• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Using Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to analyze differentially expressed brain polypeptides in scrapie strain 22L-infected BALB/c mice***☆

    2011-07-19 08:08:24XiangyuLiaoJiayuWanWensenLiuXinTangWufeiZhuNaXuJingXuNanLiYapingChangChuanjingJu

    Xiangyu Liao , Jiayu Wan, Wensen Liu, Xin Tang, Wufei Zhu , Na Xu Jing Xu, Nan Li,Yaping Chang Chuanjing Ju

    1Department of Immunology, Norman Bethune College of Medical Science, Jilin University, Changchun 130021, Jilin Province, China

    2The First Clinical Medical College of Three Gorges University, Yichang Central Hospital, Yichang 443003, Hubei Province, China

    3Institute of Military Veterinary Sciences, Academy of Military Medical Sciences, Changchun 130122, Jilin Province, China

    4College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China

    5The Fourth Hospital of Jilin University, Changchun 130011, Jilin Province, China

    INTRODUCTION

    Prion diseases, or transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases affecting the central nerve system in both humans and animals. The misfolded prion proteins are transmissible particles which are devoid of nucleic acid[1-2]. There are two forms of prion protein: one is cellular prion protein (PrPc),which is normal; the other is misfolded prion protein (PrPsc), which transmits the disease.

    Conversion of PrPcto PrPscand accumulation of PrPscin the brain leads to prion disease[3-5]. The mechanism underlying prion disease is poorly understood. Investigators have tried to use transcriptomic and proteomic methods such as microarrays,two-dimensional polyacrylamide gel electrophoresis, and liquid chromatography-mass spectrometry to uncover mechanisms underlying neurodegenerative disease[6-15]. However, extraction, separation and identification are essential for sample preparation and these processes subsequently destroy tissue structure, complicating understanding of the relationship between tissue and the proteins characteristic of that tissue[16].

    In recent years, a new technique named imaging mass spectrometry (IMS) has appeared which is based on biological mass spectrometry, proteomics, and metabolomics. Biological tissue samples coated with matrix can be directly scanned and analyzed by IMS, for example, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Using a combination of data processing and image reconstruction, MALDI-TOF/MS is used to define the position and relative amount of specific molecules in different regions of diseased and normal tissues, and to determine the distribution of polypeptides. There is no need to extract protein or peptides from the tissues of interest, or to stain with drugs, because IMS can correlate the region,process and molecules related to the disease with the region. IMS also shows good potential for evaluating the pathogenesis,development, prognostic value, and selection of drug. It is reported that IMS has been widely used to observe protein distribution in diseased versus normal tissues for different diseases. For instance, it has been applied to evaluate the distribution of protein in mouse brain, colon and testis,changes in protein expression in

    Parkinson’s and Alzheimer’s disease, and differentially expressed proteins in breast cancer, prostatic carcinoma and lung cancer[17-29]. However, there is little data regarding application of IMS to prion disease for finding differentially expressed peptides or proteins.

    In this study, a model of scrapie infection was established in BALB/c mice intracerebrally using the 22L strain of scrapie. In the final stage of disease, mice were sacrificed, brains harvested and frozen sections prepared.

    Hematoxylin and eosin staining and IMS were performed in parallel to observe pathological changes and differentially expressed peptides. This approach provides a new way of diagnosing prion disease.

    RESULTS

    Quantitative analysis of experimental animals

    Ten female BALB/c mice were randomly divided into two groups, with five mice in each group. The test group was inoculated intraperitoneally with 22L-infected brain homogenate, while the control group was inoculated with normal homogenate. No animals died during the experiment and all 10 mice were analyzed.

    Behavioral changes and incubation period of 22L-infected BALB/c mice

    To investigate the incubation period of 22L-infected BALB/c mice, the survival rate and clinical manifestation were measured. At 120 days post inoculation, five experimental mice exhibited clinical symptoms such as rough coat, hunched back, hyperresponsiveness, ataxia and weight loss, which lasted for 2 weeks. At 140 days post inoculation, experimental mice were depressed,cachectic, and moribund (supplementary Figure 1 online).

    Control mice did not appear to have these symptoms.The average incubation period of 22L-infected mice was 140.8 ± 4.1 days (Figure 1).

    Figure 1 Survival curves of 22L-infected and control mice. The average incubation period was 140.8 ± 4.1 days.

    Brain pathology of 22L-infected mice at the terminal stage

    Hematoxylin-eosin staining was used to assess the changes in brain morphology of 22L-infected mice. The cortex and hippocampus of infected mice showed vacuolation to different extents (Figure 2). This indicated that 22L-infected mice appear to have typical pathological changes associated with prion disease, such as vacuolation of neurons at the terminal stage, and suggested establishment of a prion mouse model.

