• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of Quantum Dot-modified Ln-ZIF Hybrid Materials and Fluorescence Detection of Tannic Acid

    2023-10-08 02:39:04FANGZhouJIADongshengLITianmingLIYingZHANGDongliang
    發(fā)光學(xué)報(bào) 2023年9期

    FANG Zhou, JIA Dongsheng, LI Tianming, LI Ying, ZHANG Dongliang

    (School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Abstract: Lanthanide Eu3+-doped metal-organic backbone material Eu/ZIF-67 was prepared by a one-step hydrothermal method with a novel pleated sphere structure. A dual-emission fluorescent hybrid material Eu/ZIF-67@ZnO QDs with a zeolite imidazolium ester backbone was obtained by loading ZnO quantum dots onto the surface of Eu/ZIF-67 via coordination bonding. The structure, morphology and fluorescence sensing properties of the material were characterized in detail. Furthermore, the fluorescent material was found to display the dual fluorescence emission of ZnO quantum dots and lanthanide red europium ions. The fluorescence sensing performance of Eu/ZIF-67@ZnO QDs to tannic acid was further investigated, and the results indicated that tannic acid can effectively burst the characteristic fluorescence emission of Eu/ZIF-67@ZnO QDs at ZnO QDs with a detection limit of 0.029 9 μmol/L. Meanwhile,Eu/ZIF-67@ZnO QDs have the fluorescence response to tannic acid with anti-interference ability, which can be used as a cost-effective fluorescence sensor to specifically identify tannic acid.

    Key words: metal organic skeleton; quantum dots; dual-emission probes; tannic acid; fluorescent detection

    1 Introduction

    Tannins, or ellagic acid, is a multiphase phenolic compound widely distributed in nature and can be mainly classified into three categories: hydrolyzed tannins (HT), condensed tannins (CT) and fucoidan polyphenols (PT)[1-3]. The polyphenolic hydroxyl structure of tannins gives them a unique set of chemical properties and physiological activities, making them valuable in food, pharmaceutical and industrial production applications. The polyphenolic structure of tannins allows them to combine with proteins and alkaloids, as well as to complex and electrostatically interact with many metal ions, and to possess antioxidant and anti-inflammatory properties[4-9]. Therefore,tannins can be used as food antioxidants, detoxifying agents, sunscreen skin brighteners, topical coagulants, clarifying agents for beer and wine, coagulants for rubber,etc.[10]. In beer brewing, tannic acid can form precipitates with proteins in the wort, clarifying and making the beer transparent. However, excessive intake of tannic acid also has certain adverse effects on the human body, therefore, as a widely used food additive, the concentration level of tannic acid not only affects the flavor of food, but also plays a standard role in evaluating the quality of food[11-12].Currently, the detection of tannins mainly includes spectrophotometric[13], electrochemical[14-15], chromatographic[16]and colorimetric[17]methods. Although there are various detection methods, most of them exist poor selection specificity, complicated pre-processing or operation, expensive machine cost, and other problems, hence, it is of practical significance to explore a method for the accurate, rapid, and effective detection of tannins.

    Quantum dots are quasi-zero-dimensional nanomaterials with a semiconducting nanostructure in which electrons are bound in all three directions.With the ability to modify the emission spectrum by modulating the size and chemical composition, quantum dots also have excellent photostability, large Stokes shifts, low cytotoxicity, and high stability[18-20].Therefore, they have a wide range of applications in recent decades in the fields of biofluorescent labeling, luminescent devices, and fluorescence detection[21-25]. Among them, ZnO quantum dots are a novel semiconductor nanomaterial with a forbidden band width of 3.37 eV[26], which have great potential for applications in fluorescence detection and matter sensing due to their good biocompatibility and excellent optoelectronic properties[27-29]. Metal organic framework materials (MOFs) are a class of porous crystalline materials with a regular network structure formed by metal ions or clusters as the central binding ligands. MOFs have in-depth investigations and applications in sensing and storage separation of gases, catalysis, and drug mitigation due to their high specific surface area, low crystal density, tunable pore size, and easily modified functional structures[30-33]. Due to metal-organic framework materials have the features of designable pore surface functional sites and adjustable ligands, novel framework structures can be continuously designed to expand the application fields of lanthanide MOFs by introducing different central metal ions, loading, or embedding nanomaterials and designing novel ligands.

    Herein, we designed a simple & green strategy to construct a dual-emitting metal organic skeleton material. The yellow-emitting ZnO quantum dots were prepared by a chemical solution method and capped with amino groups to obtain amino-functionalized ZnO quantum dots; then a novel zeolite-like imidazolium ester backbone was constructed by doping with Co and lanthanide metal Eu to obtain a novel pleated sphere structured metal-organic framework. By loading ZnO quantum dots, a fluorescent hybrid material with double emission is finally obtained, which can realize the sensing detection of tannic acid and provide a simple and feasible method for the rapid and effective detection of tannic acid concentration.

