• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    久久中文看片网| 最新在线观看一区二区三区| 亚洲精品久久成人aⅴ小说| 欧美日韩瑟瑟在线播放| 成年免费大片在线观看| 在线永久观看黄色视频| 看黄色毛片网站| 麻豆国产av国片精品| 亚洲国产精品sss在线观看| 天天躁夜夜躁狠狠躁躁| 妹子高潮喷水视频| 欧美精品亚洲一区二区| 在线观看舔阴道视频| 国产精品久久电影中文字幕| 日本一区二区免费在线视频| 天堂√8在线中文| 亚洲乱码一区二区免费版| 手机成人av网站| 欧美高清成人免费视频www| 日韩大尺度精品在线看网址| 国产人伦9x9x在线观看| 午夜老司机福利片| 亚洲黑人精品在线| 亚洲人成77777在线视频| 国产黄a三级三级三级人| 美女午夜性视频免费| 国产在线观看jvid| 国产精品香港三级国产av潘金莲| 少妇粗大呻吟视频| 99国产精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 首页视频小说图片口味搜索| 色播亚洲综合网| 午夜a级毛片| 国产精品久久久久久久电影 | 国产精品免费一区二区三区在线| 久久国产乱子伦精品免费另类| 成人高潮视频无遮挡免费网站| 中文资源天堂在线| 91大片在线观看| 午夜精品久久久久久毛片777| www.999成人在线观看| 国产高清视频在线播放一区| 男男h啪啪无遮挡| 成人18禁高潮啪啪吃奶动态图| 国产又黄又爽又无遮挡在线| 国产探花在线观看一区二区| xxx96com| www国产在线视频色| 国产日本99.免费观看| 免费观看人在逋| 琪琪午夜伦伦电影理论片6080| 久久香蕉国产精品| 国产又色又爽无遮挡免费看| 国产精品影院久久| 女同久久另类99精品国产91| 免费一级毛片在线播放高清视频| 中出人妻视频一区二区| 国内精品久久久久久久电影| av福利片在线| 欧美日韩一级在线毛片| 亚洲第一欧美日韩一区二区三区| 成年女人毛片免费观看观看9| 美女 人体艺术 gogo| 久久午夜亚洲精品久久| 亚洲五月天丁香| 亚洲av第一区精品v没综合| 听说在线观看完整版免费高清| 听说在线观看完整版免费高清| 一个人免费在线观看的高清视频| 嫩草影院精品99| 亚洲av日韩精品久久久久久密| 成人永久免费在线观看视频| 亚洲人成网站高清观看| 可以免费在线观看a视频的电影网站| 国产成人aa在线观看| 母亲3免费完整高清在线观看| 听说在线观看完整版免费高清| 一夜夜www| 国产精品 国内视频| 久久九九热精品免费| 精品无人区乱码1区二区| 欧美一级毛片孕妇| 亚洲avbb在线观看| 少妇的丰满在线观看| 免费在线观看亚洲国产| 毛片女人毛片| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av电影在线进入| 午夜福利在线在线| 12—13女人毛片做爰片一| 国产亚洲精品第一综合不卡| 97碰自拍视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲乱码一区二区免费版| 国产免费男女视频| 9191精品国产免费久久| 日韩大尺度精品在线看网址| 久久久久国产一级毛片高清牌| 可以免费在线观看a视频的电影网站| 国产精品久久视频播放| 九九热线精品视视频播放| av在线天堂中文字幕| a级毛片a级免费在线| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 欧美日韩乱码在线| 一夜夜www| 18禁裸乳无遮挡免费网站照片| 制服诱惑二区| 可以免费在线观看a视频的电影网站| 91大片在线观看| 国产免费男女视频| 亚洲一区二区三区色噜噜| 亚洲自拍偷在线| www.999成人在线观看| 母亲3免费完整高清在线观看| 久久久久国产一级毛片高清牌| 777久久人妻少妇嫩草av网站| 99re在线观看精品视频| 久久久久久大精品| 久久精品91无色码中文字幕| 69av精品久久久久久| 又大又爽又粗| 在线观看日韩欧美| 日本一二三区视频观看| 给我免费播放毛片高清在线观看| 国产av又大| 一进一出抽搐动态| 亚洲国产中文字幕在线视频| 亚洲国产精品久久男人天堂| 日韩大尺度精品在线看网址| 国产免费男女视频| 不卡一级毛片| 久久精品人妻少妇| 国产精品久久久久久亚洲av鲁大| 日韩精品青青久久久久久| 18禁观看日本| 女人高潮潮喷娇喘18禁视频| 少妇人妻一区二区三区视频| 午夜福利在线在线| 日韩欧美精品v在线| 亚洲av.av天堂| 我要看日韩黄色一级片| 91久久精品国产一区二区三区| 日本av手机在线免费观看| 亚洲欧美清纯卡通| 高清毛片免费观看视频网站| 亚洲五月天丁香| 色播亚洲综合网| 一本久久精品| 久久午夜亚洲精品久久| 三级毛片av免费| 欧美成人精品欧美一级黄| 老司机福利观看| 久久久精品大字幕| 联通29元200g的流量卡| 午夜视频国产福利| 欧美区成人在线视频| 国产精品1区2区在线观看.