取方法有多種.如前所述,文獻(xiàn)[8]應(yīng)用了5種方法來(lái)提取分解系數(shù)的能量特征,并在紋理分類(lèi)過(guò)程中做了對(duì)比實(shí)驗(yàn),結(jié)果顯示利用平均絕對(duì)偏差得到的分類(lèi)準(zhǔn)確率最高;文獻(xiàn)[12]在紋理分割實(shí)驗(yàn)中僅用了平均絕對(duì)偏差特征.文中采用新設(shè)計(jì)的特征提取方法并與平均絕對(duì)偏差特征方法進(jìn)行比較.平均絕對(duì)偏差特征提取方法的描述為:對(duì)于子帶系數(shù)T(i,j),設(shè)以像素(x,y)為中心的局部鄰域范圍為M1≤i≤M2,N1≤j≤N2,局部鄰域像素?cái)?shù)為R,局部鄰域像素均值為(x,y),則像素(x,y)平均絕對(duì)偏差特征Faad(x,y)的表達(dá)式為
為實(shí)現(xiàn)更準(zhǔn)確的紋理分割,文中基于小波包框架分解與梯度方向直方圖運(yùn)算設(shè)計(jì)了一種新的紋理測(cè)度方法.梯度方向直方圖描述子是一種在計(jì)算機(jī)視覺(jué)和圖像處理中用來(lái)進(jìn)行物體檢測(cè)的特征描述子,此描述子利用了圖像本身的梯度方向特征,其特征的計(jì)算是在一個(gè)網(wǎng)格密集且大小統(tǒng)一的細(xì)胞單元上進(jìn)行的.梯度方向直方圖描述子的核心思想是:一幅圖像中的物體表象和形狀可以用梯度或邊緣方向的密度分布進(jìn)行描述.實(shí)現(xiàn)方法是先將圖像分成稱(chēng)為細(xì)胞單元的連通區(qū)域,然后采集細(xì)胞單元中各像素點(diǎn)的梯度方向或邊緣方向直方圖,最后把這些直方圖組合起來(lái)構(gòu)成特征描述子.文中利用梯度方向直方圖的主要目的是進(jìn)行小波包框架分解系數(shù)紋理特征的提取,選用此方法的依據(jù)是紋理的特性可通過(guò)梯度或邊緣的方向密度分布來(lái)進(jìn)行描述.由于應(yīng)用的目的與通常的物體檢測(cè)不同,因此計(jì)算的過(guò)程也不完全一樣.文中計(jì)算過(guò)程省去了歸一化的處理步驟,采用了離散梯度水平模板[1 0 0 -1]和垂直模板[1 0 0 -1]T計(jì)算梯度值,把360°分成12個(gè)方向來(lái)統(tǒng)計(jì)梯度幅度值.梯度方向直方圖計(jì)算完成后,若直接應(yīng)用它作為紋理特征進(jìn)行聚類(lèi),則聚類(lèi)分析中計(jì)算的特征維數(shù)將會(huì)很大.為減少計(jì)算量,文中選用了梯度方向直方圖的均值和標(biāo)準(zhǔn)差作為紋理的特征,實(shí)驗(yàn)證明這兩種特征能夠得到較理想的紋理分割效果.這兩種紋理特征的表達(dá)式分別為:
式中,Hi(i=1,2,…,12)表示子帶系數(shù)梯度方向直方圖,運(yùn)用這兩個(gè)特征后小波包框架子帶系數(shù)梯度方向直方圖的12維特征轉(zhuǎn)換為2維的特征.
在平均絕對(duì)偏差與梯度方向直方圖均值與標(biāo)準(zhǔn)差計(jì)算完畢之后,用于像素聚類(lèi)分析的特征是這兩類(lèi)特征的組合,對(duì)于每一個(gè)分解子帶Bi來(lái)說(shuō),計(jì)算得到的3維特征為FBi={Faad,F(xiàn)hog1,F(xiàn)hog2},設(shè)紋理圖像X分解為e個(gè)子帶系數(shù),則其最終用于聚類(lèi)的特征FB={FB1,F(xiàn)B2,…,F(xiàn)Be},其維數(shù)為 3e.
在圖像分割中,基于聚類(lèi)分析的分割方法是具代表性的方法之一.模糊c均值聚類(lèi)算法是一種常用典型的聚類(lèi)算法.經(jīng)典的模糊c均值聚類(lèi)算法依據(jù)最小二乘原理,采用迭代方法優(yōu)化目標(biāo)函數(shù),最終獲得數(shù)據(jù)集的模糊劃分結(jié)果.該方法直接用于圖像分割的缺陷在于它僅僅考慮了圖像的灰度信息,而忽略了圖像中的空間信息.對(duì)于前面處理步驟得到的特征集,若直接用模糊c均值聚類(lèi)算法進(jìn)行聚類(lèi)分析,則可以產(chǎn)生一定的紋理區(qū)域分割效果,但是有時(shí)在相鄰兩種紋理邊界處會(huì)出現(xiàn)較大的誤分割區(qū)域.這種誤分割區(qū)域會(huì)隨著前面特征提取中局部處理窗口的增大而增大.文獻(xiàn)[13]介紹了一種將像素空間信息引入模糊聚類(lèi)的方法,這種方法對(duì)含有點(diǎn)狀噪聲的圖像分割具有較好的效果,但對(duì)于文中的分割并不能減少紋理交界處的誤分割率.為了實(shí)現(xiàn)較好的紋理分割效果,文中基于文獻(xiàn)[13]的方法設(shè)計(jì)了一種改進(jìn)的空間模糊c均值聚類(lèi)算法.文中所設(shè)計(jì)的聚類(lèi)算法是基于像素特征的局部空間標(biāo)準(zhǔn)差分布而計(jì)算的,其具體過(guò)程描述如下.