    2 Experiment

    2.1 Preparation of Eu/ZIF-67@ZnO QDs

    2.1.1 Experimental Reagents

    Eu(NO3)3?6H2O, Zn(OAc)2?2H2O, L-arginine,L-alanine, glycine, L-aspartic acid, gallic acid, ellagic acid,(3-aminopropyl) tri-ethoxysilane(APTES),2-Methylimidazole, KBr and tannic acid(TA) were purchased from Adamas-beta Co., Ltd.(Shanghai,China). Methyl alcohol, L-ascorbic acid(AA), Mg-Cl2, NaCl, CuCl2, FeCl3?6H2O, FeCl2?4H2O, ZnCl2,KOH and CoCl2?6H2O were purchased from Sinopharm Chemical Reagent Co., Ltd.(Shanghai, China). Toluene, anhydrous ethanol, glucose, and sucrose were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.(Shanghai, China).

    2.1.2 Preparation Process

    (1)Preparation of amino-functionalized ZnO QDs

    The 2.79 mmol of Zn(OAc)2?2H2O was added to 15 mL of anhydrous ethanol in a water bath at 78 ℃ and refluxed under vigorous stirring until completely dissolved. The 6 mol of KOH was dissolved in anhydrous ethanol and refrigerated to 4 ℃, then slowly add dropwise to the ethanol solution of Zn-(OAc)2?2H2O. After stirring for 60 min at room temperature, 0.5 mmol of APTES was added to anhydrous ethanol/water (anhydrous ethanol∶water =10∶1), mixed well and added to the above reaction system, and continued to stir at room temperature for 6 h. After the reaction was completed, the precipitate was washed several times by centrifugation with toluene and anhydrous ethanol and dried, and the white translucent solid was obtained as ZnO QDs.

    (2) Synthesis of Eu-doped ZIF-67

    The mixture of 0.95 mmol of CoCl2?6H2O and 0.05 mmol of Eu(NO3)3?6H2O was dissolved in 10 mL of deionized water as solution A. The 20 mmol of 2-methylimidazole was dissolved in 10 mL of deionized water as solution B. After adding B to A and sonicating for 5 min, the mixed system was placed in a 50 mL reactor at 120 ℃ for 1 h. When reaction was finished, the mixture was washed several times by centrifugation using methyl alcohol and water, respectively, and dried to obtain the purple solid as Eu/ZIF-67.

    (3) Construction of Eu/ZIF-67@ZnO QDs

    The 20 mg of Eu/ZIF-67 was ultrasonically dispersed in 10 mL of deionized water, and 30 mg of ZnO QDs was dispersed in 10 mL of deionized water. The ZnO QDs solution was added dropwise to the aqueous solution of Eu/ZIF-67, stirred for 12 h at room temperature, and then centrifuged to obtain Eu/ZIF-67@ZnO QDs(Fig.1) .

    Fig.1 Experimental process and schematic diagram of Eu/ZIF-67@ZnO QDs

    (4) Sensing detection of tannic acid (TA)

    Eu/ZIF-67@ZnO QDs were configured into a homogeneous solution, to which a series of TA solutions with different concentrations were added dropwise, and the fluorescence intensity changes were measured using a fluorescence spectrometer. The concentration range of the added TA solution was 0.01-1 μmol/L. The fluorescence emission spectrum was measured at the excitation wavelength of 356 nm, where the emission wavelength was 505 nm for ZnO QDs and 615 nm for Eu/ZIF-67@ZnO QDs.The slit of the instrument was 5 nm in all fluorescence tests.

    2.2 Performance and Characterization of Samples

    The chemical structure of the samples was characterized by potassium bromide compression and scanned on a Fourier transform infrared spectroscopy (FT-IR) SPECTRUM 100 FT-IR spectrophotometer (Perkin Elmer, USA) at 4 000-400 cm-1. Scanning electron microscopy (SEM) was performed on a ZEISS Sigma 300 (Germany) with acceleration voltageEHT= 3.0 kV. Powder X-ray diffraction (XRD)was determined on a D8 ADVANCE X-ray diffractometer. The UV-Vis absorption spectra of the samples were obtained by analysis on a UV-Vis spectrometer(Lambda FEG450). The samples were analyzed for elemental content and functional group types using X-ray photoelectron spectroscopy (XPS)with a Thermo Scientific K-Alpha+, monochromatic AI Kα X-ray source(1 486.6 eV) at 12 kV and 72 W, respectively, instrument model and parameters.Fluorescence spectroscopy tests were obtained on a Shimadzu S220 V fluorescence spectrophotometer and an Edinburgh FLS920 fluorescence spectrometer with excitation sources of 450 W xenon lamp, μF 920H pulsed light source and EPL-375 nanosecond light source.

    3 Results and Discussion

    3.1 Structural Characterization of ZnO QDs,Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs

    The surface morphology before and after the Eu/ZIF-67 composite ZnO QDs was characterized by scanning electron microscopy (EHT=3.00 kV,Mag=50.00 KX, SignalA=SE2,WD=7.9 mm). As the Fig.2(a) describes, the surface of the Eu-doped ZIF-67 is richly folded and has an overall spherical shape with a diameter of about 1.2 μm. The introduction of ZnO QDs resulted in fewer folds on the surface of the irregular spheres and many particles loaded on the surface, leading to a slight increase in the particle size of the spheres. The above results suggest that the ZnO QDs are probably loaded on the surface of the Eu/ZIF-67 skeleton by chemical bonding, and their introduction would not cause the collapse of the skeleton structure.

