• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    精品久久久精品久久久| 天堂中文最新版在线下载| 如日韩欧美国产精品一区二区三区| 色综合欧美亚洲国产小说| 一区二区三区四区激情视频| 久久精品亚洲熟妇少妇任你| a 毛片基地| 欧美 亚洲 国产 日韩一| 国产熟女午夜一区二区三区| 老司机午夜十八禁免费视频| 一本色道久久久久久精品综合| 亚洲av电影在线观看一区二区三区| 黑人操中国人逼视频| 老司机深夜福利视频在线观看 | 日本91视频免费播放| 欧美精品啪啪一区二区三区 | 涩涩av久久男人的天堂| 女人高潮潮喷娇喘18禁视频| 老熟妇仑乱视频hdxx| 少妇粗大呻吟视频| 日本五十路高清| www.自偷自拍.com| 极品少妇高潮喷水抽搐| 日本91视频免费播放| 国产精品影院久久| 欧美av亚洲av综合av国产av| 精品亚洲成国产av| 欧美精品高潮呻吟av久久| 男人舔女人的私密视频| 精品人妻1区二区| 在线观看免费视频网站a站| 国产一区二区三区在线臀色熟女 | 极品少妇高潮喷水抽搐| 国产精品av久久久久免费| 热99re8久久精品国产| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 91精品三级在线观看| 久久精品亚洲av国产电影网| 久久热在线av| 丰满饥渴人妻一区二区三| 欧美午夜高清在线| 又大又爽又粗| 成人影院久久| 亚洲三区欧美一区| 欧美黄色片欧美黄色片| 欧美日韩成人在线一区二区| 久久国产精品人妻蜜桃| 欧美成人午夜精品| a级片在线免费高清观看视频| 国产精品久久久久久人妻精品电影 | 国产欧美日韩一区二区精品| 天堂8中文在线网| 丰满饥渴人妻一区二区三| 久久av网站| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图| 秋霞在线观看毛片| 欧美激情 高清一区二区三区| 免费看十八禁软件| 青春草亚洲视频在线观看| 侵犯人妻中文字幕一二三四区| 午夜免费观看性视频| av网站免费在线观看视频| 美女扒开内裤让男人捅视频| 捣出白浆h1v1| 一区二区三区精品91| 欧美久久黑人一区二区| 亚洲精品国产区一区二| 国产欧美亚洲国产| 国产麻豆69| 丝袜美足系列| 涩涩av久久男人的天堂| 男女之事视频高清在线观看| 91麻豆av在线| 国产老妇伦熟女老妇高清| 午夜影院在线不卡| 久久久久久久久久久久大奶| 国产成人欧美在线观看 | 精品少妇内射三级| 乱人伦中国视频| 俄罗斯特黄特色一大片| av又黄又爽大尺度在线免费看| 国产精品熟女久久久久浪| 欧美97在线视频| 欧美在线一区亚洲| 亚洲欧洲精品一区二区精品久久久| 亚洲五月色婷婷综合| 日韩欧美一区二区三区在线观看 | 国产av一区二区精品久久| 亚洲精品自拍成人| 两个人看的免费小视频| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 各种免费的搞黄视频| 免费日韩欧美在线观看| 日韩精品免费视频一区二区三区| 久久久久久久久久久久大奶| 亚洲情色 制服丝袜| 麻豆乱淫一区二区| 十八禁网站网址无遮挡| bbb黄色大片| 久久精品国产综合久久久| 在线观看人妻少妇| 日韩人妻精品一区2区三区| 国产高清国产精品国产三级| 国产高清视频在线播放一区 | 老司机影院成人| 欧美黑人精品巨大| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 18禁观看日本| 亚洲性夜色夜夜综合| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 精品乱码久久久久久99久播| 国产欧美日韩综合在线一区二区| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| 又大又爽又粗| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 丝袜美腿诱惑在线| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 亚洲成av片中文字幕在线观看| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 久久精品国产a三级三级三级| 国产伦人伦偷精品视频| 伦理电影免费视频| 日韩一区二区三区影片| 高清视频免费观看一区二区| 国产成人一区二区三区免费视频网站| 国产精品久久久久成人av| 精品国产一区二区三区四区第35| 又大又爽又粗| 看免费av毛片| 精品亚洲成国产av| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 久久国产精品人妻蜜桃| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区二区三区在线| 