• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of flow separation control on an airfoil usingDBD plasma actuators

    2011-06-15 01:26:18WANGXunnianWANGWanboHUANGYongZHANGXinHUANGZongbo
    實(shí)驗(yàn)流體力學(xué) 2011年4期
    關(guān)鍵詞:迎角升力等離子體

    WANG Xun-nian,WANG Wan-bo,HUANG Yong,ZHANG Xin,HUANG Zong-bo

    (1.School of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China;2.China Aerodynamics Research and Development Center,Mianyang Sichuan 621000,China)

    Investigation of flow separation control on an airfoil usingDBD plasma actuators

    WANG Xun-nian1,WANG Wan-bo2,HUANG Yong2,ZHANG Xin2,HUANG Zong-bo2

    (1.School of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China;2.China Aerodynamics Research and Development Center,Mianyang Sichuan 621000,China)

    Influence of plasma actuators on the flow separation control of NACA 0015airfoil was investigated in an open-circuit low-speed wind tunnel.Particle Image Velocimetry (PIV)technology was applied to visualize the modification of the flow structure over the airfoil by the plasma actuators.Lift and drag were measured by a five-component strain gauge balance to investigate the separation control effect of the actuator voltage and excitation frequency.The results show that the leading-edge plasma actuators are effective in controlling the flow separation over the airfoil at low wind speeds.The maximum lift coefficient and stall angle are increased by 11%and 6deg respectively at the free-stream velocity of 20m/s.However,at a given flow state,there exists threshold values for both the actuator voltage and excitation frequency on the actuators.The threshold values are different with the changing attack angles.At the higher attack angles,the plasma actuator's authority must be increased due to the much stronger flow separation on the airfoil.

    plasma;flow control;actuator;flow separation

    0 Introduction

    The maximum lift and stall characteristics of a wing decide many performance aspects of an aircraft,including takeoff and landing distance,maximum and sustained turn rates,climb and glide rates,and flight ceiling[1]etc.Therefore,how to increase the maximum lift and improve stall characteristics is an important issue for aerodynamics.

    As an important branch and research frontier of aerodynamics,flow control is to improve aerodynamic characteristics,such as reducing drag and increasing lift.Methods of flow control can be divided into two types:passive flow control that modifies the main flow structure and active flow control that modifies the local flow by introducing external energy.Active flow control includes blowing and suction,micro-jet[2],synthetic jet[3],plasma actuation,micro-electro-mechanical systems(MEMS)[4]etc.

    Plasma technique has received much attention in recent decades due to its prospective applications in flow control.The popular DBD(Dielectric Barrier Discharge)plasma actuator consists of two electrodes that are located on the surface separated by a dielectric material.A high-voltage AC supplied to the electrodes causes the air in their vicinity to weakly ionize.The ionized air(plasma)in the presence of the electric field gradient produced by the electrodes results in a body force vector acting on the external flow that can induce steady or unsteady velocity components.In this way,it can effectively control boundary layer transition and separation,significantly improve lift-to-drag ratio and stall angle of the aircraft.

    In recent years,there have been a great deal of researches focusing on plasma flow control due to the advantage of no moving parts,quick response,very low mass,low input power and low parasitic drag when not in operating,such as boundary layer control[5-6],lift augmentation and separation control for airfoils[7-12],low-pressure turbine blade separation control[13]etc.

    Chuan He and Thomas C.Corke[11]used the DBD plasma actuators to validate application of weakly-ionized plasma actuators for improved aerodynamic performance on NACA0015airfoil.Force balance results showed that the leading plasma resulted in an increase in both the maximum lift coefficient and the stall angle of attack and a lift-to-drag improvement of as much as 340%.Patrick Nguyen Huu et al.[14]found that the plasma actuator could increase the lift coefficient by an average of 5%,and up to 10%,while has no major effect on the stall condition,at a free stream speed of 20m/s.N.Yurchenko and Yu.Paramonov[15]used localized plasma discharges generated by microwave radiation for boundary-layer control.Experiments showed that lift coefficients raised by 15%and drag dropped by 5%.P.F.Zhang et al.[12]investigated the effect of the plasma actuator in different chordwise locations on the aerodynamic characteristics of a 75deg swept delta wing.The force measurement results demonstrated that the maximum lift and lift-to-drag ratios were increased by 10.6%and 11.7%at the Reynolds number of 2.82×105.