    Fig.2 The SEM images of Eu/ZIF-67(a) and Eu/ZIF-67@ZnO QDs(b)

    The chemical structures of ZnO QDs (a), ZIF-67 (b), Eu/ZIF-67 (c) and Eu/ZIF-67@ZnO QDs(d) were characterized by FT-IR. As Fig.3 suggests, where the broadband at 3 469 cm-1is attributed to the O—H stretching vibration and the absorption peaks at 2 925 cm-1and 3 134 cm-1are attributed to the C—H stretching vibration. Line a corresponds to ZnO QDs, where the absorption peak at 1 595 cm-1is attributed to N—H and the absorption band near 1 000 cm-1is attributed to the Si—O band from APTES. These characteristic peaks indicate that APTES was successfully encapsulated on the surface of ZnO QDs and ZnO QDs were successfully amino-functionalized[34-36]. Among the lines b, c and d, the peak clusters in the range of 680-1 500 cm-1are attributed to the stretching and bending vibrations of the imidazole ring, the absorption peak at 1 598 cm-1is attributed to the stretching vibrations of C—N, and the broad absorption band at 1 044 cm-1in d is attributed to Si—O in ZnO QDs[37-38]. The above results indicate the successful preparation of ZnO QDs and zeolite-like imidazole ester frameworks, and the introduction of ZnO QDs didn't destroy the skeleton structure of Eu/ZIF-67.

    Fig.3 FT-IR spectrum of ZnO QDs(a), ZIF-67(b), Eu/ZIF-67(c) and Eu/ZIF-67@ZnO QDs(d).

    The crystal structures of ZnO QDs, ZIF-67,Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs were characterized by X-ray powder diffraction. As described in Fig.4, Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs exhibit the same crystal structure at 2θ=7.39°(011),10.38°(002), 12.75°(112), 14.70°(022), 16.47°(013), 18.06°(222), 22.14°(114), 24.50°(233),26.70°(134) , which corresponds exactly to the ZIF-67 in the literature[37-38]. They demonstrate that the introduction of ZnO QDs did not cause the collapse of the crystal structure of Eu/ZIF-67. The ZnO QDs exhibit broad peaks at 31.78°(001),34.47°(002), 36.15°(101), demonstrating the successful preparation of ZnO QDs. Furthermore,the characteristic peaks at 36.46° and 34.54° for Eu/ZIF-67@ZnO QDs are attributed to the combination of ZnO QDs with Eu/ZIF-67, further demonstrating the successful preparation of europium iondoped zeolite-like imidazolium-based frameworks and Eu/ZIF-67 with ZnO QDs.

    Fig.4 XRD spectrum of ZnO QDs, ZIF-67, Eu/ZIF-67, Eu/ZIF-67@ZnO QDs and stimulated ZIF-67.

    The elemental composition of the prepared Eu/ZIF-67@ZnO QDs was analyzed by XPS. This material shows the characteristic peaks of C, O, N,Co, and Eu at 284.73, 530.95, 398.82, 781.03,1 134.71 eV, respectively. The contents of these five elements are 46.93%(C), 21.94%(O), 13.81%(N), 4.33%(Co), and 0.79%(Eu). Fig.5(b)-(f) represents the fine spectrum of C 1s, O 1s, N 1s, Co 2p, and Eu 3d, respectively. For the C 1s spectrum, three peaks appear at 284.3, 284.9,285.6 eV, which correspond to the characteristic peaks of C—C/C=C, N—C=N and C—O, respectively; for the O 1s spectrum, there are three peaks at 530.1, 531.1, 531.9 eV, indicating the presence ofM—O(Mfor Zn, Co, Eu), Si—O and materials in the sample that indicate the possible adsorption of presence of water, and also demonstrates the successful introduction of ZnO QDs[36,39]. For the N 1s spectrum, the peaks at 398.4, 398.9, 399.4,400.4 eV can be attributed to C=N—C, Co—N,C—NH—C and N—O, respectively. the Co 2p spectrum is composed of two energy levels concentrated at 780.9 eV and 796.9 eV, respectively, attributed to Co 2p3/2and Co 2p1/2. The peaks at 780.7, 782.3, 786.5 eV can be attributed to Co2+,Co3+and a satellite peak, respectively[37-38]. For the Eu 3d spectrum, 1 134.7 eV and 1 164.9 eV correspond to the Eu 3d5/2and Eu 3d3/2energy levels, respectively[40]. For the Zn 2p spectrum, 1 021.6 eV and 1 044.6 eV correspond to two energy levels, Zn 2p3/2and Zn 2p2/1, respectively. The above results are consistent with the FT-IR spectral results, further indicating the successful synthesis of Eu/ZIF-67@ZnO QDs.

    Fig.5 (a)XPS spectrum of Eu/ZIF-67@ZnO QDs. (b)C 1s spectrum of Eu/ZIF-67@ZnO QDs. (c)O 1s spectrum of Eu/ZIF-67@ZnO QDs. (d)N 1s spectrum of Eu/ZIF-67@ZnO QDs. (e)Co 2p spectrum of Eu/ZIF-67@ZnO QDs. (f)Eu 3d spectrum of Eu/ZIF-67@ZnO QDs.