    Figure 2 Pathological changes in the brain of 22L-infected mice at terminal stage disease (hematoxylineosin staining, × 400). Vacuoles were detected in the cortex and hippocampus of 22L-infected mice (arrows in B and D). No vacuoles were detected in control group (A and C).

    Differentially expressed polypeptides in brain of 22L-infected mice analyzed by MALDI-TOF IMS

    To explore differentially expressed polypeptides in prion disease, brain of 22L-infected mice at end-stage disease was analyzed by IMS. In preliminary experiments, we found that 7 mg/mL alpha-cyano-4-hydroxycinnamic acid(CHCA) in 0.1% TFA and 50% acetonitrile allows high quality mass spectra to be obtained from intact tissues.MALDI mass spectrum were obtained from direct analysis of brain sections of 22L-infected and control mice, in the mass-to-charge ratio (m/z) range from 1 000-20 000 Da (Figure 3).

    Figure 3 Mass spectrometry of 22L-infected and control mouse brain. 1-5: Mass spectrometry of control mice;6-10: mass spectrometry of 22L-infected mice.

    Peptides that had the same m/z were downregulated in 22L-infected mice. By applying FlexAnalysis 3.0, Fleximaging 2.0 and ClinProtools 3.0, we were able to identify 21 peptides that were downregulated. The m/z of these peptides was: 758.772 5, 894.891 9,1 167.130 8, 1 507.429 4, 1 983.847 5, 2 029.220 6,3 345.042, 4 796.982 8, 4 933.102 2, 5 205.341 1,5 432.206 9, 6 702.655 1, 6 271.610 2, 7 065.640 3,7 542.058 4, 7 836.783 8, 8 562.954 2, 8 948.626,9 946.835 3, 12 147.433 and 14 121.165. Peptides 758.772 5 and 5 432.206 9 were downregulated in test mice relative to controls (P < 0.05). The spatial distribution of these two peptides in brain sections is shown in Figure 4. Both m/z 758.772 5 and m/z 5 432.206 9 were expressed in brain sections of control mice, but were expressed at a low level in 22L-infected mice.

    Figure 4 Distribution of polypeptides (m/z 758.772 5 and m/z 5 432.206 9) in the brain of 22L-infected and control mice. Section 1-5: control mice; 6-10: 22L-infected mice.Scale bars: 10 mm. m/z: Mass-to-charge ratio.

    DISCUSSION

    It has been reported that prion disease can propagate between species such as monkey, cavia, hamster and mouse. Diseased animals showed similar pathological changes when infected with prion disease[30]. As mice are small and easy to obtain and raise, they are good choices to establish models of prion disease. In addition,many prion strains have been isolated from different mouse hosts. Because they are easily transmitted,scrapie strains are considered as a good choice to establish models of prion disease[31]. In this study, we used scrapie strain 22L to establish a BALB/c mouse model of prion disease. At 120 days post inoculation, the 22L-infected mice presented clinical symptoms such as a rough coat, hunched back, ataxia, and weight loss. The average incubation period was 140.8 ± 4.1 days. Hematoxylin-eosin staining of brain sections revealed that the cortex and hippocampus showed differential vacuolation, indicative of typical prion pathology.

    MALDI-IMS is a new technology that allows for simultaneous profiling of hundreds of peptides and proteins present in thin tissue sections. The key steps of IMS are preparation of tissue sections, coating them in matrix,followed by mass spectrometric analysis[32]. Matrix is crucial in IMS experiments. Depending on the properties of the samples, different matrices are selected. The commonly used matrices are CHCA, 2,5-dihydroxybenzoic acid (DHB), and sinapic acid (SA).

    The selection of matrix depends on the analyte. SA is usually used for high molecular range compounds such as proteins, while CHCA is for low-molecular range species such as lipids and peptides. DHB is for small molecules in metabolites and pharmaceuticals[32-34]. In addition, the matrix solvent is also very important. Since the aim of this study was to observe expression changes in polypeptides in prion disease, CHCA was selected. In preliminary experiments, we found that 7 mg/mL CHCA in 0.1% TFA and 50% acetonitrile allowed high-quality mass spectra to be obtained from intact tissues.

    Rohner et al[35]analyzed brain tissue sections of Alzheimer’s disease by IMS and observed a specific distribution of m/z 4545.1. Onoue et al[36]used IMS to analyze heart tissue from patients with Fabry’s disease,wherein polypeptide m/z 782.5 showed unique peaks and elevated levels relative to controls. This suggested m/z 782.5 might be a biomarker for Fabry’s disease.

    Stoeckli et al[20]analyzed 1 mm lung cancer biopsies by IMS. More than 1 600 mass spectra peaks were acquired and 15 of them were correlated to lung cancer.