    In this paper,the whole metal airfoil model was applied as an electrode audaciously.Particle Image Velocimetry(PIV)technology was applied to visualize the modification of the flow structure over the airfoil by the plasma actuators.Force measurement was carried out in the wind tunnel to investigate the effect of the plasma actuator in different actuator voltages and excitation frequencies on the aerodynamic characteristics of the airfoil.

    1 Experimental setup

    1.1 Wind tunnel

    The experiment was conducted in the drawdown open-circuit low-speed wind tunnel.The main parts of the tunnel include diffuser,contraction section,plenum chamber and blower etc.The test section of the tunnel is nominally 700mm high,700mm wide and 1050mm long.The junction of the diffuser,contraction section and the plenum chamber is made of flexible material,which can prevent resonance.The diffuser and contraction section are made of fiberglass.The plenum chamber adopts point-supporting glass curtain wall structure.A photograph of the tunnel with the airfoil in the test section is shown in Fig.1.

    Fig.1 The wind tunnel圖1 風(fēng)洞

    1.2 Power system

    Multi-phase power system consists of multiphase signal generator,SPWM (Sine Pulse Wave Modulator),multi-phase power amplifier and low frequency high voltage transformers.The voltage in this paper is adopted one phase.The photographs of the power are shown in Fig.2.

    Fig.2 The high voltage DC圖2 電源內(nèi)部及面板分布圖

    1.3 Model and plasma actuator

    The airfoil used in this study is a NACA0015.This generic shape is chosen due to its well known steady characteristics.The airfoil has a 100mm chord and a 480mm span.The photograph of the model is shown in Fig.3.

    Fig.3 NACA0015airfoil model圖3 NACA0015翼型模型

    The plasma actuator consists of two electrodes separated by three layers of 0.1mm thick Kapton film.One of the electrodes is made of 0.05mm thick copper foil tape and the other one is the whole airfoil model.The upper electrode is arranged along span wise with a width of 2mm and a length of 440mm.Fig.4shows the illustration of the plasma actuator arrangement.

    Fig.4 Plasma flow control layout圖4 等離子體流動控制布局示意圖

    The surface of the model is not very smooth and flush when bonded the plasma actuator.Since we only study the basic concept of the flow control effect on the airfoil,it is not necessary to treat the model further more.

    1.4 Data acquisition and control system

    Data acquisition utilizes data acquisition and control system in the wind tunnel.The system include balance,manostat,data processing software,computer,and angle controller.

    The time-averaged lift and drag forces of the airfoil are measured by a five-component strain gauge balance.The range of the angle of attack in this experiment varies from 0to 28deg.

    1.5 PIV system

    Particle Image Velocimetry(PIV)technology is applied to measure the flow field.The PIV system includes laser system,recording system,synchronizer,smoke generator,data processing software,and computer etc.

    2 Results and discussion

    The lift coefficients of the airfoil versus angle of attack controlled by the plasma actuator are presented in Fig.5(a).The lift and drag coefficients have not been corrected by accounting for the flow blockage effects.

    Fig.5 Lift coefficient versus angle of attack and drag polar for the airfoil圖5 翼型升力系數(shù)和極曲線

    The corresponding data of the airfoil without control are also included in the plot.There is no visible lift enhancement on the airfoil at low angles of attack,but significantly lift increment at natural post stall conditions.Without control,the flow separates at an angle of attack of 15deg,which is observed as a sharp decrease in lift and increase in drag.With control,the actuator is able to reattach the flow for angles of attack up to 21deg,which is 6 deg higher than the normal stall angle.The maximum lift coefficient of the airfoil is increased by 11%from 0.90without control to 1.0with control.The control results in an increase in both maximum lift and stall angle.It results in a lift-to-drag ratio improvement of as much as 199%.

    Fig.6 PIV results at angle of attack of 18deg圖6 迎角為18°時的PIV測量結(jié)果

    The results of the PIV show that the drop in lift at large angles of attack is due to separation of the flow at the leading edge.Fig.6(a)shows the flow field of the airfoil at a post stall of 18deg without control.A large separation region covers the whole upper surface of the airfoil.With control,the flow is observed to be attached all over the upper surface,shown in Fig.6(b).The PIV tests are in good agreement with the force measurements.

