• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effective Method of Threshold Selection for Small Object Image

    2011-07-25 06:21:54WUYiquan吳一全WUJiaming吳加明ZHANBichao占必超
    Defence Technology 2011年4期

    WU Yi-quan(吳一全),WU Jia-ming(吳加明),ZHAN Bi-chao(占必超)

    (1.School of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China;2.Science and Technology on Electro-optic Control Laboratory,Institute of Electro-optic Equipment of AVIC,Luoyang 471009,Henan,China;3.State Key Laboratory of Novel Software Technology,Nanjing University,Nanjing 210093,Jiangsu,China)

    Introduction

    Threshold segmentation is an image segmentation technology which is universally used,effective in processing and simple to implement.It can select an appropriate threshold rapidly for accurate segmentation.The scholars at home and abroad have done extensive research on this issue[1-2],and have put forward the various threshold selection methods based on maximum between-class variance(Otsu)[3],maximum entropy[4]and Fisher criterion[5].At first,the threshold was selected by the 1-D gray scale histogram of image.A satisfactory segmented result is difficult to obtain when the image is interfered with noise,though its processing speed is rapid.Thus the maximum entropy method,Otsu method and Fisher criterion method are extended to gray scale-average gray scale 2-D histogram by Abutaleb[6],Brink[7],LIU Jian-zhuang[8],GONG Jian[9],et al.The result is improved significantly,but at the same time the amount of computation increased exponentially.Consequently some fast algorithms of threshold selection based on 2-D histogram are proposed[10-12],and the running speed is improved to different extent. However, the above-mentioned 2-D methods all divided the 2-D histogram into 4 rectangular areas(called as vertical segmentation).As a result,a certain approximation is introduced into the calculation,which may cause the segmented results inaccurate.Therefore,WU Yi-quan et al put forward a threshold segmentation method based on oblique segmentation of 2-D histogram[13-15],which further reduces errors,greatly shortening the running time,and making the anti-noise performance more robust.

    Image threshold segmentation is one of key steps in infrared target detection.In the imaging plane of infrared target detection,the proportion of object to background is usually very small,for example,less than 1%.Thus the threshold segmentation problem of small target image where the proportion of object to background is very small needs to be solved.The existing threshold selection methods almost fail under the circumstance and can not obtain the perfect results.When there is a larger difference between the sizes of object and background,a smaller intra-class variance or larger between-class variance is obtained if some part of background is divided into object.Therefore Otsu method and Fisher criterion method can not accurately segment the small target images,neither can maximum entropy method.

    In view of the above-mentioned reasons,a kind of threshold selection method for small target image segmentation is proposed,which is based on the area difference between background and the object and intra-class variance.When the exact segmentation of image is considered,the gray inside object and background is uniform,the intra-class variance is very small,the large area difference between object and background can be used to construct the criterion function.On this basis,the threshold selection formulae based on 1-D histogram and 2-D histogram vertical segmentation are given,respectively.Then the threshold selection formulae based on 2-D histogram oblique segmentation and its fast recursive algorithm are derived.Finally,the segmented images and running time of the proposed method are given in experimental results.Otsu,maximum entropy and Fisher threshold selection methods based on 2-D histogram oblique segmentation are compared.

    1 Threshold Selection Based on 1-D Histogram and 2-D Histogram Vertical Segmentation

    1.1 Threshold Selection Based on 1-D Histogram

    Otsu method selects the threshold according to maximum between-class variance or minimum intraclass variance,which is essentially derived based on the least square error criterion.This criterion has a latent problem of that less sum of squares of errors may be obtained if a large category is separated when the number of samples contained in different categories has larger difference.There is a larger difference between the sizes of object and background in a small target image,a smaller intra-class variance or larger betweenclass variance is obtained if part of background is divided into object.Therefore Otsu method can not accurately segment the small target images.

    For the exact segmentation of image,the gray inside object and background is uniform,data points are compact and the intra-class variance is very small,and the area difference between object and background is large,criterion function of threshold selection can be constructed and the accuracy of threshold segmentation is expected to be enhanced.According to the above two characteristics,the criterion function of threshold selection is constructed based on the area difference between background and object and the intra-class variance in this paper,which can be used to segment the small target images effectively.