    Tab.1 The XPS survey of Eu/ZIF-67@ZnO QDs of each element

    3.2 Fluorescent Properties of Eu/ZIF-67@ZnO QDs

    The excitation and generation spectra of the prepared ZnO QDs and Eu/ZIF-67@ZnO QDs were measured using a fluorescence spectrometer at room temperature. As shown in Fig.6(a), the optimal emission spectrum, and the optimal excitation spectrum of the ZnO QDs were determined at the excitation wavelength of 356 nm and the emission wavelength of 572 nm, respectively. Fig.6(b) indicates that the optimal emission spectra and the optimal excitation spectra of Eu/ZIF-67@ZnO QDs were determined at 356 nm excitation wavelength and 615 nm emission wavelength, respectively, where the emission peak at 554 nm was attributed to the yellow emission of ZnO QDs and the emission peak at 615 nm was attributed to the characteristic jump of Eu at5D0-7F2. The two emission peaks surface the successful doping of Eu and the successful introduction of ZnO QDs.

    Fig.6 (a)The optimal excitation and emission spectrum of ZnO QDs(inset is a photograph of aqueous ZnO QDs under a 365 nm UV lamp). (b)The optimal excitation and emission spectrum of Eu/ZIF-67@ZnO QDs.

    To investigate the sensitivity of Eu/ZIF-67@ZnO QDs for the detection of TA, the fluorescence response of this fluorescent probe to different concentrations of TA was carried out. Firstly, time and temperature conditions optimization experiments were carried out for the detection of TA. Fig.7(c)-(d) illustrate that, when TA was added, the fluorescence response value of Eu/ZIF-67@ZnO QDs completed the response within 1 min with little subsequent change as the time increased. Then the response of Eu/ZIF-67@ZnO QDs to TA was investigated at different incubation temperatures. The fluorescence response decreases continuously as the temperature increases. Considering the environmental temperature of 20-28 ℃ for TA in beer brewing,25 ℃ was chosen as the real-time detection temperature. Fig.7(a) reveals that the fluorescence intensity of Eu/ZIF-67@ZnO QDs at both quantum dots and rare earth ions gradually decreases with the increase of TA concentration, we selected the fluorescence intensity change at ZnO QDs as the response signal.As shown in Fig.7(b), it can be analyzed that the probe has a good fluorescence response to TA in the concentration range of 0-0.2 μmol/L, and its weakening trend is well in line with the first order exponential decay, and the fluorescence response value(F/F0) shows a good linear relationship with the concentration of TA. A linear fit was performed to obtain a linear regression equation ofy= -0.8471x+0.9699(R2= 0.996). The fit was calculated using the Stern-Volmer equation as follows.

    Fig.7 The fluorescence response values(F/F0) of Eu/ZIF-67@ZnO QDs to TA with respect to temperature(a) and reaction times(b). The fluorescence emission spectrum of Eu/ZIF-67@ZnO QDs after the addition of different concentrations of TA(λex=356 nm)(c) and fluorescence response values(F/F0) versus TA concentration(inset is a linear plot)(d).

    whereCis the concentration of tannic acid (TA),KSVis the Stern-Volmer constant,Fis the fluorescence intensity at ZnO QDs after the addition of TA,andF0is the fluorescence intensity of blank Eu/ZIF-67@ZnO QDs at ZnO QDs. The detection limit(LOD)Dof the probe for TA can be calculated from the 3σequation as 0.029 9 μmol/L:

    σis the standard deviation obtained from 20 consecutive scans of the probe blank solution, andSis the slope of the linear regression equation.

    We compared the Eu/ZIF-67@ZnO constructed in this work with the recent related work. As shown in Tab.2, it is observed that the Eu/ZIF-67@ZnO fluorescent probe prepared in this work possesses better sensitivity and lower detection limit for the detection of TA. From the above results, it is concluded that the Eu/ZIF-67@ZnO QDs probe has good fluorescence sensing properties for TA and can be used as an excellent sensor to measure the concentration level of TA.

    Tab.2 The comparison table of Eu/ZIF-67@ZnO for detecting TA with other works

    To further investigate the specificity and selectivity of Eu/ZIF-67@ZnO QDs probes for the detection of TA, anti-interference tests were performed for common substances, including Mg2+, Na+, Cu2+, Ca2+,Zn2+, Fe2+, Fe3+, Cl-; the common amino acids L-arginine, L-ascorbic acid (AA), L-alanine, glycine, L-aspartic acid, gallic acid, and ellagic acid; sugars such as glucose, sucrose. The concentration of TA was 0.01 μmol/L and the concentration of all other interfering substances was 1 μmol/L. We examined the fluorescence response changes of the Eu/ZIF-67@ZnO QDs probes for these substances. Compared with other anti-interference substances, tannic acid can effectively burst the fluorescence of Eu/ZIF-67@ZnO QDs(Fig.8). These results demonstrate that Eu/ZIF-67@ZnO QDs can be used as a fluorescent sensor with good sensitivity and specificity for the selective detection of TA.

    Fig.8 The fluorescence emission spectrum of Eu/ZIF-67@ZnO QDs after dropwise addition of different antiinterference substances at 356 nm(F is the fluorescence intensity at ZnO QDs after the addition of different anti-interference substances, and F0 is the fluorescence intensity of blank Eu/ZIF-67@ZnO QDs at ZnO QDs).