91大片在线观看| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| 午夜福利在线免费观看网站| 亚洲avbb在线观看| 超碰97精品在线观看| 久久久国产精品麻豆| 亚洲第一欧美日韩一区二区三区 | 自线自在国产av| 黄频高清免费视频| 正在播放国产对白刺激| 老熟女久久久| 美女大奶头黄色视频| 91老司机精品| 在线观看人妻少妇| 又大又爽又粗| 精品国产国语对白av| 青春草视频在线免费观看| 青草久久国产| 中文字幕精品免费在线观看视频| 国产一卡二卡三卡精品| 国产一区二区在线观看av| 亚洲一区中文字幕在线| 十八禁网站免费在线| 亚洲国产av新网站| 一二三四在线观看免费中文在| 日本黄色日本黄色录像| 大码成人一级视频| 欧美日韩黄片免| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面 | 天堂中文最新版在线下载| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 国产成人影院久久av| 99国产精品99久久久久| 午夜福利乱码中文字幕| 最黄视频免费看| 我要看黄色一级片免费的| kizo精华| 久久久久久亚洲精品国产蜜桃av| 久久人人爽人人片av| 久久久国产精品麻豆| 国产激情久久老熟女| 飞空精品影院首页| 天天操日日干夜夜撸| 久久青草综合色| 精品亚洲成国产av| 如日韩欧美国产精品一区二区三区| 美国免费a级毛片| 国产精品久久久人人做人人爽| 一进一出抽搐动态| av免费在线观看网站| 女性生殖器流出的白浆| 多毛熟女@视频| 男人舔女人的私密视频| 免费看十八禁软件| 午夜福利影视在线免费观看| 在线精品无人区一区二区三| 欧美少妇被猛烈插入视频| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯 | 国产激情久久老熟女| 中文字幕制服av| 精品福利永久在线观看| 久久国产亚洲av麻豆专区| 天天影视国产精品| 精品熟女少妇八av免费久了| 手机成人av网站| 19禁男女啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 午夜精品国产一区二区电影| 老鸭窝网址在线观看| 91精品伊人久久大香线蕉| 久热这里只有精品99| 一区二区av电影网| 久久人人爽人人片av| 黄色视频,在线免费观看| av天堂久久9| videos熟女内射| 在线观看免费日韩欧美大片| 在线 av 中文字幕| 国产免费现黄频在线看| 久久国产精品人妻蜜桃| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| 免费高清在线观看日韩| 淫妇啪啪啪对白视频 | 国产精品秋霞免费鲁丝片| 黄色视频在线播放观看不卡| 国产av精品麻豆| 9色porny在线观看| 国产xxxxx性猛交| 欧美日韩一级在线毛片| 欧美成人午夜精品| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 青春草视频在线免费观看| 视频区图区小说| 日韩一区二区三区影片| 亚洲一码二码三码区别大吗| 午夜福利视频精品| 免费在线观看完整版高清| 亚洲第一欧美日韩一区二区三区 | 久久国产精品男人的天堂亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品影院| 亚洲欧美精品自产自拍| 热re99久久国产66热| 热99久久久久精品小说推荐| 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 久久久国产一区二区| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 色老头精品视频在线观看| 视频区欧美日本亚洲| 精品第一国产精品| 欧美黑人精品巨大| 首页视频小说图片口味搜索| 欧美+亚洲+日韩+国产| 黄片大片在线免费观看| 午夜激情av网站| 丝袜美腿诱惑在线| 亚洲中文日韩欧美视频| 日本精品一区二区三区蜜桃| 男女国产视频网站| 日韩电影二区| 亚洲第一欧美日韩一区二区三区 | h视频一区二区三区| 少妇人妻久久综合中文| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 色婷婷久久久亚洲欧美| 亚洲性夜色夜夜综合| 9色porny在线观看| 国产欧美日韩一区二区三 | 男男h啪啪无遮挡| 亚洲视频免费观看视频| 久久久精品国产亚洲av高清涩受| 色婷婷久久久亚洲欧美| 国产精品av久久久久免费| 丁香六月欧美| 一二三四社区在线视频社区8| 欧美中文综合在线视频| 免费少妇av软件| 久久久精品国产亚洲av高清涩受| 欧美亚洲日本最大视频资源| 国产精品 国内视频| 超碰成人久久| 