    Assuming that the size of image isM×N,the gray scale is 0,1,…,L-1,andp(i)is the probability of the gray scalei.The thresholdtis used to divide the image into the object class and background class.Assuming that the bright(dark)pixel of image belongs to the object(background).The probabilities of the background and object areω0(t)andω1(t),respectively.The means of gray scale areμ0(t)/ω0(t)andμ1(t)/ω1(t),respectively.And the variances areσ20(t)andσ21(t),respectively.Thus the criterion function based on 1-D histogram is as follows:

    The optimal threshold is obtained when the criteri-on functionΦ(t)attains the maximum value.

    1.2 Threshold Selection Based on 2-D Histogram Vertical Segmentation

    Fig.1 2-D histogram and vertical segmentation

    The optimal threshold is obtained when the criterion functionΦ(t,s)attains the maximum value,

    As a result,the intra-class gray scale of segmented image is uniform,and the object and background are separated effectively.

    2 Threshold Selection Formula Based on 2-D Histogram Oblique Segmentation and Its Fast Recursive Algorithm

    2.1 Threshold Selection Formula Based on 2-D Histogram Oblique Segmentation

    The 2-D histogram in Fig.1(b)shows that the pixel points are almost distributed near the main diagonal.In Fig.2 the histogram region is divided into an interior-point region,two border-point regions and two noise-point regions by four parallel oblique linesL1,L2,L3,L4,which are located in both sides of the main diagonal and paralleled with it.The region betweenL1 andL2 is considered as the interior-point region of object and background because the pixel gray scale is approximate to the average gray scale of neighborhood.The region betweenL1 andL3 and the region betweenL2 andL4 are regarded as the border-point regions or transitive regions between object and background because of the certain difference between the pixel gray scale and the average gray scale of neighborhood.The two regions outsideL3 andL4 are regarded as the noise-point regions because there is a large difference between the pixel gray scale and the average gray scale of neighborhood[14-15].

    Fig.2 2-D histogram oblique segmentation

    In oblique segmentation,the oblique lineg= -f+2T(Tis the threshold,0≤T≤L-1),which is vertical to the main diagonal(or at a 135°angle with gray scale axis),is used to segment the image according to the average value of the gray scale and the average gray scale of neighborhood.The obtained binary imageb(m,n)is

    Assuming that the total gray-scale means areμtiandμtj,and the total variances areand.Because the total variance equals the sum of the intraclass variance and the between-class variance for oblique segmentation,the criterion function in Eq.(5)can be rewritten as:

    The optimal threshold is obtained when the criterion functionΦ(T)attains the maximum value.

    2.2 Fast Recursive Algorithm

    It can be seen from the above-mentioned algorithm formulae that calculation ofΦ(T)requires the calculation ofω0(T),ω1(T),μ0i(T),μ0j(T),μti,μtj,andare fixed for the specified image.For every thresholdT,if calculation ofΦ(T)requires the cumulative calculation ofω0(T),μ0i(T)andμ0j(T)fromi=0 andj=0 again,it will be bound to cause lots of repetitive calculation and the computational complexity iso(L2).The total computational complexity comes too(L3)because the number of thresholdTisL-1.

    For 0<T≤L/2-1,the recursive formulae are derived as follows:

    similarly,the recursive formulae forL/2≤T≤L-1 can be obtained.

    The flowchart of the above-mentioned algorithm is shown in Fig.3.

    Fig.3 Flowchart of algorithm

    3 Experimental Result and Analysis

    3.1 Comparison of the Methods Based on 1-D Histogram,2-D Histogram Vertical and Oblique Segmentation

    A large number of experiments are made in this paper,and an example is illustrated.The threshold segmented results for the same ship image of the methods based on 1-D histogram,2-D histogram vertical and oblique segmentation are shown in Fig.4.Fig.4(a)shows the original ship image which size is 155×154.Fig.4(b)shows the segmented result based on 1-D histogram.Fig.4(c)shows the segmented result based on 2-D histogram vertical segmentation,and Fig.4(d)shows the segmented result based on 2-D histogram oblique segmentation.It can be seen from Fig.4 that the proposed method in this paper can extract the object accurately and the anti-noise performance of 2-D method is better,especially for the method based on 2-D histogram oblique segmentation.