    Brains of five 22L-infected mice at terminal disease, and five controls, were analyzed by MALDI-TOF/IMS. We first reported the downregulation of 21 polypeptides in infected mice. The peptides with m/z 758.772 5 and 5 432.206 9 were statistically significantly down-regulated in test mice relative to controls (P < 0.05). This indicated that these peptides might play an important role in prion disease and may serve as biomarkers. This study established 22L-infected BALB/c mice as a model of prion disease. At a range of 1 000- 20 000 Da, 21 polypeptides were down-regulated, with peptides m/z 758.772 5 and m/z 5 432.206 9 showing statistically significant differences. This suggests that they may play an important role in prion disease and are potential diagnostic biomarkers.

    MATERIALS AND METHODS

    Design

    The study was a randomized, controlled experiment.

    Time and setting

    It was performed at the Institute of Military Veterinary Sciences, Academy of Military Medical Sciences, China,and the Department of Immunology, Norman Bethune College of Medical Science, Jilin University, China, from September 2009 to February 2010.

    Materials

    Ten female BALB/c mice, aged 4-6 weeks, weighing 18-22 g, of clean grade were purchased from the Experimental Animal Center of Jilin University, China. All mice were housed under controlled lighting (12-hour light/darkness), temperature (21-22°C), and humidity(60-65%) in standard, individually ventilated cages in barrier conditions in the same animal facility, and allowed access to food and water ad libitum. The experimental protocols were in strict accordance with the Guidance Suggestions for the Care and Use of Laboratory Animals,formulated by the Ministry of Science and Technology of the People’s Republic of China[37].

    Methods

    Establishment of 22L-infected BALB/c mice models

    After being anesthetized by diethyl ether, mice were inoculated intraperitoneally (2-3 cm depth below cranium) with a 10-2dilution (25 μL/mouse) of 22L scrapie brain homogenates (No. 5 Laboratory, Institute of Military Veterinary Sciences, Academy of Military Medical Sciences, China), or normal brain homogenate at the right brain (isometric site between right eye and right ear), with sterile syringes. Behavior was observed once every 3 days. After the mice presented with rough coat, hunched back, weight loss, ataxia,and paralysis for 1 week, they were diagnosed as having onset of prion disease. If the mice showed rapid weight loss, hyporesponsiveness, and articulo mortis, they were considered to be at the end point of disease pathogenesis.

    Tissue section preparation

    Five 22L-infected and five control mice were sacrificed at end stage disease. Brains were harvested and put into brain tooting (Shenzhen Rui Wode Life Sciences Ltd,Shenzhen, China). Brains were frozen in liquid nitrogen for 1-2 minutes, and stored at -80°C for 20 minutes.

    Before sectioning, each brain was divided into five parts according to the scale of the brain tooting. Each part of the brain was cut into 10-μm-thick sections using a cryostat (Leica, Solms, Germany). Sections were thaw-mounted on conductive glass slides (Bruker Daltonics, Bremen, Germany) and marked. The sections were immersed in 70% ethanol (TEDIA, Carson, CA,USA) for 30 seconds, then 100% ethanol for 30 seconds. After drying in a desiccator for 30 minutes, tissue sections were scanned using a scanner (Hewlett-Packard Development Company, PaloAlto, CA,USA). Each brain was cut into 5-μm-thick sections.The sections were subjected to routine hematoxylin-eosin staining[38].

    Matrix coating

    CHCA (Bruker Daltonics, Bremen, Germany) matrix solutions were prepared fresh at a concentration of 7 mg/mL in 50% acetonitrile (TEDIA) and 0.1% TFA (TEDIA). A pneumatic matrix sprayer (Bruker Daltonics) was used to apply matrix coating. Sections were then fixed onto a stainless steel MALDI plate and analyzed by MALDI-TOF.

    Mass spectrometry analysis

    IMS was performed using a MALDI-TOF/TOF-type III instrument (Bruker Daltonics). The data were acquired in positive ion mode using an external calibration method. In this analysis, signals over the range of m/z 1-20 kDa were measured at an accelerating voltage of 25 kV, an ion source voltage of 20 kV, and a laser energy range of 30-50%. FlexImaging v.2.0 software(Bruker Daltonics) was used for image reconstruction.

    Images were captured using FlexControl 3.0 (Bruker Daltonics). The scan area was defined in Fleximaging 2.0 (Bruker Daltonics) and divided into two-dimensional lattices. The distance between two points was 150 μm, with every point matched to a mass chromatogram.

    Statistical analysis

    Mass spectrometry data was analyzed by ClinProtools 3.0 software (Bruker Daltonics). The data were expressed as mean ± SD, followed by t-tests. Differences were considered statistically significant at P < 0.05.

    Author contributions:Xiangyu Liao provided and integrated experimental data, and wrote the manuscript. Jiayu Wan,Wensen Liu and Chuanjing Ju were responsible for the funding and authorized the study. Xin Tang, Na Xu and Wufei Zhu analyzed experimental data. Jing Xu and Nan Li acquired the IMS data. Yaping Chang designed and authorized the study.

    Conflicts of interest:None declared.