每一步計(jì)算需更新的像素的模糊隸屬度為
每一步計(jì)算需更新的聚類(lèi)中心為
為測(cè)試文中所提出的方法對(duì)不同紋理的區(qū)分能力,設(shè)計(jì)了3種實(shí)驗(yàn)進(jìn)行測(cè)試.第1種是Fisher線性判別分析實(shí)驗(yàn),用以評(píng)價(jià)文中設(shè)計(jì)的紋理測(cè)度方法對(duì)不同紋理的區(qū)別能力;第2種是紋理分割對(duì)比實(shí)驗(yàn),用以驗(yàn)證所設(shè)計(jì)的方案在提高紋理分割準(zhǔn)確率方面的優(yōu)勢(shì);第3種是運(yùn)行速度對(duì)比實(shí)驗(yàn),用以證明文中方法在紋理分割方面的效率和可用性.
在第1部分實(shí)驗(yàn)中,之所以采用Fisher線性判別分析,是因?yàn)樗欠治鎏卣骺臻g類(lèi)間區(qū)分度的通用方法.Fisher線性判別分析通過(guò)優(yōu)化目標(biāo)函數(shù)來(lái)實(shí)現(xiàn),其中,SA和SB分別是類(lèi)內(nèi)與類(lèi)間的散度矩陣,W為投影向量.在此部分的實(shí)驗(yàn)中,選取了6幅Brodatz紋理庫(kù)的圖像(D52、D95、D55、D65、D28、D82,如圖 2 所示)進(jìn)行驗(yàn)證,圖像灰度為256級(jí),大小為256×256.實(shí)驗(yàn)中應(yīng)用 Daubechies小波中的db2進(jìn)行小波包框架的分解.所采用處理窗口尺寸為20×20.表1示出了利用3種特征提取方法分別對(duì)6幅Brodatz紋理圖像進(jìn)行處理后所得到的45個(gè)對(duì)應(yīng)的Fisher線性判別分析值(準(zhǔn)則函數(shù)G(W)的值),從表1中可以明顯看出,文中所設(shè)計(jì)的互補(bǔ)特征對(duì)不同紋理的區(qū)別能力明顯高于單獨(dú)的平均絕對(duì)方差特征與梯度方向直方圖特征.
圖2 Fisher線性判別分析實(shí)驗(yàn)所使用的Brodatz紋理圖像Fig.2 A set of texture images from Brodatz album used in Fisher linear discriminant experiments
第2部分實(shí)驗(yàn)為紋理分割實(shí)驗(yàn),實(shí)驗(yàn)選用了Brodatz紋理庫(kù)圖像(D15、D16、D17、D22、D24、D27、D33、D34、D35、D53、D55、D77、D92、D103、D105),通過(guò)合成方式生成了多幅實(shí)驗(yàn)圖像,圖像灰度、大小、所采用的小波及處理窗口尺寸與第1部分實(shí)驗(yàn)相同,圖3是紋理圖像分割對(duì)比實(shí)驗(yàn)結(jié)果中的部分圖像,從圖3中的分割結(jié)果可以看出,利用互補(bǔ)特征所得到的分割結(jié)果,在總的分割精度及分割邊緣光滑度上都不同程度地優(yōu)于單獨(dú)使用另外兩種特征的同類(lèi)分割結(jié)果.從表2中的像素分割準(zhǔn)確率對(duì)比結(jié)果也可以看出,利用互補(bǔ)特征的效果明顯優(yōu)于單獨(dú)使用兩種特征,而采用改進(jìn)的空間模糊c均值聚類(lèi)方法與采用傳統(tǒng)的模糊c均值聚類(lèi)方法相比,也提高了分割準(zhǔn)確率.