    Fig.4 Segmented results of different methods

    3.2 Comparison with Other Methods

    Over 200 small target images are used in the experiments.Five of those are chosen to be illustrated.All objects are aircrafts but their distances from the infrared imaging plane are different.The segmented results of the methods proposed in this paper and methods based on 2-D histogram oblique segmentation,such as Otsu method,maximum entropy method,F(xiàn)isher criterion method,are given below,respectively.As shown in Tab.1,image 1 to image 5 are given from top to bottom,and the original image,the 1-D histogram,the segmented results of Otsu method,maximum entropy method,F(xiàn)isher criterion method and the method proposed in this paper are given from left to right in each row in turn.The size of image 1 is 322×221 and the proportion of object to background is 6.8%.The anti-noise performance of the method proposed in this paper is better,though all four methods can extract the object.Image 2 and image 3 are 323×217 and 256×256 in size,respectively.the proportions of object to background are 4.2%and 3.9%,respectively.Otsu method and Fisher criterion method can not extract the object effectively.Although the maximum entropy method can extract the object,some noise still exists in the images.The size of image 4 is 104×90,and the proportion of object to background is 0.43%.Under the circumstances,Otsu method and Fisher criterion method almost fail.The segmented result of the maximum entropy method has larger noise and lower accuracy.While the method proposed in this paper not only can extract the small target accurately,but also has the minimum noise compared with other methods,which meets the requirement.The size of image 5 is 106×94,and the proportion of object to background is 0.18%.The segmented result is similar to image 4,which further proves the superiority of the method proposed in this paper in segmentation of small target images.

    Tab.1 Segmented results of four methods

    The above experimental conditions are Intel Pentium 4,CPU 2.80 GHz,512 MB memory,and Matlab 7.1.The segmentation threshold and running time of four methods in Tab.1 are listed in Tab.2 and the percentages in Tab.2 are the size proportions of object to background.

    Tab.2 Segmentation threshold and running time of four methods

    It can be seen from Tab.2 that Otsu method requires the shortest running time but has the worst segmented result for small target images.The segmented result of maximum entropy method is superior to that of Otsu method while the running time is the longest because of the logarithm operations.The segmented result of Fisher criterion method is slightly better than Otsu method but still undesirable and its running time is longer.The method proposed in this paper has the best segmented result and can segment the small target images accurately.Its running time is shorter than Fisher criterion method and maximum entropy method while slightly longer than Otsu method.

    4 Conclusions

    The proposed threshold selection method for image segmentation based on the area difference between background and object and the intra-class variance can effectively segment the small target image which size proportion of object to background is very small.A large number of experimental results show that the method can make the interior of object and background region in the segmented images uniform and the boundary shape accurate.The anti-noise performance of the method based on 2-D histogram oblique segmentation is better than that of the method based on 1-D histogram and 2-D histogram vertical segmentation.The fast recursive algorithm based on 2-D histogram oblique segmentation reduces the search cost in 2-D space and improves the running speed greatly.Compared to the current fast algorithms of threshold selection for image seg-mentation,such as Otsu method,maximum entropy method and Fisher criterion method,based on 2-D histogram oblique segmentation,the method proposed in this paper has significant superiority in segmentation of small target images.

    [1]WU Yi-quan,ZHU Zhao-da.30 years(1962—1992)of the developments in the threshold selection methods in image processing(I)[J].Journal of Data Acquisition &Processing,1993,8(3):193-201.(in Chinese)

    [2]WU Yi-Quan,ZHU Zhao-da.30 years(1962—1992)of the developments in the threshold selection methods in image processing(II)[J].Journal of Data Acquisition &Processing,1993,8(4):268-282.(in Chinese)

    [3]Otsu N.A threshold selection method from gray-level histogram[J].IEEE Transactions System Man and Cybernetics,1979,9(1):62 -66.

    [4]Kapur J N,Sahoo P K,Wong A K C.A new method for grey-level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics and Image Processing,1985,29(1):273-285.