    Funding:The study was supported by the National Natural Science Foundation of China, No. 30972197 and 31072148,and the Science and Technology Plan Program of Jilin Province,No. 201105038.

    Ethical approval:The experiment was approved by the Animals Ethics Committee of the Academy of Military Medical Sciences, China and Jilin University, China.

    Supplementary information:Supplementary data associated with this article can be found, in the online version, by visiting www.nrronline.org, and entering Vol. 6, No. 23, 2011 after selecting the “NRR Current Issue” button on the page.

    [1]Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95(23):13363-13383.

    [2]Prusiner SB. Molecular biology of prion diseases. Science. 1991;252(5012):1515-1522.

    [3]Pan KM, Baldwin M, Nguyen J, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA. 1993;90(23):10962-10966.

    [4]Pergami P, Jaffe H, Safar J. Semipreparative chromatographic method to purify the normal cellular isoform of the prion protein in nondenatured form. Anal Biochem. 1996;236(1):63-73.

    [5]Kretzschmar HA, Ironside JW, DeArmond SJ, et al. Diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Arch Neurol. 1996;53(9):913-920.

    [6]Hwang D, Lee IY, Yoo H, et al. A systems approach to prion disease. Mol Syst Biol. 2009;5(252):1-10.

    [7]Tang Y, Xiang W, Hawkins SA, et al. Transcriptional changes in the brains of cattle orally infected with the bovine spongiform encephalopathy agent precede detection of infectivity. J Virol.2009;83(18):9464-9473.

    [8]Cosseddu GM, Andreoletti O, Maestrale C, et al. Gene expression profiling on sheep brain reveals differential transcripts in scrapie-affected/not-affected animals. Brain Res. 2007;1142:217-222.

    [9]Xiang W, Hummel M, Mitteregger G, et al. Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model. J Neurochem. 2007;102(3):834-847.

    [10]Qualtieri A, Urso E, Le Pera M, et al. Proteomic profiling of cerebrospinal fluid in Creutzfeldt-Jakob disease. Expert Rev Proteomics. 2010;7(6):907-917.

    [11]Thomas SN, Cripps D, Yang AJ. Proteomic analysis of protein phosphorylation and ubiquitination in Alzheimer's disease.Methods Mol Biol. 2009;566:109-121.

    [12]Giorgi A, Di Francesco L, Principe S, et al. Proteomic profiling of PrP27-30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics. 2009;9(15):3802-3814.

    [13]Alberio T, Bossi AM, Milli A, et al. Proteomic analysis of dopamine and alpha-synuclein interplay in a cellular model of Parkinson's disease pathogenesis. Febs J. 2010;277(23):4909-4919.

    [14]Maarouf CL, Andacht TM, Kokjohn TA, et al. Proteomic analysis of Alzheimer's disease cerebrospinal fluid from neuropathologically diagnosed subjects. Curr Alzheimer Res. 2009;6(4):399-406.

    [15]Cepek L, Brechlin P, Steinacker P, et al. Proteomic analysis of the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Dement Geriatr Cogn Disord. 2007;23(1):22-28.

    [16]Curran S, McKay JA, McLeod HL, et al. Laser capture microscopy.Mol Pathol. 2000;53(2):64-68.

    [17]Walch A, Rauser S, Deininger SO, et al. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol. 2008;130(3):421-434.

    [18]Chaurand P, Schwartz SA, Reyzer ML, et al. Imaging mass spectrometry: principles and potentials. Toxicol Pathol. 2005;33(1):92-101.

    [19]Chaurand P, Stoeckli M, Caprioli RM. Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem. 1999;71(23):5263-5270.

    [20]Stoeckli M, Chaurand P, Hallahan DE, et al. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7(4):493-496.

    [21]Todd PJ, Schaaff TG, Chaurand P, et al. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom.2001;36(4):355-369.

    [22]Chaurand P, Fouchecourt S, DaGue BB, et al. Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics. 2003;3(11):2221-2239.

    [23]Pierson J, Norris JL, Aerni HR, et al. Molecular profiling of experimental Parkinson's disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res. 2004;3(2):289-295.

    [24]Stoeckli M, Staab D, Staufenbiel M, et al. Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem. 2002;311(1):33-39.

    [25]Palmer-Toy DE, Sarracino DA, Sgroi D, et al. Direct acquisition of matrix-assisted laser Desorption/Ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin Chem.2000;46(9):1513-1516.

    [26]Xu BJ, Caprioli RM, Sanders ME, et al. Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J Am Soc Mass Spectrom. 2002;13(11):1292-1297.

    [27]Masumori N, Thomas TZ, Chaurand P, et al. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res. 2001;61(5):2239-2249.

    [28]Schwamborn K, Krieg RC, Reska M, et al. Identifying prostate carcinoma by MALDI-Imaging. Int J Mol Med. 2007;20(2):155-159.