中文字幕人妻丝袜制服| 99九九在线精品视频| 国产在线视频一区二区| 黄色a级毛片大全视频| 国产免费av片在线观看野外av| 亚洲成国产人片在线观看| 男人舔女人的私密视频| 欧美日韩福利视频一区二区| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 久久久久国产精品人妻一区二区| 母亲3免费完整高清在线观看| 中文字幕精品免费在线观看视频| 黄色视频,在线免费观看| 一级毛片精品| 成年人免费黄色播放视频| 亚洲情色 制服丝袜| 日韩欧美一区二区三区在线观看 | 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产男女内射视频| 国产日韩欧美在线精品| 狂野欧美激情性xxxx| 极品少妇高潮喷水抽搐| 亚洲av男天堂| videos熟女内射| 精品一区二区三区四区五区乱码| 亚洲精品国产av蜜桃| 国产av又大| 少妇 在线观看| 欧美在线一区亚洲| 超碰成人久久| 亚洲七黄色美女视频| 91九色精品人成在线观看| 视频区欧美日本亚洲| 一区二区三区四区激情视频| 亚洲精品粉嫩美女一区| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看| 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 国产高清videossex| 日韩欧美一区视频在线观看| 高清在线国产一区| 日韩欧美一区视频在线观看| 欧美少妇被猛烈插入视频| 午夜福利乱码中文字幕| 男女国产视频网站| 1024香蕉在线观看| 精品第一国产精品| 在线精品无人区一区二区三| 精品国内亚洲2022精品成人 | 免费在线观看影片大全网站| 久久久国产成人免费| 999精品在线视频| 成年人黄色毛片网站| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 99香蕉大伊视频| 少妇粗大呻吟视频| 午夜老司机福利片| 亚洲少妇的诱惑av| 亚洲精品乱久久久久久| 美女中出高潮动态图| 欧美日韩亚洲国产一区二区在线观看 | 伦理电影免费视频| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区| av国产精品久久久久影院| 久久久水蜜桃国产精品网| 人人澡人人妻人| 亚洲成av片中文字幕在线观看| 精品一区二区三区av网在线观看 | 亚洲性夜色夜夜综合| 欧美日韩国产mv在线观看视频| 90打野战视频偷拍视频| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 免费日韩欧美在线观看| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 后天国语完整版免费观看| 999久久久精品免费观看国产| 国产av又大| 少妇粗大呻吟视频| 性少妇av在线| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 午夜免费观看性视频| 高清在线国产一区| 一本一本久久a久久精品综合妖精| 久久人人爽av亚洲精品天堂| 岛国毛片在线播放| netflix在线观看网站| 国内毛片毛片毛片毛片毛片| 曰老女人黄片| 免费人妻精品一区二区三区视频| 12—13女人毛片做爰片一| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区蜜桃| 十分钟在线观看高清视频www| tube8黄色片| 一级片'在线观看视频| 久久精品aⅴ一区二区三区四区| 男女高潮啪啪啪动态图| 深夜精品福利| 午夜福利视频精品| 久久人妻熟女aⅴ| 岛国在线观看网站| 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 亚洲熟女精品中文字幕| av天堂在线播放| 亚洲成国产人片在线观看| 美女中出高潮动态图| 一级毛片电影观看| 亚洲精品美女久久久久99蜜臀| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 男人爽女人下面视频在线观看| 男女边摸边吃奶| 国产精品一二三区在线看| 69精品国产乱码久久久| 97在线人人人人妻| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费鲁丝| 免费高清在线观看日韩| 男人爽女人下面视频在线观看| 男女边摸边吃奶| 另类精品久久| 少妇人妻久久综合中文| 男女无遮挡免费网站观看| 国产人伦9x9x在线观看| 日韩大码丰满熟妇| 国产无遮挡羞羞视频在线观看| 日韩有码中文字幕| 国产一区有黄有色的免费视频| www.精华液| 亚洲,欧美精品.