    [5]CHEN Guo.The Fisher criterion function method of image thresholding[J].Chinese Journal of Scientific Instrument,2003,24(6):564-567.(in Chinese)

    [6]Abutaleb A S.Automatic thresholding of gray-level picture using two-dimensional entropies[J].Pattern Recognition,1989,47(1):22-32.

    [7]Brink A D.Thresholding of digital image using two-dimensional entropies[J].Pattern Recognition,1992,25(8):803-808.

    [8]LIU Jian-zhuang,LI Wen-qing.Automatic thresholding using the Otsu algorithm based on the two-dimensional gray image[J].Acta Automatica Sinica,1993,19(1):101-105.(in Chinese)

    [9]GONG Jian,LI Li-yuan,CHEN Wei-nan.The gray-level thresholding method based on Fisher linear discriminant of two-dimensional histogram[J].Pattern Recognition and Artificial Intelligence,1997,10(1):1 -8.(in Chinese)

    [10]Gong J,Li L Y,Chen W N.Fast recursive algorithms for two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.

    [11]JING Xiao-jun,CAI An-ni,SUN Jing-ao.Image segmentation based on 2D maximum between-cluster variance[J].Journal of China Institute of Communications,2001,22(4):71-76.(in Chinese)

    [12]WANG Hai-yang,PAN De-lu,XIA De-shen.A fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J].Acta Automatica Sinica,2007,33(9):968-971.(in Chinese)

    [13]FAN Jiu-lun,ZHAO Feng.Two-dimensional Otsu curve thresholding segmentation method for gray-level images[J].Acta Automatica Sinica,2007,35(4):751 -755.(in Chinese)

    [14]WU Yi-quan,PAN Zhe,WU Wen-yi.Image thresholding based on two-dimensional histogram oblique segmentation and its fast recurring algorithm[J].Journal of China Institute of Communications,2008,29(4):77-83.(in Chinese)

    [15]WU Yi-quan,PAN Zhe,WU Wen-yi.Maximum entropy thresholding algorithm based on two-dimensional histogram oblique segmentation[J].Pattern Recognition and Artificial Intelligence,2009,22(1):162 - 168.(in Chinese)