    [29]Bhattacharya SH, Gal AA, Murray KK. Laser capture microdissection MALDI for direct analysis of archival tissue. J Proteome Res. 2003;2(1):95-98.

    [30]Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol. 2007;8(7):552-561.

    [31]Bruce ME. Scrapie strain variation and mutation. Br Med Bull.1993;49(4):822-838.

    [32]Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom. 2003;38(7):699-708.

    [33]Lemaire R, Desmons A, Tabet JC, et al. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res. 2007;6(4):1295-1305.

    [34]Baluya DL, Garrett TJ, Yost RA. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem. 2007;79(17):6862-6867.

    [35]Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev. 2005;126(1):177-185.

    [36]Onoue K, Zaima N, Sugiura Y, et al. Using imaging mass spectrometry to accurately diagnose Fabry’s disease. Circ J.2003;75(1):221-223.

    [37]The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.

    [38]Tsuda H, Seki K, Hasebe T, et al. A histopathological study for evaluation of therapeutic effects of radiofrequency ablation in patients with breast cancer. Breast Cancer. 2011;18(1):24-32.

    xxx大片免费视频| 高清不卡的av网站| 国产成人精品无人区| 91久久精品电影网| 夜夜看夜夜爽夜夜摸| 精品熟女少妇av免费看| 大话2 男鬼变身卡| 日韩一本色道免费dvd| 国产黄色免费在线视频| 在线观看免费日韩欧美大片 | 亚洲,欧美,日韩| 如何舔出高潮| 亚洲美女搞黄在线观看| 久久久a久久爽久久v久久| 女的被弄到高潮叫床怎么办| 国产色婷婷99| 精品一品国产午夜福利视频| 日韩欧美一区视频在线观看| 成年女人在线观看亚洲视频| 亚洲精品一二三| 看十八女毛片水多多多| 亚洲成人av在线免费| 日韩熟女老妇一区二区性免费视频| 日本-黄色视频高清免费观看| 亚洲精品亚洲一区二区| 免费观看a级毛片全部| 亚洲精品久久久久久婷婷小说| 国产国语露脸激情在线看| 最新中文字幕久久久久| 一级二级三级毛片免费看| 亚洲精品国产av成人精品| 久久99热6这里只有精品| 天天影视国产精品| 久久女婷五月综合色啪小说| 哪个播放器可以免费观看大片| 免费久久久久久久精品成人欧美视频 | 亚洲精品av麻豆狂野| 国产精品熟女久久久久浪| 亚洲美女搞黄在线观看| 久久亚洲国产成人精品v| 在线看a的网站| 亚洲美女视频黄频| 啦啦啦中文免费视频观看日本| 2021少妇久久久久久久久久久| 国产69精品久久久久777片| 亚洲av成人精品一区久久| 午夜福利,免费看| 全区人妻精品视频| 欧美精品一区二区免费开放| 日韩制服骚丝袜av| 中国国产av一级| 热99国产精品久久久久久7| 三上悠亚av全集在线观看| 欧美精品高潮呻吟av久久| 久久精品人人爽人人爽视色| av播播在线观看一区| 在线观看三级黄色| 99久久综合免费| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 97超碰精品成人国产| 国产熟女欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区四区激情视频| 日本黄色片子视频| av在线app专区| 99re6热这里在线精品视频| 免费av不卡在线播放| 国产有黄有色有爽视频| 午夜日本视频在线| 哪个播放器可以免费观看大片| 精品久久国产蜜桃| 日韩欧美精品免费久久| 狂野欧美激情性bbbbbb| 国产无遮挡羞羞视频在线观看| 精品久久久精品久久久| 国产亚洲最大av| 亚洲精品日韩在线中文字幕| 久久99蜜桃精品久久| 亚洲精品,欧美精品| 热99久久久久精品小说推荐| 伦精品一区二区三区| 不卡视频在线观看欧美| 国产精品 国内视频| 成人国产麻豆网| 18禁在线播放成人免费| 欧美 亚洲 国产 日韩一| 丰满饥渴人妻一区二区三| 亚洲国产成人一精品久久久| 亚洲国产毛片av蜜桃av| 精品人妻在线不人妻| 五月开心婷婷网| 18在线观看网站| 99久久中文字幕三级久久日本| 