| 丁香六月欧美| 欧美xxⅹ黑人| 秋霞在线观看毛片| 国产欧美日韩综合在线一区二区| 无遮挡黄片免费观看| 欧美中文综合在线视频| 91精品三级在线观看| 精品高清国产在线一区| 高清黄色对白视频在线免费看| 一级a爱视频在线免费观看| 国产色视频综合| www.自偷自拍.com| 一级片'在线观看视频| 国产91精品成人一区二区三区 | 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| 久热这里只有精品99| 50天的宝宝边吃奶边哭怎么回事| 免费高清在线观看日韩| 97人妻天天添夜夜摸| 一区二区三区精品91| 好男人电影高清在线观看| 国产精品亚洲av一区麻豆| 久久久精品免费免费高清| av天堂久久9| 五月开心婷婷网| 我要看黄色一级片免费的| 午夜福利在线观看吧| 飞空精品影院首页| 爱豆传媒免费全集在线观看| 久久中文看片网| 美女福利国产在线| 亚洲一码二码三码区别大吗| 另类精品久久| 亚洲免费av在线视频| 两个人免费观看高清视频| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 欧美日韩av久久| 波多野结衣一区麻豆| 久久久国产欧美日韩av| av天堂久久9| 视频区欧美日本亚洲| 老司机影院成人| 国产精品成人在线| videos熟女内射| 高清在线国产一区| 久久精品人人爽人人爽视色| 欧美日韩av久久| 麻豆国产av国片精品| 精品亚洲成国产av| 成人18禁高潮啪啪吃奶动态图| 色94色欧美一区二区| 亚洲一区中文字幕在线| 国产熟女午夜一区二区三区| 国产日韩欧美在线精品| 国产成人av激情在线播放| 国产精品自产拍在线观看55亚洲 | 咕卡用的链子| 色精品久久人妻99蜜桃| 亚洲 国产 在线| 熟女少妇亚洲综合色aaa.| 欧美黑人欧美精品刺激| 天天躁日日躁夜夜躁夜夜| 视频在线观看一区二区三区| 99久久人妻综合| 2018国产大陆天天弄谢| 19禁男女啪啪无遮挡网站| www日本在线高清视频| 中文欧美无线码| 亚洲成人免费av在线播放| 欧美大码av| 精品久久久久久久毛片微露脸 | 国产亚洲精品久久久久5区| 日韩一区二区三区影片| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 精品高清国产在线一区| 久久天躁狠狠躁夜夜2o2o| 狠狠精品人妻久久久久久综合| 2018国产大陆天天弄谢| 大香蕉久久网| 欧美日韩精品网址| 亚洲欧美成人综合另类久久久| h视频一区二区三区| 免费一级毛片在线播放高清视频 | 多毛熟女@视频| 成人免费观看视频高清| 狂野欧美激情性bbbbbb| 菩萨蛮人人尽说江南好唐韦庄| 久久精品aⅴ一区二区三区四区| 黄色毛片三级朝国网站| 伊人亚洲综合成人网| 天天躁夜夜躁狠狠躁躁| 欧美少妇被猛烈插入视频| 国产免费现黄频在线看| 亚洲精品成人av观看孕妇| 亚洲国产av影院在线观看| 另类亚洲欧美激情| 天天躁日日躁夜夜躁夜夜| 一区二区三区精品91| 一个人免费看片子| 精品国产乱子伦一区二区三区 | 亚洲精品国产区一区二| 国产男人的电影天堂91| 国产一区二区激情短视频 | 99精品久久久久人妻精品| 亚洲第一av免费看| 一级毛片精品| 最近最新免费中文字幕在线| 国产深夜福利视频在线观看| 91大片在线观看| 中文字幕人妻丝袜制服| 97精品久久久久久久久久精品| 久久性视频一级片| 国产欧美日韩一区二区三区在线| 多毛熟女@视频| 精品久久久久久久毛片微露脸 | 国产精品久久久人人做人人爽| 真人做人爱边吃奶动态| 一级片免费观看大全| 国产深夜福利视频在线观看| 久久午夜综合久久蜜桃| 黄频高清免费视频| 女人被躁到高潮嗷嗷叫费观| 国产精品欧美亚洲77777| 久久国产精品大桥未久av| 国产精品一二三区在线看| 狂野欧美激情性xxxx| 成年人免费黄色播放视频| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| 精品乱码久久久久久99久播| 在线十欧美十亚洲十日本专区| 波多野结衣一区麻豆| 久久亚洲精品不卡| 9191精品国产免费久久| 亚洲五月婷婷丁香| 天天影视国产精品| 久久 成人 亚洲| 免费看十八禁软件| 午夜精品国产一区二区电影| 丰满人妻熟妇乱又伦精品不卡| 国产av精品麻豆| 国产一级毛片在线| 欧美国产精品一级二级三级| 欧美日韩亚洲综合一区二区三区_| 激情视频va一区二区三区| 大片电影免费在线观看免费| 国产精品一区二区在线观看99| 久久久精品区二区三区| av网站在线播放免费| 90打野战视频偷拍视频| 在线观看www视频免费| 亚洲avbb在线观看| 成在线人永久免费视频| 久久久精品区二区三区| 美女扒开内裤让男人捅视频| 精品久久久久久久毛片微露脸 | 一级,二级,三级黄色视频| 亚洲成人免费av在线播放| 亚洲色图综合在线观看| 中国美女看黄片| 天天躁狠狠躁夜夜躁狠狠躁| 免费一级毛片在线播放高清视频 | 黑人欧美特级aaaaaa片| 欧美在线一区亚洲| 极品少妇高潮喷水抽搐|