    99国产综合亚洲精品| 国产精品熟女久久久久浪| 亚洲成国产人片在线观看| 99精国产麻豆久久婷婷| 亚洲成人免费av在线播放| a级毛片黄视频| 免费av中文字幕在线| 日韩人妻精品一区2区三区| h视频一区二区三区| 水蜜桃什么品种好| 欧美精品av麻豆av| 亚洲欧美成人综合另类久久久| 一二三四社区在线视频社区8| 婷婷色av中文字幕| 99久久综合免费| 国产区一区二久久| cao死你这个sao货| 久久av网站| 纯流量卡能插随身wifi吗| 一本久久精品| 午夜久久久在线观看| 久久精品亚洲av国产电影网| 深夜精品福利| 老汉色∧v一级毛片| 国产成人av激情在线播放| 日本vs欧美在线观看视频| 丝袜美腿诱惑在线| avwww免费| 超碰97精品在线观看| 久久青草综合色| 国产97色在线日韩免费| 日本vs欧美在线观看视频| 青草久久国产| 啪啪无遮挡十八禁网站| 欧美日韩精品网址| 久久久国产成人免费| 涩涩av久久男人的天堂| 夫妻午夜视频| 久久女婷五月综合色啪小说| 亚洲午夜精品一区,二区,三区| a在线观看视频网站| 久久国产精品大桥未久av| 国产欧美日韩一区二区三 | 9热在线视频观看99| 我的亚洲天堂| 操美女的视频在线观看| 久久99一区二区三区| 久久久久精品人妻al黑| 日韩精品免费视频一区二区三区| 国产无遮挡羞羞视频在线观看| 久久精品国产综合久久久| 欧美国产精品一级二级三级| 99久久国产精品久久久| 又大又爽又粗| 肉色欧美久久久久久久蜜桃| a级片在线免费高清观看视频| 成人国产一区最新在线观看| 欧美日韩av久久| 黄色毛片三级朝国网站| 久久久国产一区二区| 久久精品成人免费网站| 亚洲av日韩精品久久久久久密| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看www视频免费| 男男h啪啪无遮挡| 国产片内射在线| 精品一区二区三区四区五区乱码| 亚洲一区二区三区欧美精品| 午夜福利在线免费观看网站| 99精品欧美一区二区三区四区| 欧美av亚洲av综合av国产av| 午夜两性在线视频| 在线十欧美十亚洲十日本专区| 啦啦啦视频在线资源免费观看| 国产片内射在线| 精品欧美一区二区三区在线| 免费观看a级毛片全部| 久久久久久久久久久久大奶| 亚洲黑人精品在线| 免费观看av网站的网址| 十八禁网站免费在线| 久久亚洲精品不卡| 亚洲精品一区蜜桃| 建设人人有责人人尽责人人享有的| 美国免费a级毛片| 丰满迷人的少妇在线观看| 精品久久蜜臀av无| 精品国产乱码久久久久久小说| 这个男人来自地球电影免费观看| 国产男女超爽视频在线观看| 久久精品国产亚洲av香蕉五月 | 久久九九热精品免费| 亚洲av欧美aⅴ国产| 国产成人精品在线电影| 国产精品二区激情视频| 日韩精品免费视频一区二区三区| 久久精品国产a三级三级三级| 午夜两性在线视频| 欧美人与性动交α欧美软件| 中文字幕av电影在线播放| 国产高清videossex| 99久久精品国产亚洲精品| 国产黄色免费在线视频| 午夜福利,免费看| 人妻 亚洲 视频| av在线老鸭窝| 丝袜在线中文字幕| 国产精品国产三级国产专区5o| 老司机亚洲免费影院| 欧美日韩国产mv在线观看视频| 淫妇啪啪啪对白视频 | 天堂8中文在线网| svipshipincom国产片| 各种免费的搞黄视频| 伦理电影免费视频| 免费在线观看完整版高清| 天堂中文最新版在线下载| 欧美人与性动交α欧美精品济南到| 日本猛色少妇xxxxx猛交久久| 夫妻午夜视频| 各种免费的搞黄视频| 国产黄频视频在线观看| 日韩人妻精品一区2区三区| 最近最新免费中文字幕在线| 国产精品久久久久久人妻精品电影 | 欧美日韩成人在线一区二区| 最近最新中文字幕大全免费视频| 国产97色在线日韩免费| 日本精品一区二区三区蜜桃| 亚洲,欧美精品.| www.999成人在线观看| 国产精品九九99| 中文字幕另类日韩欧美亚洲嫩草| 永久免费av网站大全| 1024视频免费在线观看| 亚洲天堂av无毛| 菩萨蛮人人尽说江南好唐韦庄| 少妇的丰满在线观看| 夫妻午夜视频| 亚洲av电影在线观看一区二区三区| 精品少妇内射三级| 亚洲专区字幕在线| 免费在线观看视频国产中文字幕亚洲 | 国产精品一区二区精品视频观看| 热re99久久国产66热| 搡老熟女国产l中国老女人| 中文字幕高清在线视频| 国产一区二区 视频在线| 真人做人爱边吃奶动态| 美女福利国产在线| 亚洲 欧美一区二区三区| av一本久久久久| 高潮久久久久久久久久久不卡| 黄色a级毛片大全视频| 国产成人免费无遮挡视频| 丝袜美足系列| 我要看黄色一级片免费的| 夜夜骑夜夜射夜夜干| 欧美日韩精品网址| 久久精品亚洲熟妇少妇任你| 丝袜脚勾引网站| 丝袜脚勾引网站| 水蜜桃什么品种好| 国产精品免费视频内射| 三上悠亚av全集在线观看| 精品亚洲乱码少妇综合久久| 国产欧美日韩一区二区三 | cao死你这个sao货| 久久久久国内视频| 欧美成狂野欧美在线观看| 亚洲天堂av无毛| 久久精品久久久久久噜噜老黄| 国产成人欧美在线观看 | 国产精品99久久99久久久不卡| 久久国产精品影院| av天堂在线播放| 人妻一区二区av| 免费观看人在逋| 麻豆国产av国片精品| 国产97色在线日韩免费| www.