    3.3 Possible Mechanism of Fluorescence Quenching of Eu/ZIF-67@ZnO QDs

    The UV absorption spectra of Eu/ZIF-67@ZnO QDs and the detection substance tannic acid (TA)were scanned by UV-Vis spectrophotometer. From the absorption spectrum of TA, it can be clearly seen that TA has a broad absorption peak within 200-350 nm, while the fluorescence emission characteristic peak of ZnO QDs of Eu/ZIF-67@ZnO QDs is at 505 nm, and its absorption spectrum does not match with the luminescence spectrum of Eu/ZIF-67@ZnO QDs. According to the above results, we speculate that the fluorescence quenching of ZnO QDs is not caused by TA absorption, which excluding the fluorescence quenching caused by the fluorescence resonance energy transfer. In addition, the position of the UV absorption peak almost did not change before and after adding TA(Fig.9(a)). As illustrated in Fig.9(b), the UV absorption peak of Eu/ZIF-67@ZnO QDs occurs a blue-shift trend with the increase of the concentration of TA. So, it can be inferred that the formation of zincate complexes between TA and quantum dots due to the charge transfer. And it can be attributed to the dynamic collision between quantum dots and TA, resulting in electron transfer between quantum dots and aromatic groups of TA.As shown in Fig.9(c), there is a good overlap between the UV absorption spectra and the fluorescence excitation and emission spectra of Eu/ZIF-67@ZnO QDs, therefore, we speculate that the internal filtration effect is also one of the possible causes of the fluorescence burst. In summary, the fluorescence quenching of Eu/ZIF-67@ZnO QDs by TA may be generated based on the synergistic effects of both charge transfer and internal filtration effects[47].

    Fig.9 (a)UV-Vis spectroscopic of TA, Eu/ZIF-67@ZnO QDs, and Eu/ZIF-67@ZnO QDs +TA. (b)UV-Vis spectroscopic of Eu/ZIF-67@ZnO QDs with different concentrations of TA added. (c)The UV-Vis spectroscopic, excitation and emission spectrum of Eu/ZIF-67@ZnO QDs. (d)The mechanism of tannic acid detection by Eu/ZIF-67@ZnO QDs.

    4 Conclusion

    In summary, a new pleated spherical zeolitelike imidazole ester skeleton material Eu/ZIF-67 was prepared by doping with lanthanide Eu, and aminofunctionalized quantum dots ZnO QDs were successfully loaded on the surface to obtain a fluorescent hybrid material Eu/ZIF-67@ZnO QDs with double emission. It was found that this fluorescent hybrid material could achieve fluorescence detection of TA with good selective specificity and detection sensitivity, and the detection limit was as low as 0.029 9 μmol/L, and the fluorescence response could occur rapidly within 1 min. It provides a new idea for the economical and efficient measurement of TA concentration levels.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20230048.