| 麻豆一二三区av精品| 国产高清三级在线| 亚洲在线观看片| 麻豆成人av视频| 全区人妻精品视频| 色哟哟哟哟哟哟| 久久久午夜欧美精品| 最好的美女福利视频网| 村上凉子中文字幕在线| 久久久成人免费电影| 久久久久久久久大av| 国产视频首页在线观看| 日韩人妻高清精品专区| 少妇人妻一区二区三区视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美精品综合久久99| 99在线视频只有这里精品首页| 男人的好看免费观看在线视频| 插阴视频在线观看视频| 99久久无色码亚洲精品果冻| 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 久久久久久久久中文| 国产精品1区2区在线观看.| 插逼视频在线观看| 全区人妻精品视频| 深夜a级毛片| 97超视频在线观看视频| 国产成人福利小说| av在线天堂中文字幕| 一区二区三区四区激情视频 | 成人亚洲精品av一区二区| 欧美3d第一页| 可以在线观看毛片的网站| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| avwww免费| 亚洲无线在线观看| 91在线精品国自产拍蜜月| 1024手机看黄色片| 免费看av在线观看网站| 亚洲在线观看片| 久久久久国产网址| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| 久久久久久久久久黄片| 亚洲18禁久久av| 综合色丁香网| 日韩高清综合在线| 国产人妻一区二区三区在| 久久人人爽人人片av| 在线播放国产精品三级| 特级一级黄色大片| av.在线天堂| 欧美又色又爽又黄视频| 精品国产三级普通话版| 中文精品一卡2卡3卡4更新| 有码 亚洲区| 欧美成人a在线观看| 欧美成人a在线观看| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| 尾随美女入室| 国产熟女欧美一区二区| 麻豆久久精品国产亚洲av| 精品人妻偷拍中文字幕| 亚洲自拍偷在线| 精品久久久久久久久亚洲| 男女做爰动态图高潮gif福利片| 久久久久久大精品| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 欧美日本视频| 国产精品一区二区性色av| 精品人妻视频免费看| 国产精品人妻久久久影院| 成人无遮挡网站| 一级黄片播放器| 久久这里有精品视频免费| 国产精品久久久久久亚洲av鲁大| 噜噜噜噜噜久久久久久91| 婷婷色av中文字幕| 婷婷亚洲欧美| 久久久久久伊人网av| 亚洲av熟女| 少妇熟女欧美另类| 国产在线精品亚洲第一网站| 一个人看视频在线观看www免费| 国产亚洲精品久久久久久毛片| 欧美一区二区精品小视频在线| 国产伦精品一区二区三区视频9| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类| 国产 一区 欧美 日韩| 人妻制服诱惑在线中文字幕| 亚洲激情五月婷婷啪啪| 精品午夜福利在线看| 欧美成人一区二区免费高清观看| 一级黄片播放器| 天堂网av新在线| 国产精品乱码一区二三区的特点| 在线观看免费视频日本深夜| 日韩av不卡免费在线播放| 久久亚洲精品不卡| 男女边吃奶边做爰视频| 熟女人妻精品中文字幕| 欧美潮喷喷水| 色哟哟哟哟哟哟| 美女大奶头视频| 亚洲最大成人av| 国产淫片久久久久久久久| 中文字幕制服av| 国产精品不卡视频一区二区| 99视频精品全部免费 在线| 身体一侧抽搐| 国产不卡一卡二| 18禁在线播放成人免费| 国产麻豆成人av免费视频| 男女那种视频在线观看| 国产探花极品一区二区| 中文字幕av成人在线电影| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩无卡精品| 亚洲欧洲国产日韩| 国产成人福利小说| 天天躁日日操中文字幕| 免费看日本二区| 免费观看精品视频网站| 熟女电影av网| 欧美日韩在线观看h| 亚洲精品色激情综合| 久久久久久大精品| 亚洲五月天丁香| 欧美高清性xxxxhd video| 欧美日本视频| 亚洲乱码一区二区免费版| 亚洲欧洲日产国产| 99久国产av精品国产电影| 九九爱精品视频在线观看| 特级一级黄色大片| 免费看a级黄色片| 国产亚洲91精品色在线| 六月丁香七月| 韩国av在线不卡| av黄色大香蕉| 亚洲无线观看免费| 在线天堂最新版资源| 国产高清激情床上av| 国产黄色小视频在线观看| 蜜桃亚洲精品一区二区三区| 午夜视频国产福利| 欧美+亚洲+日韩+国产| 97超视频在线观看视频| 春色校园在线视频观看| 99久国产av精品| 中国美白少妇内射xxxbb| 美女脱内裤让男人舔精品视频 | 国产伦在线观看视频一区| 在线观看免费视频日本深夜| 哪个播放器可以免费观看大片| 国产黄a三级三级三级人| 国产人妻一区二区三区在| 小蜜桃在线观看免费完整版高清| 精品一区二区三区人妻视频| 少妇丰满av| av在线播放精品| 国产麻豆成人av免费视频| 97超碰精品成人国产| 亚洲真实伦在线观看| 免费观看人在逋| 少妇人妻精品综合一区二区 | 99热这里只有是精品50| 人妻制服诱惑在线中文字幕| 日产精品乱码卡一卡2卡三| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 精品人妻偷拍中文字幕| 亚洲内射少妇av| 亚洲五月天丁香| 精品久久久久久久久久久久久| 国产成人freesex在线| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 午夜福利在线在线| 美女cb高潮喷水在线观看| 亚洲丝袜综合中文字幕| 久久久久久九九精品二区国产| 爱豆传媒免费全集在线观看| 性插视频无遮挡在线免费观看| 一级av片app| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| 舔av片在线| 乱码一卡2卡4卡精品| 国产三级在线视频| 免费观看的影片在线观看| 国产免费男女视频| 久久精品国产清高在天天线| 熟女人妻精品中文字幕| 国产精品国产高清国产av| 色综合亚洲欧美另类图片| 国产亚洲精品久久久com| 国内精品久久久久精免费| 亚洲成人中文字幕在线播放| av卡一久久| 日韩欧美在线乱码| 看非洲黑人一级黄片| 久久午夜亚洲精品久久| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 亚洲最大成人av| 女人被狂操c到高潮| 91狼人影院| 久久99蜜桃精品久久| 69人妻影院| 直男gayav资源| 欧美三级亚洲精品| 国产精品国产三级国产av玫瑰| av女优亚洲男人天堂| 久久久久久久久中文| 亚洲真实伦在线观看| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 久久久久免费精品人妻一区二区| ponron亚洲| 91久久精品国产一区二区三区| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 变态另类成人亚洲欧美熟女| 美女国产视频在线观看| 女人十人毛片免费观看3o分钟| 又爽又黄a免费视频| 亚洲欧美精品自产自拍| 国产精品爽爽va在线观看网站| 乱系列少妇在线播放| 国产成人精品一,二区 | 国产私拍福利视频在线观看| 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 看免费成人av毛片| 3wmmmm亚洲av在线观看| 亚洲七黄色美女视频| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 国产精品伦人一区二区| 国产成人一区二区在线| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 黄色欧美视频在线观看| 国产 一区精品| 亚洲内射少妇av| 啦啦啦啦在线视频资源| 一级黄色大片毛片| 亚洲一级一片aⅴ在线观看| 1024手机看黄色片| 国产免费男女视频| 久久精品国产自在天天线| 日韩高清综合在线| 联通29元200g的流量卡| 99视频精品全部免费 在线| 亚洲av成人av| 一级黄片播放器| 免费av观看视频| 国产亚洲5aaaaa淫片| 日本爱情动作片www.在线观看| 中出人妻视频一区二区| 国产老妇女一区| 国产一区二区激情短视频| 日韩一区二区三区影片| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影| 可以在线观看的亚洲视频| 看黄色毛片网站| av天堂在线播放| 在线观看午夜福利视频| 免费观看精品视频网站| 日本与韩国留学比较| 成人午夜高清在线视频| 午夜久久久久精精品| 久久国产乱子免费精品| 18禁裸乳无遮挡免费网站照片| 日韩视频在线欧美| 波多野结衣高清无吗| 舔av片在线| 国产91av在线免费观看| 国内精品美女久久久久久| 99热只有精品国产| 亚洲五月天丁香| 国产伦精品一区二区三区四那| 日韩欧美 国产精品| 国产成人91sexporn| 麻豆精品久久久久久蜜桃| 久久久久久久久久久免费av| 免费电影在线观看免费观看| 乱系列少妇在线播放| 大香蕉久久网| 亚洲精品色激情综合| 亚洲人与动物交配视频| 不卡视频在线观看欧美| 久久这里只有精品中国| 麻豆成人午夜福利视频| 色综合色国产| 99在线人妻在线中文字幕| 国产精品蜜桃在线观看 | 国产老妇女一区| 97在线视频观看| 久久久午夜欧美精品| 国内精品一区二区在线观看| 波多野结衣高清作品| 99久国产av精品| av天堂在线播放| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 国产日本99.