精华液| 国产高清国产精品国产三级| 黄色毛片三级朝国网站| 夜夜骑夜夜射夜夜干| 亚洲专区国产一区二区| 亚洲精品中文字幕在线视频| av线在线观看网站| 在线观看免费视频网站a站| 男女床上黄色一级片免费看| 性高湖久久久久久久久免费观看| 亚洲精品中文字幕一二三四区 | 国产熟女午夜一区二区三区| 国产一区二区在线观看av| 亚洲avbb在线观看| 国产精品一区二区免费欧美 | 亚洲国产看品久久| 美女中出高潮动态图| 亚洲男人天堂网一区| 岛国毛片在线播放| 久久中文字幕一级| 91成年电影在线观看| 亚洲精品中文字幕一二三四区 | 欧美精品一区二区大全| 十八禁人妻一区二区| 女人精品久久久久毛片| 男女国产视频网站| 曰老女人黄片| 精品人妻一区二区三区麻豆| 一级毛片电影观看| 国产成人啪精品午夜网站| xxxhd国产人妻xxx| 国产亚洲精品一区二区www | 亚洲欧美精品自产自拍| 国产成人影院久久av| 精品久久久久久电影网| 熟女少妇亚洲综合色aaa.| 亚洲欧美成人综合另类久久久| bbb黄色大片| 少妇人妻久久综合中文| 最黄视频免费看| 亚洲人成电影免费在线| 又大又爽又粗| 一级片免费观看大全| 两性夫妻黄色片| av又黄又爽大尺度在线免费看| 欧美另类一区| xxxhd国产人妻xxx| 曰老女人黄片| 自线自在国产av| 美女中出高潮动态图| 欧美老熟妇乱子伦牲交| 国产一区二区三区在线臀色熟女 | av有码第一页| 亚洲精品中文字幕一二三四区 | 男女边摸边吃奶| 美女主播在线视频| 国产av又大| 国产男人的电影天堂91| 男女国产视频网站| 亚洲国产欧美网| 97人妻天天添夜夜摸| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| 精品免费久久久久久久清纯 | 777久久人妻少妇嫩草av网站| 免费在线观看影片大全网站| 在线观看人妻少妇| 久久天堂一区二区三区四区| 香蕉丝袜av| 国产精品 国内视频| 午夜精品久久久久久毛片777| 国产成人免费观看mmmm| 久久热在线av| 色老头精品视频在线观看| 丝袜在线中文字幕| av欧美777| 啦啦啦 在线观看视频| 肉色欧美久久久久久久蜜桃| 色精品久久人妻99蜜桃| 国产极品粉嫩免费观看在线| 亚洲国产中文字幕在线视频| 一区二区三区四区激情视频| 免费在线观看视频国产中文字幕亚洲 | 每晚都被弄得嗷嗷叫到高潮| 波多野结衣av一区二区av| 亚洲久久久国产精品| 亚洲人成电影免费在线| 一区二区三区乱码不卡18| 亚洲国产欧美网| 久久久久网色| 九色亚洲精品在线播放| 男人舔女人的私密视频| 两个人免费观看高清视频| 国内毛片毛片毛片毛片毛片| 黄色片一级片一级黄色片| 视频区图区小说| 日日摸夜夜添夜夜添小说| 黄色视频在线播放观看不卡| 亚洲专区中文字幕在线| 99精国产麻豆久久婷婷| 十分钟在线观看高清视频www| 午夜免费鲁丝| 老汉色∧v一级毛片| av欧美777| 国产黄色免费在线视频| 国产日韩一区二区三区精品不卡| 国产精品免费视频内射| 精品一区二区三卡| 国产成人影院久久av| 日日夜夜操网爽| 悠悠久久av| 1024香蕉在线观看| 日韩有码中文字幕| 一区二区三区乱码不卡18| 美女中出高潮动态图| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 黄色片一级片一级黄色片| 天堂8中文在线网| 又黄又粗又硬又大视频| 免费黄频网站在线观看国产| videosex国产| 成人黄色视频免费在线看| √禁漫天堂资源中文www| 99热全是精品| 亚洲国产毛片av蜜桃av| 久久女婷五月综合色啪小说| 国产麻豆69| 成人18禁高潮啪啪吃奶动态图| 老司机亚洲免费影院| 亚洲国产毛片av蜜桃av| 免费观看人在逋| 两性夫妻黄色片| 热re99久久国产66热| 中文字幕色久视频| 美女福利国产在线| 亚洲精品一卡2卡三卡4卡5卡 | 法律面前人人平等表现在哪些方面 | h视频一区二区三区| 亚洲美女黄色视频免费看| 久久99热这里只频精品6学生| 老司机在亚洲福利影院| tube8黄色片| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 国精品久久久久久国模美| 亚洲伊人色综图| 