    黄色视频在线播放观看不卡| 搡老乐熟女国产| 欧美激情高清一区二区三区| videos熟女内射| 亚洲中文字幕日韩| 久久精品亚洲精品国产色婷小说| 黑人猛操日本美女一级片| 99热国产这里只有精品6| 久久亚洲真实| 久久久久精品人妻al黑| 极品少妇高潮喷水抽搐| 黑人巨大精品欧美一区二区mp4| 欧美乱码精品一区二区三区| 国产男女内射视频| 亚洲伊人久久精品综合| 满18在线观看网站| 国产精品九九99| 日韩制服丝袜自拍偷拍| 999精品在线视频| 亚洲熟女毛片儿| 国产一区二区 视频在线| 夫妻午夜视频| 国产激情久久老熟女| 色综合欧美亚洲国产小说| 肉色欧美久久久久久久蜜桃| 一二三四社区在线视频社区8| 国产午夜精品久久久久久| 热99久久久久精品小说推荐| 精品国产国语对白av| 亚洲一卡2卡3卡4卡5卡精品中文| 男女下面插进去视频免费观看| 丝袜美腿诱惑在线| 精品免费久久久久久久清纯 | 考比视频在线观看| 免费看a级黄色片| 日韩视频在线欧美| 成年人免费黄色播放视频| 精品国产乱码久久久久久男人| 在线观看免费日韩欧美大片| 国产成人免费观看mmmm| 18禁裸乳无遮挡动漫免费视频| 国产片内射在线| 国产av国产精品国产| 丰满少妇做爰视频| 成年人午夜在线观看视频| 中文亚洲av片在线观看爽 | 午夜免费成人在线视频| 80岁老熟妇乱子伦牲交| 亚洲精品美女久久av网站| 91av网站免费观看| 日韩大码丰满熟妇| 日本一区二区免费在线视频| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 一本大道久久a久久精品| 精品一区二区三区视频在线观看免费 | 色在线成人网| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 一边摸一边做爽爽视频免费| 亚洲精品美女久久av网站| 最黄视频免费看| 国产av国产精品国产| 国产欧美日韩一区二区三区在线| 91av网站免费观看| 久久久精品94久久精品| 不卡一级毛片| videosex国产| 一区二区av电影网| 午夜日韩欧美国产| 涩涩av久久男人的天堂| a级毛片在线看网站| 日本wwww免费看| 夫妻午夜视频| 国产成人av激情在线播放| 在线播放国产精品三级| 亚洲精品国产色婷婷电影| 91精品国产国语对白视频| 久久久久网色| 欧美精品高潮呻吟av久久| 亚洲九九香蕉| 成人手机av| 在线av久久热| 午夜免费鲁丝| 欧美激情久久久久久爽电影 | avwww免费| 一个人免费在线观看的高清视频| 黄片大片在线免费观看| 日本wwww免费看| 最黄视频免费看| 免费久久久久久久精品成人欧美视频| 成人国语在线视频| 精品少妇久久久久久888优播| 亚洲精品av麻豆狂野| 啦啦啦视频在线资源免费观看| 高清av免费在线| 男女边摸边吃奶| 午夜福利在线免费观看网站| 少妇裸体淫交视频免费看高清 | 丝袜在线中文字幕| 久久婷婷成人综合色麻豆| 老司机靠b影院| 欧美精品高潮呻吟av久久| 午夜福利一区二区在线看| h视频一区二区三区| 精品一区二区三卡| 巨乳人妻的诱惑在线观看| 亚洲欧美色中文字幕在线| 日韩成人在线观看一区二区三区| 国产深夜福利视频在线观看| 久久久久久免费高清国产稀缺| 欧美日韩av久久| 2018国产大陆天天弄谢| 成年女人毛片免费观看观看9 | 久久久久久久国产电影| 精品一区二区三区视频在线观看免费 | 一区二区三区国产精品乱码| 91大片在线观看| 777米奇影视久久| 一本色道久久久久久精品综合| 操出白浆在线播放| 两性夫妻黄色片| 国产精品国产av在线观看| 亚洲伊人色综图| 纯流量卡能插随身wifi吗| 99久久人妻综合| 精品人妻1区二区| 久久久精品免费免费高清| 日韩成人在线观看一区二区三区| 在线观看免费视频网站a站| 国产精品国产av在线观看| 日本精品一区二区三区蜜桃| 亚洲第一青青草原| 亚洲第一青青草原| 日韩视频一区二区在线观看| 久久精品国产亚洲av高清一级| 亚洲黑人精品在线| 最新的欧美精品一区二区| 久久香蕉激情| 欧美中文综合在线视频| 亚洲av成人一区二区三| 国产精品熟女久久久久浪| 久热爱精品视频在线9| 女同久久另类99精品国产91| 动漫黄色视频在线观看| 在线亚洲精品国产二区图片欧美| 999久久久精品免费观看国产| 午夜精品国产一区二区电影| 久久精品国产a三级三级三级| 波多野结衣av一区二区av| 免费少妇av软件| 久久久精品免费免费高清| 天堂动漫精品| 视频区欧美日本亚洲| 亚洲七黄色美女视频| 久久性视频一级片| 国产欧美日韩一区二区精品| 亚洲国产av影院在线观看| 精品一区二区三区av网在线观看 | 少妇猛男粗大的猛烈进出视频| 精品久久久精品久久久| 一本大道久久a久久精品| 欧美人与性动交α欧美软件| av不卡在线播放| 久久久久久免费高清国产稀缺| 日韩 欧美 亚洲 中文字幕| 久久久精品免费免费高清| 人妻一区二区av| 久久久久久久精品吃奶| 亚洲精品中文字幕一二三四区 | 国产精品久久电影中文字幕 | 女同久久另类99精品国产91| 久热爱精品视频在线9| 热re99久久精品国产66热6| 亚洲全国av大片| 91成人精品电影| 久久狼人影院| 十八禁网站网址无遮挡| 一边摸一边抽搐一进一小说 | 视频在线观看一区二区三区| 久久精品亚洲av国产电影网| 欧美日韩一级在线毛片| 一本—道久久a久久精品蜜桃钙片| 成人国语在线视频| 国产亚洲欧美精品永久| 伦理电影免费视频| 亚洲成人手机| 亚洲中文字幕日韩| 成人国产一区最新在线观看| 国产又爽黄色视频| 高清视频免费观看一区二区| 国产一区二区激情短视频| 老司机影院毛片| 中亚洲国语对白在线视频| 日本一区二区免费在线视频| 国产精品亚洲av一区麻豆| 色视频在线一区二区三区| 久久人妻av系列| 国产精品欧美亚洲77777| 精品国内亚洲2022精品成人 | 亚洲av欧美aⅴ国产| 欧美亚洲 丝袜 人妻 在线| 久久久精品国产亚洲av高清涩受| 婷婷丁香在线五月| 最新美女视频免费是黄的| 欧美国产精品va在线观看不卡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲三区欧美一区| 丝瓜视频免费看黄片| 精品国产一区二区三区四区第35| 久热这里只有精品99| 男女床上黄色一级片免费看| 成年人免费黄色播放视频| 日本a在线网址| 麻豆av在线久日| 99热国产这里只有精品6| 亚洲欧洲精品一区二区精品久久久| 精品国产乱子伦一区二区三区| 