91在线精品国自产拍蜜月| 黄色视频在线播放观看不卡| 日本91视频免费播放| 激情五月婷婷亚洲| xxxhd国产人妻xxx| 五月天丁香电影| 久热久热在线精品观看| 亚洲内射少妇av| 亚洲性久久影院| 精品酒店卫生间| 国产又色又爽无遮挡免| 狠狠婷婷综合久久久久久88av| 亚洲高清免费不卡视频| 国产亚洲最大av| 免费观看的影片在线观看| 日韩视频在线欧美| 日本av免费视频播放| 亚洲色图综合在线观看| 免费少妇av软件| 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图 | 国产精品人妻久久久久久| 91aial.com中文字幕在线观看| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 亚洲精品亚洲一区二区| 亚洲成人手机| 成人综合一区亚洲| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 国产免费又黄又爽又色| 一区二区三区精品91| 日日爽夜夜爽网站| 黄色欧美视频在线观看| 午夜av观看不卡| 少妇猛男粗大的猛烈进出视频| 极品少妇高潮喷水抽搐| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 丝瓜视频免费看黄片| 全区人妻精品视频| 99九九线精品视频在线观看视频| 亚洲少妇的诱惑av| 免费人妻精品一区二区三区视频| 日韩欧美精品免费久久| 尾随美女入室| 一区二区三区精品91| 伦理电影免费视频| 九九在线视频观看精品| 男女免费视频国产| 久久99一区二区三区| 日本wwww免费看| 国产日韩一区二区三区精品不卡 | 在线亚洲精品国产二区图片欧美 | 18禁在线播放成人免费| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 日韩人妻高清精品专区| 日本爱情动作片www.在线观看| 内地一区二区视频在线| 麻豆成人av视频| 精品国产一区二区久久| 国产亚洲精品久久久com| 亚洲国产毛片av蜜桃av| av在线观看视频网站免费| 久久国产亚洲av麻豆专区| 午夜影院在线不卡| 五月伊人婷婷丁香| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院 | 色吧在线观看| 亚洲精品456在线播放app| 免费av不卡在线播放| 2018国产大陆天天弄谢| 成年av动漫网址| 男女免费视频国产| 亚洲色图综合在线观看| 少妇的逼水好多| 美女主播在线视频| 国产精品99久久99久久久不卡 | 美女福利国产在线| 一级毛片aaaaaa免费看小| 国产精品成人在线| 美女cb高潮喷水在线观看| 亚洲丝袜综合中文字幕| 伊人亚洲综合成人网| 久久精品国产自在天天线| 波野结衣二区三区在线| 欧美精品一区二区免费开放| 日本猛色少妇xxxxx猛交久久| 熟妇人妻不卡中文字幕| 中文字幕久久专区| 高清午夜精品一区二区三区| 成人国产av品久久久| 一级爰片在线观看| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 女性被躁到高潮视频| 精品亚洲成国产av| 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 国产日韩一区二区三区精品不卡 | 考比视频在线观看| 久久女婷五月综合色啪小说| 最新中文字幕久久久久| 一区二区三区免费毛片| 18+在线观看网站| 搡女人真爽免费视频火全软件| 国内精品宾馆在线| 人人妻人人爽人人添夜夜欢视频| www.色视频.com| 日韩伦理黄色片| 女性被躁到高潮视频| 伊人久久精品亚洲午夜| 伦理电影免费视频| 久久国产精品男人的天堂亚洲 | 久久人人爽av亚洲精品天堂| 乱码一卡2卡4卡精品| 欧美亚洲 丝袜 人妻 在线| 性色avwww在线观看| 日韩成人伦理影院| 高清av免费在线| 丝袜在线中文字幕| 国产黄色免费在线视频| 五月天丁香电影| 大香蕉久久网| 多毛熟女@视频| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 日本欧美国产在线视频| 波野结衣二区三区在线| 91在线精品国自产拍蜜月| 国产淫语在线视频| 日日撸夜夜添| 日本黄色片子视频| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 草草在线视频免费看| 久久久久精品性色| 高清午夜精品一区二区三区| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 精品久久久噜噜| 国产熟女午夜一区二区三区 | 欧美日韩在线观看h| 亚洲av免费高清在线观看| 欧美日本中文国产一区发布| 搡老乐熟女国产| 久久久a久久爽久久v久久| av免费观看日本| 国产精品99久久99久久久不卡 | 少妇熟女欧美另类| 晚上一个人看的免费电影| 国产成人精品无人区| 午夜福利视频精品| 精品人妻熟女毛片av久久网站| 亚洲av福利一区| 18禁观看日本| 日本午夜av视频| 久久久久国产精品人妻一区二区| 亚洲国产欧美在线一区| 亚洲精品一区蜜桃| 26uuu在线亚洲综合色| 99热6这里只有精品| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 80岁老熟妇乱子伦牲交| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 