精品免费久久久久久久清纯 | 久久久国产欧美日韩av| 视频区欧美日本亚洲| 波多野结衣一区麻豆| 精品一区在线观看国产| 夜夜骑夜夜射夜夜干| 青春草视频在线免费观看| 亚洲精华国产精华精| av一本久久久久| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| 99热网站在线观看| 成年人午夜在线观看视频| 人妻一区二区av| 久久久精品国产亚洲av高清涩受| 欧美 亚洲 国产 日韩一| 国产xxxxx性猛交| cao死你这个sao货| 亚洲情色 制服丝袜| 每晚都被弄得嗷嗷叫到高潮| 19禁男女啪啪无遮挡网站| 如日韩欧美国产精品一区二区三区| 久久ye,这里只有精品| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 久久人妻福利社区极品人妻图片| 操美女的视频在线观看| 欧美日韩国产mv在线观看视频| 悠悠久久av| 精品视频人人做人人爽| 美女脱内裤让男人舔精品视频| 精品熟女少妇八av免费久了| 2018国产大陆天天弄谢| 亚洲av成人一区二区三| 性色av一级| 美女中出高潮动态图| 亚洲人成77777在线视频| 人人妻人人澡人人看| 精品卡一卡二卡四卡免费| www.自偷自拍.com| 欧美激情极品国产一区二区三区| 一级,二级,三级黄色视频| 精品一区二区三区四区五区乱码| 久久久久精品国产欧美久久久 | 精品熟女少妇八av免费久了| 久久久精品94久久精品| 免费人妻精品一区二区三区视频| 免费观看人在逋| 日本撒尿小便嘘嘘汇集6| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 99国产综合亚洲精品| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 黑人巨大精品欧美一区二区蜜桃| 日韩熟女老妇一区二区性免费视频| 国产成人精品久久二区二区91| 精品国产一区二区久久| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 亚洲中文av在线| 日本撒尿小便嘘嘘汇集6| 亚洲va日本ⅴa欧美va伊人久久 | 免费黄频网站在线观看国产| 在线观看人妻少妇| 国产真人三级小视频在线观看| 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 午夜久久久在线观看| 亚洲午夜精品一区,二区,三区| 日本欧美视频一区| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦 在线观看视频| 麻豆国产av国片精品| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 欧美97在线视频| 亚洲性夜色夜夜综合| 日本wwww免费看| 午夜日韩欧美国产| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精| 国产av又大| 久久国产亚洲av麻豆专区| 老熟女久久久| 丝袜美腿诱惑在线| 三级毛片av免费| 我要看黄色一级片免费的| 在线观看一区二区三区激情| 欧美日韩亚洲综合一区二区三区_| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人免费电影在线观看| 国产三级黄色录像| 亚洲精品乱久久久久久| 超碰97精品在线观看| 久久精品国产亚洲av高清一级| 我的亚洲天堂| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看 | 国产野战对白在线观看| 天天添夜夜摸| 在线av久久热| av不卡在线播放| 欧美日韩av久久| 精品国产一区二区三区四区第35| 久久精品人人爽人人爽视色| 这个男人来自地球电影免费观看| 啪啪无遮挡十八禁网站| 成人国产av品久久久| 丰满少妇做爰视频| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 男人舔女人的私密视频| 亚洲成av片中文字幕在线观看| 日韩大码丰满熟妇| 老司机午夜福利在线观看视频 | 久久久精品区二区三区| 韩国精品一区二区三区| 黄片大片在线免费观看| 欧美日韩成人在线一区二区| 成人影院久久| 在线十欧美十亚洲十日本专区| 国产亚洲av片在线观看秒播厂| 国产欧美日韩精品亚洲av| 久久性视频一级片| 亚洲伊人久久精品综合| 欧美日韩国产mv在线观看视频| 飞空精品影院首页| 捣出白浆h1v1| 中文字幕人妻丝袜制服| 各种免费的搞黄视频| 亚洲成人手机| 成人国产一区最新在线观看| 在线精品无人区一区二区三| 