    When the free-stream velocity and the actuator are fixed,the actuator voltage and excitation frequency are the most important factors interested.Firstly,the control effect of actuator voltage was investigated.The lift coefficients at different actuator voltages and fixed excitation frequency of 3.0kHz are shown in Fig.7.Without control,the flow separates at an angle of attack of 15deg.When the actuator voltage is 2.0kV,the flow separates at an angle of attack of 16deg and the stall angle is increased by 1deg.When the actuator voltage is 3.0kV,the flow separates at an angle of attack of 20deg.which is 5 deg higher than the normal stall angle.When the actuator voltage is 4.0kV,the result is more significant that the stall angle delays 6deg.

    Fig.7 Lift coefficient versus angle of attack for the airfoil at different voltages圖7 不同電壓下的翼型升力曲線

    Further study of the control effect of actuator voltage at a fixed angle was carried out.The results at attack angle of 15~19deg at free-stream velocity of 20m/s and excitation frequency of 3.0kHz are shown in Fig.8.This documents the lift and drag coefficients as a function of the actuator voltage.At attack angle of 15deg,the flow over the airfoil has been naturally separated and the lift coefficient is low and the drag coefficient is high.When the actuator voltage is not high enough,the flow remains separated and there is no improvement in the lift and drag,like the left edge of the plot.However,once a threshold voltage to the actuator is reached,the flow dramatically reattached.This is observed as a large increase in the lift and decrease in the drag,marked by the dashed line in the plot.Above this voltage,there is very little change in the lift and drag coefficients.It is concluded that the actuator voltage has an optimum value and once the actuator voltage is higher than the value,the control is effective.

    Fig.8shows that the threshold value is 1.6kV for the attack angles of 15,16and 17deg,while the value is 2.4kV for the angle of 18deg.At higher attack angle the flow separation is much stronger and flow control is more difficult,resulting in higher actuator voltage threshold value.

    Fig.8 Effect of the actuator voltages on the lift and drag coefficient at different angles of attack圖8 不同迎角下電壓對升阻力系數(shù)的影響

    Similar experiments have been done for different excitation frequencies.At a fixed actuator voltage of 4.0kV,the lift coefficients at different frequencies are shown in Fig.9.The stall angle is increased by 5deg at the frequency of 2.0kHz,while the stall angle increased by 6deg at the frequencies of 3.0kHz and 4.0kHz.Moreover,the control effects at the frequencies of 3.0kHz and 4.0kHz have no visible difference.

    Fig.9 Lift coefficient versus angle of attack for the airfoil at different frequencies圖9 不同頻率下的翼型升力曲線

    The more particular investigation has been done to find an optimum frequency value at different angles.Same as the actuator voltage,different attack angles have different threshold values.As seen in Fig.10,when the actuator voltage is fixed at 4.0kV,the value is 150Hz at angles of 15,16and 17deg.While the value is a sudden break at angle of 18 deg,which is very similar to the actuator voltage and the value is 800Hz.The reason is the same as the actuator voltage.

    Fig.10 Effect of the excitation frequencies on the lift and drag coefficient at different angles圖10 不同迎角下頻率對升阻力系數(shù)的影響

    3 Conclusions

    The force measurement and PIV experiments were carried out in the wind tunnel to investigate the influence of plasma actuators on the flow separation control of NACA0015airfoil.The results show that the leading-edge plasma actuators can be effective in controlling the flow separation over the airfoil at low wind speeds.The maximum lift coefficient and stall angle are increased by 11%and 6deg respectively at free-stream velocity of 20m/s.

    At a given flow state,there exists threshold values for both the actuator voltage and excitation frequency on the actuators.The threshold values are different with the changing attack angles.At the higher attack angles,the plasma actuator's authority must be increased due to the much stronger flow separation on the airfoil.

    [1]CORKE,T C.Design of aircraft[M].New York:Prentice-Hall,2002:38-59.

    [2]MCMICAWL J M.Progress and prospects for active flow control using microfabricated electro-mechanical system (MEMS)[R].AIAA 96-0306.

    [3]WILTSE J,GLEZER A.Manipulation of free shear flows using piezoelectric actuators[J].J Fluid Mech.,1993,249:261-285.

    [4]WARSOP C.AeromemsII:A European research effort to develop MEMS based flow control technologies[R].AIAA Paper 2004-22209,2004.

    [5]ROTH J R,SHERMAN D M,WLIKINSON S R.Electrohydrodynamic flow control with a glow-discharge surface plasma[J].AIAA Journal,2000,38(7).