欧美性长视频在线观看| 少妇 在线观看| videos熟女内射| 久久精品成人免费网站| 夜夜夜夜夜久久久久| 亚洲欧洲精品一区二区精品久久久| 我要看黄色一级片免费的| 国产无遮挡羞羞视频在线观看| 精品亚洲乱码少妇综合久久| 国产精品免费一区二区三区在线 | 超碰成人久久| videos熟女内射| 99re6热这里在线精品视频| 日韩三级视频一区二区三区| 极品教师在线免费播放| 老司机午夜十八禁免费视频| 天天躁日日躁夜夜躁夜夜| 新久久久久国产一级毛片| 日韩熟女老妇一区二区性免费视频| 女警被强在线播放| 国产精品一区二区在线不卡| 国产成人啪精品午夜网站| 成人影院久久| 看免费av毛片| 国产精品久久久久久精品电影小说| 午夜视频精品福利| 日韩精品免费视频一区二区三区| 久久亚洲精品不卡| 欧美日本中文国产一区发布| 午夜福利在线观看吧| 精品久久久久久电影网| 精品国内亚洲2022精品成人 | 人成视频在线观看免费观看| 老司机午夜十八禁免费视频| 脱女人内裤的视频| 建设人人有责人人尽责人人享有的| 亚洲精品在线观看二区| 亚洲视频免费观看视频| 最新的欧美精品一区二区| 热99re8久久精品国产| √禁漫天堂资源中文www| 国产亚洲欧美精品永久| 成人国语在线视频| 精品午夜福利视频在线观看一区 | 日韩免费高清中文字幕av| 国产精品久久久久久精品古装| 久久精品国产亚洲av香蕉五月 | 亚洲精品久久成人aⅴ小说| 啦啦啦 在线观看视频| 最近最新免费中文字幕在线| 亚洲免费av在线视频| 亚洲欧美一区二区三区久久| 好男人电影高清在线观看| 久久久久精品人妻al黑| 又大又爽又粗| 日韩中文字幕视频在线看片| 中文字幕av电影在线播放| 国产高清视频在线播放一区| 国产欧美亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 999精品在线视频| 久久久久精品人妻al黑| 母亲3免费完整高清在线观看| 日韩大片免费观看网站| 50天的宝宝边吃奶边哭怎么回事| 九色亚洲精品在线播放| 丰满饥渴人妻一区二区三| 欧美av亚洲av综合av国产av| 99精品欧美一区二区三区四区| 亚洲黑人精品在线| 久久精品国产99精品国产亚洲性色 | 激情视频va一区二区三区| 国产野战对白在线观看| 俄罗斯特黄特色一大片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区在线不卡| 手机成人av网站| 纯流量卡能插随身wifi吗| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| 日日夜夜操网爽| 三上悠亚av全集在线观看| 十八禁网站网址无遮挡| 99热国产这里只有精品6| 精品国产国语对白av| 日韩制服丝袜自拍偷拍| 99国产精品免费福利视频| 51午夜福利影视在线观看| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| 午夜免费鲁丝| 午夜视频精品福利| 亚洲熟妇熟女久久| 制服诱惑二区| 久久热在线av| 欧美成人午夜精品| 亚洲第一青青草原| 久久九九热精品免费| 两个人看的免费小视频| 久久久久久人人人人人| 在线观看免费视频网站a站| 俄罗斯特黄特色一大片| 亚洲国产av影院在线观看| 免费在线观看日本一区| 久久久久久免费高清国产稀缺| 国产一卡二卡三卡精品| 久久精品成人免费网站| 国产成人啪精品午夜网站| 国产老妇伦熟女老妇高清| 日韩成人在线观看一区二区三区| 日韩欧美免费精品| 久久久久久久久免费视频了| 午夜久久久在线观看| 精品国内亚洲2022精品成人 | 亚洲精品乱久久久久久| 美国免费a级毛片| 国产精品麻豆人妻色哟哟久久| 国产精品九九99| 桃花免费在线播放| 亚洲自偷自拍图片 自拍| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 成人18禁在线播放| av不卡在线播放| videos熟女内射| 亚洲九九香蕉| 美女扒开内裤让男人捅视频| www日本在线高清视频| 在线观看免费视频网站a站| a级毛片在线看网站| 伦理电影免费视频| 在线观看www视频免费| 美女高潮喷水抽搐中文字幕| 国产一区二区在线观看av| 在线观看66精品国产| 国产男女超爽视频在线观看| 免费av中文字幕在线| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 怎么达到女性高潮| 国产又爽黄色视频| 亚洲熟女精品中文字幕| 在线十欧美十亚洲十日本专区| 亚洲熟妇熟女久久| 日本vs欧美在线观看视频| 午夜91福利影院| 精品亚洲成国产av| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 999精品在线视频| 美女高潮到喷水免费观看| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| a级片在线免费高清观看视频| 91国产中文字幕| a级毛片黄视频| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 男女午夜视频在线观看| av网站免费在线观看视频| 夜夜夜夜夜久久久久| 欧美日韩精品网址| 美女午夜性视频免费| 欧美午夜高清在线| 日韩人妻精品一区2区三区| svipshipincom国产片| 婷婷成人精品国产| 美女高潮到喷水免费观看| 亚洲第一欧美日韩一区二区三区 | 12—13女人毛片做爰片一| 国产精品.久久久| 大码成人一级视频| 成年人午夜在线观看视频| 久久久欧美国产精品| 国产色视频综合| 国产1区2区3区精品| 啦啦啦免费观看视频1| 久久免费观看电影| 精品国内亚洲2022精品成人 | 不卡av一区二区三区| 国产精品.