一级片免费观看大全| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠躁躁| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 亚洲国产av影院在线观看| 9191精品国产免费久久| 国产精品久久久av美女十八| 国产伦人伦偷精品视频| 老司机午夜十八禁免费视频| 中文字幕精品免费在线观看视频| 国产精品欧美亚洲77777| 国产成+人综合+亚洲专区| 日韩制服丝袜自拍偷拍| 午夜福利,免费看| 最黄视频免费看| 久久综合国产亚洲精品| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 国产av又大| 窝窝影院91人妻| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 天堂8中文在线网| 丁香六月天网| 精品国产乱码久久久久久小说| 亚洲一区中文字幕在线| 另类亚洲欧美激情| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲 | 少妇 在线观看| 精品人妻在线不人妻| 99热国产这里只有精品6| 国产av国产精品国产| 男人添女人高潮全过程视频| 午夜福利在线观看吧| 免费久久久久久久精品成人欧美视频| 在线观看www视频免费| 考比视频在线观看| 嫁个100分男人电影在线观看| 一本综合久久免费| 亚洲精品一二三| 久久久国产一区二区| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 两人在一起打扑克的视频| 精品少妇一区二区三区视频日本电影| 午夜福利乱码中文字幕| 亚洲精品中文字幕一二三四区 | 激情视频va一区二区三区| 黄色毛片三级朝国网站| 国产不卡av网站在线观看| 2018国产大陆天天弄谢| 不卡一级毛片| 亚洲第一av免费看| 久久天躁狠狠躁夜夜2o2o| 91精品国产国语对白视频| 少妇粗大呻吟视频| 亚洲精华国产精华精| 啦啦啦在线免费观看视频4| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 中文精品一卡2卡3卡4更新| 777久久人妻少妇嫩草av网站| 国产在线一区二区三区精| 91国产中文字幕| 丝袜美足系列| 免费黄频网站在线观看国产| 精品熟女少妇八av免费久了| 高清欧美精品videossex| 午夜福利一区二区在线看| 叶爱在线成人免费视频播放| 日韩中文字幕视频在线看片| 国产精品熟女久久久久浪| 日韩欧美一区二区三区在线观看 | 男男h啪啪无遮挡| 久久久精品区二区三区| 高清视频免费观看一区二区| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| 国产亚洲欧美在线一区二区| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 窝窝影院91人妻| 国产在线一区二区三区精| 51午夜福利影视在线观看| 爱豆传媒免费全集在线观看| 午夜激情av网站| 免费在线观看完整版高清| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 99久久精品国产亚洲精品| 一级a爱视频在线免费观看| 99国产精品免费福利视频| 男女国产视频网站| 成年av动漫网址| 国产黄色免费在线视频| 亚洲自偷自拍图片 自拍| 91麻豆精品激情在线观看国产 | 人妻人人澡人人爽人人| 美女午夜性视频免费| 国产精品偷伦视频观看了| 亚洲av成人一区二区三| 丝袜喷水一区| 国产区一区二久久| 国产日韩欧美视频二区| 免费观看人在逋| av天堂久久9| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久久久久婷婷小说| 天天躁日日躁夜夜躁夜夜| 午夜91福利影院| 亚洲国产看品久久| 狂野欧美激情性xxxx| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 老司机福利观看| 亚洲全国av大片| 1024视频免费在线观看| 我的亚洲天堂| 久久久国产欧美日韩av| 成人手机av| 性色av乱码一区二区三区2| 欧美日韩一级在线毛片| 国产91精品成人一区二区三区 | 精品亚洲成a人片在线观看| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 超碰97精品在线观看| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 免费少妇av软件| 国产成人影院久久av| 超碰成人久久| 国产一区二区激情短视频 | 脱女人内裤的视频| 欧美日韩亚洲高清精品| 国产成人精品无人区|