免费观看| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 观看免费一级毛片| 91av网一区二区| 91在线精品国自产拍蜜月| 亚洲国产日韩欧美精品在线观看| 亚洲18禁久久av| 中文字幕制服av| 国产精品一区二区性色av| 偷拍熟女少妇极品色| 精品人妻一区二区三区麻豆| 只有这里有精品99| 一级毛片我不卡| 国产午夜精品论理片| 黑人高潮一二区| 欧洲精品卡2卡3卡4卡5卡区| 国产高清不卡午夜福利| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 免费电影在线观看免费观看| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 国产真实乱freesex| 人体艺术视频欧美日本| 欧美性感艳星| 国产精品野战在线观看| 亚洲综合色惰| 成人鲁丝片一二三区免费| 身体一侧抽搐| 性插视频无遮挡在线免费观看| 亚洲精华国产精华液的使用体验 | 99riav亚洲国产免费| 97超碰精品成人国产| 精品久久久久久久久av| 国产综合懂色| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 成人毛片60女人毛片免费| 亚洲aⅴ乱码一区二区在线播放| 欧美变态另类bdsm刘玥| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 欧美三级亚洲精品| 69av精品久久久久久| av专区在线播放| 精品一区二区免费观看| 欧美成人免费av一区二区三区| 中文字幕av成人在线电影| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看| 免费av毛片视频| 人妻少妇偷人精品九色| 精品少妇黑人巨大在线播放 | 欧美日韩在线观看h| 精品欧美国产一区二区三| 亚洲中文字幕日韩| av在线天堂中文字幕| 精品久久久噜噜| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 少妇人妻一区二区三区视频| 久久久久性生活片| 国产高潮美女av| 一本久久中文字幕| 婷婷精品国产亚洲av| 激情 狠狠 欧美| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| 国产精品久久久久久精品电影小说 | 国产精品嫩草影院av在线观看| 亚洲欧美日韩东京热| 九九热线精品视视频播放| 国产精品野战在线观看| 欧美精品国产亚洲| 久久精品久久久久久久性| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 国产伦在线观看视频一区| 久久久久久大精品| 亚洲av中文字字幕乱码综合| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 亚洲成av人片在线播放无| a级毛片免费高清观看在线播放| 久久久精品大字幕| av免费在线看不卡| 日本三级黄在线观看| 在线观看一区二区三区| 一级av片app| 国产精品福利在线免费观看| 免费在线观看成人毛片| 在线观看av片永久免费下载| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 国产成人影院久久av| 亚洲成人av在线免费| 久久韩国三级中文字幕| 少妇熟女aⅴ在线视频| 国产精品女同一区二区软件| 18+在线观看网站| 亚州av有码| 亚洲人成网站高清观看| 美女黄网站色视频| 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 日韩一区二区三区影片| 2022亚洲国产成人精品| 一进一出抽搐动态| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站 | 中国美女看黄片| h日本视频在线播放| 性插视频无遮挡在线免费观看| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放| www.av在线官网国产| 国产高清有码在线观看视频| 亚洲无线观看免费| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 亚洲在久久综合| 搡老妇女老女人老熟妇| 人妻制服诱惑在线中文字幕| 99国产精品一区二区蜜桃av| 伦理电影大哥的女人| 免费搜索国产男女视频| www.av在线官网国产| 一个人免费在线观看电影| 三级经典国产精品| 国内精品宾馆在线| 日产精品乱码卡一卡2卡三| 国产亚洲欧美98| 欧美bdsm另类| 乱码一卡2卡4卡精品|