久久久| 国产高清国产精品国产三级| 黄色 视频免费看| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www | 国产三级黄色录像| 国产人伦9x9x在线观看| 搡老岳熟女国产| 热99re8久久精品国产| 午夜激情av网站| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 精品少妇一区二区三区视频日本电影| 深夜精品福利| 午夜老司机福利片| 国产视频一区二区在线看| 日韩熟女老妇一区二区性免费视频| 亚洲伊人久久精品综合| 国产精品一区二区精品视频观看| 99re6热这里在线精品视频| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清 | 成年动漫av网址| 青草久久国产| 大片免费播放器 马上看| 国产日韩欧美在线精品| 久久午夜亚洲精品久久| 女人爽到高潮嗷嗷叫在线视频| 一区福利在线观看| 国产福利在线免费观看视频| 国产高清videossex| 纯流量卡能插随身wifi吗| 午夜福利在线观看吧| 一级毛片女人18水好多| 91成人精品电影| 久久天躁狠狠躁夜夜2o2o| 国产1区2区3区精品| 在线观看免费日韩欧美大片| 免费av中文字幕在线| 一区二区三区激情视频| 国产成人精品在线电影| √禁漫天堂资源中文www| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| 大码成人一级视频| 精品国产超薄肉色丝袜足j| 免费少妇av软件| 黄片大片在线免费观看| 国产亚洲精品一区二区www | 99久久人妻综合| 日韩人妻精品一区2区三区| 看免费av毛片| 成年动漫av网址| 一区在线观看完整版| 一本综合久久免费| 一区二区日韩欧美中文字幕| 日本av免费视频播放| 欧美日韩国产mv在线观看视频| 国产一卡二卡三卡精品| 欧美日韩一级在线毛片| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 国产精品国产av在线观看| 免费在线观看黄色视频的| 色婷婷久久久亚洲欧美| 久久av网站| 亚洲人成伊人成综合网2020| 97人妻天天添夜夜摸| 久久久水蜜桃国产精品网| 一本—道久久a久久精品蜜桃钙片| 欧美精品啪啪一区二区三区| 老汉色av国产亚洲站长工具| 亚洲成a人片在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 欧美日本中文国产一区发布| 一级片'在线观看视频| 日本黄色视频三级网站网址 | 一进一出好大好爽视频| 日韩一卡2卡3卡4卡2021年| av免费在线观看网站| 19禁男女啪啪无遮挡网站| 成年女人毛片免费观看观看9 | 777米奇影视久久| 国产亚洲av高清不卡| 久久久久久久久久久久大奶| 国产av国产精品国产| 亚洲第一av免费看| 国产精品成人在线| 热re99久久国产66热| 国产不卡一卡二| 久久久国产成人免费| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站| a级毛片黄视频| 欧美日本中文国产一区发布| 亚洲avbb在线观看| 每晚都被弄得嗷嗷叫到高潮| 大型av网站在线播放| 日日夜夜操网爽| av视频免费观看在线观看| 亚洲国产av新网站| 欧美日韩av久久| videosex国产| 成人18禁在线播放| 天天影视国产精品| 一本—道久久a久久精品蜜桃钙片| 亚洲五月色婷婷综合| 男女边摸边吃奶| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 老司机午夜十八禁免费视频| 成人特级黄色片久久久久久久 | 丝袜人妻中文字幕| 在线观看舔阴道视频| 欧美激情极品国产一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲国产成人一精品久久久| 男女免费视频国产| 国产精品电影一区二区三区 | 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 亚洲精品av麻豆狂野| 免费在线观看完整版高清| 一本色道久久久久久精品综合| 不卡一级毛片| 精品免费久久久久久久清纯 | 国产男女内射视频| 日本欧美视频一区| 欧美国产精品一级二级三级| av线在线观看网站| 两性夫妻黄色片| 久久久久网色| 国产免费现黄频在线看| 精品少妇久久久久久888优播| 国产免费av片在线观看野外av| 成人三级做爰电影| 成人国产一区最新在线观看| 汤姆久久久久久久影院中文字幕| 五月天丁香电影| 色94色欧美一区二区| 两个人看的免费小视频| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 少妇 在线观看| 亚洲七黄色美女视频| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美精品.| 国产男女内射视频| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 欧美一级毛片孕妇| 亚洲精品在线观看二区| tocl精华| 精品国产亚洲在线| 亚洲精华国产精华精| 一本综合久久免费| 国产精品.久久久| 精品少妇久久久久久888优播| av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 国产在线一区二区三区精| tocl精华| 亚洲三区欧美一区| 18在线观看网站| 久久国产精品影院| 交换朋友夫妻互换小说| 国产精品国产高清国产av | 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人 | 亚洲全国av大片| 欧美日韩福利视频一区二区| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 日韩大片免费观看网站| 日韩成人在线观看一区二区三区| 亚洲成国产人片在线观看| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 欧美在线黄色| 亚洲免费av在线视频| 新久久久久国产一级毛片| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 精品久久久久久电影网| 国产精品久久久av美女十八| 精品久久蜜臀av无| 精品一区二区三卡| 一级片'在线观看视频| 亚洲视频免费观看视频| 国产人伦9x9x在线观看| 精品一品国产午夜福利视频| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看 | 成人特级黄色片久久久久久久 | 高清在线国产一区| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 精品免费久久久久久久清纯 | 女人精品久久久久毛片| 少妇粗大呻吟视频| 国产黄色免费在线视频| 亚洲午夜精品一区,二区,三区| 一夜夜www| 亚洲专区字幕在线| 天天添夜夜摸| 久久青草综合色| 十八禁网站网址无遮挡|