日本色播在线视频| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| 一区二区三区四区激情视频| 在线精品无人区一区二区三| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 纯流量卡能插随身wifi吗| 亚洲精品日韩在线中文字幕| 国产精品99久久99久久久不卡 | 国产精品人妻久久久影院| 国产精品蜜桃在线观看| 亚洲精品乱码久久久久久按摩| 午夜福利影视在线免费观看| 免费高清在线观看日韩| 天美传媒精品一区二区| 国产毛片在线视频| av一本久久久久| 精品亚洲成国产av| 日本vs欧美在线观看视频| 欧美3d第一页| 久久99一区二区三区| 精品少妇内射三级| www.av在线官网国产| 国产片内射在线| 少妇精品久久久久久久| 久久久久久伊人网av| 飞空精品影院首页| av免费观看日本| 韩国av在线不卡| 高清黄色对白视频在线免费看| 精品国产国语对白av| 一个人看视频在线观看www免费| 一级毛片电影观看| 人妻 亚洲 视频| 97超视频在线观看视频| 丁香六月天网| 草草在线视频免费看| 久热久热在线精品观看| 一区在线观看完整版| 国产日韩欧美视频二区| 亚洲精品乱码久久久久久按摩| 色婷婷久久久亚洲欧美| 亚洲第一区二区三区不卡| 好男人视频免费观看在线| 亚洲在久久综合| 欧美精品国产亚洲| 成人综合一区亚洲| 十分钟在线观看高清视频www| 蜜桃久久精品国产亚洲av| 大香蕉久久成人网| 熟女人妻精品中文字幕| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 91久久精品电影网| 黄色视频在线播放观看不卡| 男女免费视频国产| 中文乱码字字幕精品一区二区三区| 插逼视频在线观看| 性色avwww在线观看| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 久久精品久久精品一区二区三区| 免费看光身美女| 国产日韩一区二区三区精品不卡 | 黑人高潮一二区| av在线app专区| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 日本色播在线视频| 亚洲国产成人一精品久久久| 婷婷色综合大香蕉| 如何舔出高潮| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 精品人妻熟女毛片av久久网站| 9色porny在线观看| 秋霞伦理黄片| 精品一区二区免费观看| 在线亚洲精品国产二区图片欧美 | 亚洲av成人精品一区久久| 亚洲av男天堂| 亚洲欧美色中文字幕在线| 七月丁香在线播放| 久久久国产欧美日韩av| 十分钟在线观看高清视频www| 高清在线视频一区二区三区| 99热网站在线观看| 精品亚洲成国产av| 亚洲综合色网址| 黄色欧美视频在线观看| 国产亚洲午夜精品一区二区久久| 久热这里只有精品99| 亚洲av福利一区| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 日韩电影二区| 男女国产视频网站| 日韩成人伦理影院| 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 能在线免费看毛片的网站| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| .国产精品久久| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 免费观看的影片在线观看| 免费观看av网站的网址| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 午夜福利网站1000一区二区三区| 国产精品99久久99久久久不卡 | 精品亚洲成国产av| 97超视频在线观看视频| 男女无遮挡免费网站观看| 2018国产大陆天天弄谢| 国产又色又爽无遮挡免| 视频中文字幕在线观看| 免费大片黄手机在线观看| 亚洲欧美日韩卡通动漫| 亚洲人成77777在线视频| 国产免费一区二区三区四区乱码| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 两个人的视频大全免费| 97精品久久久久久久久久精品| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 99热国产这里只有精品6| 丝瓜视频免费看黄片| 亚洲国产精品专区欧美| 亚洲国产毛片av蜜桃av| 多毛熟女@视频| 国产不卡av网站在线观看| 中文字幕最新亚洲高清| 欧美日本中文国产一区发布| 久久午夜福利片| 最近中文字幕2019免费版| 夜夜骑夜夜射夜夜干| 欧美三级亚洲精品| 水蜜桃什么品种好| 亚洲美女黄色视频免费看| 香蕉精品网在线| 亚洲欧美成人综合另类久久久| 伊人久久国产一区二区| 国产成人精品婷婷| 国产精品不卡视频一区二区| 日日爽夜夜爽网站| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 久久久亚洲精品成人影院| 青春草国产在线视频| 国产一区二区三区av在线| 欧美 日韩 精品 国产| 亚洲欧美成人综合另类久久久| 涩涩av久久男人的天堂| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 