    [6]JACOB J,RIVIR R,CAMPBELL C,et al.Boundary layer flow control using AC discharge plasma actuators[R].AIAA 2004-2128.

    [7]CORKE T C,JUMPER E J,POST M L,et al.Application of weakly-ionized plasmas as wing flow-control devices[R].AIAA 2002-0350,2002.

    [8]POST M L,and CORKE T C.Separation control on high angle of attack airfoil using plasma actuators[J].AIAA Journal,2004,42(11):2177-2184.

    [9]CORKE T C,MERTZ B,and PATEL M P.Plasma flow control optimized airfoil[R].AIAA 2006-1208,2006.

    [10]PATEL M P,SOWLE Z H,CORKE T C,et al.Autonomous sensing and control of wing stall using a smart plasma slat[R].AIAA 2006-1207,2006.

    [11]HE C,CORKE T C,et al.Plasma flaps and slats:an application of weakly ionized plasma actuators [J].Journal of Aircraft,2009,46(3).

    [12]ZHANG P F,WANG J J,et al.Experimental study of plasma flow control on highly swept delta wing [J].AIAA Journal,2010,48(1).

    [13]HUANG J,CORKE T C,and THOMAS F O.Plasma actuators for separation control of low pressure turbine blades[R].AIAA2003-1027,2003.

    [14]HUU P N,et al.Plasma-assisted high lift systems[R].AIAA2009-3943,2009.

    [15]YURCHENKOV N and PARAMONOV Yu.Boundary-layer control based on localized plasma generation:wind-tunnel investigations[R].AIAA2010-1007,2010.

    Author biography:

    WANG Xun-nian(1962-),male,born in Longnan of Jiangxi province,Doctor of Northwestern Polytechnical University.Research field:low speed aerodynamics and experiments in fluid.Address:China Aerodynamics Research &Development Center,Mianyang,Sichuan(621000).Telephone:(0816)2461070,E-mail:xunnian@sohu.com.

    1672-9897(2011)04-0009-06

    介質(zhì)阻擋放電等離子體對翼型流動分離控制的實(shí)驗(yàn)研究

    王勛年1,王萬波2,黃 勇2,張 鑫2,黃宗波2
    (1.西北工業(yè)大學(xué)航空學(xué)院,西安710072;2.中國空氣動力研究與發(fā)展中心,四川 綿陽 621000)

    在低速開口風(fēng)洞中進(jìn)行了等離子體激勵器對NACA0015翼型流動分離控制的實(shí)驗(yàn)研究。采用PIV技術(shù),對翼型繞流流場進(jìn)行了測量,顯示了施加等離子體激勵后流場的變化。通過五分量天平對升力和阻力的測量,研究了激勵電壓和激勵頻率對翼型流動分離控制的規(guī)律。研究表明,低風(fēng)速下在翼型前緣施加等離子體激勵,能夠有效地控制翼型流動分離,在來流為20m/s時,最大升力系數(shù)增加11%,失速迎角增加6°;在給定的流動狀態(tài)下,激勵電壓和激勵頻率存在一個閾值,不同迎角下該閾值不同,迎角越大,分離越嚴(yán)重,對激勵強(qiáng)度的要求也越高。