表1 6幅Brodatz紋理圖像的Fisher線性判別分析結(jié)果1)Table 1 Results of Fisher linear discriminant analysis for six images from Brodatz album
為進(jìn)一步驗(yàn)證所提方法的有效性,文中還對(duì)所提方法與文獻(xiàn)[10]中方法(提取了小波框架子帶系數(shù)的3類(lèi)特征并采用了模糊c均值聚類(lèi))的運(yùn)行速度進(jìn)行對(duì)比,實(shí)驗(yàn)環(huán)境為配有Intel(R)Core(TM)2 Quad CPU Q9500(2.83GHz)的PC機(jī)和Matlab編程軟件.由于此類(lèi)算法中影響速度的主要因素為特征提取方法的類(lèi)別以及提取的特征數(shù)量,因此針對(duì)平均絕對(duì)偏差方法、梯度方向直方圖方法、文中提出的互補(bǔ)特征方法與文獻(xiàn)[10]中方法進(jìn)行了測(cè)試.將平均絕對(duì)偏差方法、梯度方向直方圖方法、文中提出的互補(bǔ)特征方法與文獻(xiàn)[10]中方法(這些方法都包括了從小波包框架分解到聚類(lèi)分析的紋理分割的完整步驟)對(duì)10幅256×256大小的紋理圖像進(jìn)行分割,結(jié)果顯示,這4種方法分割單幅紋理圖像所消耗的平均時(shí)間依次為7.981、26.536、30.391、38.130s.由此實(shí)驗(yàn)結(jié)果可看出,文中提出的互補(bǔ)特征方法的運(yùn)行時(shí)間比單一特征方法的長(zhǎng),比文獻(xiàn)[10]方法的短,這說(shuō)明文中方法比文獻(xiàn)[10]方法在速度上有一定的優(yōu)勢(shì).雖然文中所采用的互補(bǔ)特征比單一特征的分割速度慢,但它卻帶來(lái)了整體分割準(zhǔn)確率的提高,因此,總體來(lái)說(shuō)文中提出的方法是一種較有前途的離線紋理分割方法.
圖3 紋理分割實(shí)驗(yàn)圖像及相應(yīng)結(jié)果Fig.3 Images and results of texture segmentation experiments
表2 不同特征提取與聚類(lèi)方法得到的紋理分割準(zhǔn)確率1)Table 2 Texture segmentation accuracy obtained by different feature extraction and clustering methods %
文中為基于小波包框架分解的紋理圖像分割提出了新的特征提取方法以及改進(jìn)的聚類(lèi)方法.所設(shè)計(jì)的紋理特征提取方法復(fù)雜度不高且具有較好的紋理區(qū)分效果,所設(shè)計(jì)的改進(jìn)空間模糊c均值聚類(lèi)算法是基于像素特征的局部標(biāo)準(zhǔn)差空間分布而進(jìn)行的聚類(lèi),在一定程度上減少了紋理交界處的誤分割率.采用了多幅Brodtaz紋理圖像進(jìn)行了Fisher線性判別分析實(shí)驗(yàn)、紋理分割實(shí)驗(yàn)及運(yùn)行速度測(cè)試,結(jié)果證實(shí)了文中所設(shè)計(jì)方法的有效性.因所設(shè)計(jì)特征具有較好的紋理區(qū)分能力,所以文中方法將會(huì)在紋理分類(lèi)中有重要的用途.
[1]Clausi D A.An analysis of co-occurrence texture statistics as a function of grey level quantization [J].Canadian Journal of Remote Sensing,2002,28(1):1-18.
[2]Guo Z,Zhang L,Zhang D.A completed modeling of local binary pattern operator for texture classification[J].IEEE Transactions on Image Processing,2010,19(6):1657-1663.
[3]Tuceryan M.Moment-based texture segmentation [J].Pattern Recognition Letters,1994,15(7):659-668.
[4]Noda H,Shirazi M,Kawaguchi E.MRF-based texture segmentation using wavelet decomposed images[J].Pattern Recognition,2002,35(4):771-782.
[5]李旭濤,金連文,高學(xué).水下圖像的多尺度分?jǐn)?shù)列維穩(wěn)定運(yùn)動(dòng)模型[J].華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2008,36(9):81-85.Li Xu-tao,Jin Lian-wen,Gao Xue.Multi-scale fractional Lévy stable-motion model of underwater image[J].Journal of South China University of Technology:Natural Science Edition,2008,36(9):81-85.
[6]Ma L,Staunton R C.Optimum Gabor filter design and local binary patterns for texture segmentation[J].Pattern Recognition Letters,2008,29(5):664-672.
[7]Vo A,Oraintara S.A study of relative phase in complex
wavelet domain:property,statistics and applications in texture image retrieval and segmentation [J].Signal Processing:Image Communication,2009,25(1):28-46.
[8]Kim S C,Kang T J.Texture classification and segmentation using wavelet packet frame and Gaussian mixture model[J].Pattern Recognition,2007,40(4):1207-1221.
[9]Sengur A,Turkoglu I,Ince M C.Wavelet packet neural networks for texture classification [J].Expert Systems with Applications,2007,32(2):527-533.
[10]Jiang X Y,Zhao R C.Texture segmentation based on incomplete wavelet packet frame[C]∥Proceedings of the Second International Conference on Machine Learning and Cybernetics.Xi’an:IEEE,2003:3172-3177.
[11]Laine A,F(xiàn)an J.Texture classification by wavelet packet signatures[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1186-1191.
[12]Acharyya M,De R K,Kundu M K.Extraction of features using M-band wavelet packet frame and their neuro-fuzzy evaluation for multitexture segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1639-1644.
[13]Chen S C,Zhang D Q.Robust image segmentation using FCM with spatial constraints based on new kernelinduced distance measure[J].IEEE Transactions on Systems,Man,and Cybernetics,2004,34(4):1907-1916.