久久青草综合色| 国产免费现黄频在线看| 热99国产精品久久久久久7| 国产精品 国内视频| 国产精品一二三区在线看| 欧美日韩视频精品一区| 99久久人妻综合| 十分钟在线观看高清视频www| 久久国产精品男人的天堂亚洲 | 免费黄色在线免费观看| 黄片无遮挡物在线观看| 乱人伦中国视频| 亚洲精品色激情综合| 人妻 亚洲 视频| 国产综合精华液| 精品酒店卫生间| 国产在视频线精品| 伊人亚洲综合成人网| 丰满饥渴人妻一区二区三| 国产欧美日韩综合在线一区二区| 亚洲欧美色中文字幕在线| 夫妻午夜视频| 亚洲国产日韩一区二区| 热re99久久国产66热| 精品少妇黑人巨大在线播放| 卡戴珊不雅视频在线播放| 日韩熟女老妇一区二区性免费视频| 王馨瑶露胸无遮挡在线观看| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 观看av在线不卡| 亚洲精品一区蜜桃| 有码 亚洲区| a级片在线免费高清观看视频| 人人澡人人妻人| 欧美激情国产日韩精品一区| 大片免费播放器 马上看| 日本黄大片高清| 麻豆乱淫一区二区| 少妇丰满av| 国产一区有黄有色的免费视频| 欧美另类一区| 免费大片黄手机在线观看| 一本久久精品| 这个男人来自地球电影免费观看 | av又黄又爽大尺度在线免费看| 少妇的逼水好多| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| 免费大片18禁| 亚洲人成77777在线视频| a级毛片黄视频| 亚洲美女黄色视频免费看| 国产在线一区二区三区精| 国产国拍精品亚洲av在线观看| 在线播放无遮挡| 免费观看无遮挡的男女| 亚洲第一区二区三区不卡| 秋霞在线观看毛片| 一区二区av电影网| 午夜免费观看性视频| 校园人妻丝袜中文字幕| 狠狠婷婷综合久久久久久88av| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 日本欧美视频一区| 视频中文字幕在线观看| 中文字幕人妻丝袜制服| 99热全是精品| 少妇人妻久久综合中文| 久久毛片免费看一区二区三区| 久久国产亚洲av麻豆专区| 久久99一区二区三区| 热re99久久精品国产66热6| 菩萨蛮人人尽说江南好唐韦庄| 久久精品熟女亚洲av麻豆精品| 美女xxoo啪啪120秒动态图| 国产精品.久久久| 五月天丁香电影| 国产精品一国产av| 在线观看人妻少妇| 色哟哟·www| 不卡视频在线观看欧美| 热99国产精品久久久久久7| av播播在线观看一区| 极品少妇高潮喷水抽搐| 午夜久久久在线观看| 亚洲精品一二三| 久久综合国产亚洲精品| 尾随美女入室| av天堂久久9| 97超碰精品成人国产| a级毛片免费高清观看在线播放| 成年女人在线观看亚洲视频| 精品久久国产蜜桃| 亚洲精品久久成人aⅴ小说 | a 毛片基地| 国产成人精品久久久久久| 在线 av 中文字幕| 成人毛片a级毛片在线播放| 成年人午夜在线观看视频| 永久网站在线| 亚洲av免费高清在线观看| 久久国产精品大桥未久av| 国产高清国产精品国产三级| 久久这里有精品视频免费| 伦理电影免费视频| tube8黄色片| 男人操女人黄网站| 成年av动漫网址| 少妇被粗大的猛进出69影院 | 99国产综合亚洲精品| 高清欧美精品videossex| 夜夜看夜夜爽夜夜摸| 女性被躁到高潮视频| 亚洲精品视频女| 久久精品夜色国产| 亚洲精品亚洲一区二区| 青春草国产在线视频| 黄片无遮挡物在线观看| 中文字幕亚洲精品专区| 少妇人妻 视频| 丁香六月天网| 欧美精品国产亚洲| 欧美变态另类bdsm刘玥| 中文字幕最新亚洲高清| 在线精品无人区一区二区三| 久久97久久精品| 久久女婷五月综合色啪小说| 国产在视频线精品| 两个人的视频大全免费| 亚洲欧美日韩另类电影网站| 如日韩欧美国产精品一区二区三区 | 91久久精品国产一区二区成人| 国产高清不卡午夜福利| 99久国产av精品国产电影| 22中文网久久字幕| 久久精品夜色国产| 日韩制服骚丝袜av| 国产毛片在线视频| 女性被躁到高潮视频| 免费播放大片免费观看视频在线观看| 久久久精品免费免费高清| av国产精品久久久久影院| 22中文网久久字幕| 极品少妇高潮喷水抽搐| 天美传媒精品一区二区| 成人毛片a级毛片在线播放| av线在线观看网站| 丰满迷人的少妇在线观看| 免费观看av网站的网址| 亚洲国产成人一精品久久久| 久久久精品94久久精品| 高清午夜精品一区二区三区| 晚上一个人看的免费电影| 97在线视频观看| 99精国产麻豆久久婷婷| 婷婷成人精品国产| 日韩av免费高清视频| 免费高清在线观看日韩| 婷婷色av中文字幕| 国产亚洲午夜精品一区二区久久| 国产av精品麻豆| 国产无遮挡羞羞视频在线观看| 九色成人免费人妻av| 国产成人精品在线电影| 51国产日韩欧美| 十分钟在线观看高清视频www| 国产成人freesex在线| 黄色视频在线播放观看不卡| 七月丁香在线播放| 国产一区二区三区综合在线观看 | 高清毛片免费看| 久久影院123| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 18禁在线播放成人免费| 人成视频在线观看免费观看| av黄色大香蕉| av国产精品久久久久影院| 国产黄色免费在线视频| 天天影视国产精品| 大片免费播放器 马上看| 国产一区二区三区av在线| 久热这里只有精品99| 亚洲精品国产av成人精品| 日韩伦理黄色片| 国产伦理片在线播放av一区|