    等離子體;流動控制;激勵器;流動分離

    V211.7;O357.4+1

    A

    date:2010-11-09;Revised date2011-05-08

    猜你喜歡
    迎角升力等離子體
    高速列車車頂–升力翼組合體氣動特性
    連續(xù)變迎角試驗(yàn)數(shù)據(jù)自適應(yīng)分段擬合濾波方法
    連續(xù)磁活動對等離子體層演化的影響
    基于低溫等離子體修飾的PET/PVC浮選分離
    無人機(jī)升力測試裝置設(shè)計(jì)及誤差因素分析
    基于自適應(yīng)偽譜法的升力式飛行器火星進(jìn)入段快速軌跡優(yōu)化
    等離子體種子處理技術(shù)介紹
    升力式再入飛行器體襟翼姿態(tài)控制方法
    失速保護(hù)系統(tǒng)迎角零向跳變研究
    科技傳播(2014年4期)2014-12-02 01:59:42
    等離子體聚合廢植物油及其潤滑性能
    免费大片黄手机在线观看| 男女边吃奶边做爰视频| av播播在线观看一区| 99视频精品全部免费 在线| 成年女人在线观看亚洲视频| 黄色视频在线播放观看不卡| 夜夜骑夜夜射夜夜干| av在线播放精品| 黄片播放在线免费| av一本久久久久| 啦啦啦在线观看免费高清www| 又大又黄又爽视频免费| 免费高清在线观看视频在线观看| 免费人妻精品一区二区三区视频| 欧美精品人与动牲交sv欧美| 久久鲁丝午夜福利片| 久久久久精品人妻al黑| 成年人免费黄色播放视频| 免费看光身美女| 免费高清在线观看日韩| 在线 av 中文字幕| 搡老乐熟女国产| 免费大片18禁| 久久国产亚洲av麻豆专区| 黄色毛片三级朝国网站| 国语对白做爰xxxⅹ性视频网站| 国产精品99久久99久久久不卡 | 亚洲国产精品国产精品| 久久精品久久久久久久性| 久久99一区二区三区| 免费看不卡的av| 尾随美女入室| www.av在线官网国产| 人人妻人人爽人人添夜夜欢视频| kizo精华| 宅男免费午夜| 国产探花极品一区二区| 久久精品国产亚洲av涩爱| 黄色配什么色好看| 黄色配什么色好看| 国产毛片在线视频| 精品人妻在线不人妻| 亚洲第一av免费看| 久久精品熟女亚洲av麻豆精品| 黑人巨大精品欧美一区二区蜜桃 | 十八禁网站网址无遮挡| 国产精品国产av在线观看| 赤兔流量卡办理| 在线精品无人区一区二区三| 捣出白浆h1v1| 90打野战视频偷拍视频| 在线天堂最新版资源| 成人毛片a级毛片在线播放| 成年美女黄网站色视频大全免费| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 亚洲av福利一区| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| 国产成人精品婷婷| 国产国拍精品亚洲av在线观看| 欧美国产精品一级二级三级| 国产高清国产精品国产三级| 9色porny在线观看| 视频中文字幕在线观看| 国产1区2区3区精品| 精品久久久精品久久久| 久久久久网色| 少妇 在线观看| 日韩一区二区三区影片| 999精品在线视频| 一个人免费看片子| 国产成人午夜福利电影在线观看| 我要看黄色一级片免费的| av又黄又爽大尺度在线免费看| 久久久久视频综合| 亚洲精品乱久久久久久| 激情五月婷婷亚洲| 国精品久久久久久国模美| 大香蕉97超碰在线| www日本在线高清视频| 国产精品一二三区在线看| 99久久人妻综合| 在线观看免费视频网站a站| 十八禁网站网址无遮挡| 亚洲欧美精品自产自拍| 亚洲精品视频女| 亚洲av成人精品一二三区| 大片电影免费在线观看免费| 综合色丁香网| 欧美国产精品va在线观看不卡| 三级国产精品片| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| videosex国产| 满18在线观看网站| 欧美人与性动交α欧美精品济南到 | 丰满乱子伦码专区| 丰满迷人的少妇在线观看| 日韩欧美精品免费久久| 一级黄片播放器| 高清在线视频一区二区三区| 国产精品国产av在线观看| 色94色欧美一区二区| 久久免费观看电影| 一区二区av电影网| 亚洲国产欧美在线一区| 日本av手机在线免费观看| 亚洲av免费高清在线观看| 亚洲av综合色区一区| 久久久国产欧美日韩av| 伦精品一区二区三区| 日本-黄色视频高清免费观看| 欧美精品一区二区免费开放| 国产欧美另类精品又又久久亚洲欧美| 久久综合国产亚洲精品| 精品久久久精品久久久| 妹子高潮喷水视频| 一级爰片在线观看| 久久鲁丝午夜福利片| 22中文网久久字幕| 亚洲av成人精品一二三区| 伦理电影免费视频| 丰满少妇做爰视频| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 在线天堂中文资源库| 国产永久视频网站| 欧美日韩精品成人综合77777| 日韩av免费高清视频| 啦啦啦视频在线资源免费观看| 国产老妇伦熟女老妇高清| 久久久久久久大尺度免费视频| 一区二区日韩欧美中文字幕 | 少妇被粗大猛烈的视频| 夫妻午夜视频| 午夜91福利影院| 热re99久久精品国产66热6| 国产色婷婷99| 欧美激情极品国产一区二区三区 | 亚洲欧美中文字幕日韩二区| 自线自在国产av| 97超碰精品成人国产| 男女免费视频国产| 免费在线观看黄色视频的| 欧美国产精品一级二级三级| av电影中文网址| 国产一级毛片在线| 赤兔流量卡办理| 狠狠婷婷综合久久久久久88av| 亚洲天堂av无毛| 一级毛片电影观看| 一本久久精品| 18禁观看日本| 亚洲精品久久成人aⅴ小说| 老司机影院毛片| 两性夫妻黄色片 | 一二三四在线观看免费中文在 | 成年人午夜在线观看视频| 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 免费大片黄手机在线观看| 国产黄色免费在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇内射三级| 国产69精品久久久久777片| 日韩电影二区| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 丰满迷人的少妇在线观看| a 毛片基地| 少妇精品久久久久久久| 亚洲中文av在线| 国产一区二区三区av在线| 97在线视频观看| 欧美国产精品va在线观看不卡| 99久久人妻综合| 看免费成人av毛片| 欧美亚洲 丝袜 人妻 在线| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 香蕉精品网在线| kizo精华| 日韩人妻精品一区2区三区| 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜爱| 国产成人aa在线观看| 国产免费又黄又爽又色| 99国产综合亚洲精品| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 久久精品夜色国产| 久久国产精品男人的天堂亚洲 | 毛片一级片免费看久久久久| 人妻系列 视频| 国产色爽女视频免费观看| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 免费在线观看黄色视频的| 成人影院久久| 岛国毛片在线播放| 日本91视频免费播放| 国产精品熟女久久久久浪| 99热这里只有是精品在线观看| 精品亚洲成a人片在线观看| 欧美+日韩+精品| 在线看a的网站| 国产一区二区在线观看av| 久久久久久久精品精品| 在线 av 中文字幕| 国产乱人偷精品视频| 久久久久久久久久成人| 22中文网久久字幕| 一级毛片 在线播放| av在线播放精品| 欧美xxxx性猛交bbbb| 丁香六月天网| 亚洲,欧美精品.| 亚洲人成网站在线观看播放| 看免费成人av毛片| 91精品三级在线观看| 丝袜人妻中文字幕| 国产欧美另类精品又又久久亚洲欧美| 国产成人a∨麻豆精品| 飞空精品影院首页| 日韩,欧美,国产一区二区三区| 91午夜精品亚洲一区二区三区| 欧美精品国产亚洲| av电影中文网址| 亚洲伊人色综图| 国产在线视频一区二区| 午夜日本视频在线| 日韩av免费高清视频| 亚洲精品国产av成人精品| 亚洲精品一区蜜桃| 久久久久国产网址| 91午夜精品亚洲一区二区三区| 精品久久国产蜜桃| 亚洲国产色片| 久久久久久久亚洲中文字幕| 久久久国产精品麻豆| 男人操女人黄网站| 久久影院123| 最近的中文字幕免费完整| 一个人免费看片子| 99国产综合亚洲精品| 欧美日韩精品成人综合77777| 久久热在线av| 国产精品国产三级国产专区5o| 国产不卡av网站在线观看| 男女边摸边吃奶| 一级片'在线观看视频| av电影中文网址| 久久精品国产亚洲av天美| www.av在线官网国产| 国产精品国产三级专区第一集| 日韩av免费高清视频| 久久国产亚洲av麻豆专区| 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 成人毛片a级毛片在线播放| 一级片'在线观看视频| av国产精品久久久久影院| 欧美日韩精品成人综合77777| 18禁裸乳无遮挡动漫免费视频| 国产亚洲午夜精品一区二区久久| a级毛片在线看网站| av免费在线看不卡| 精品卡一卡二卡四卡免费| av线在线观看网站| 国产免费现黄频在线看| 欧美人与性动交α欧美精品济南到 | 色94色欧美一区二区| 22中文网久久字幕| 欧美日韩亚洲高清精品| kizo精华| 免费人妻精品一区二区三区视频| 成人漫画全彩无遮挡| 欧美3d第一页| 人人妻人人爽人人添夜夜欢视频| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 欧美日韩av久久| 成年女人在线观看亚洲视频| 亚洲国产精品一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久网色| 秋霞伦理黄片| freevideosex欧美| 亚洲情色 制服丝袜| 国产精品一二三区在线看| 色5月婷婷丁香| 18在线观看网站| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 母亲3免费完整高清在线观看 | 在线观看www视频免费| 成人影院久久| 国产片特级美女逼逼视频| 人妻系列 视频| 国产成人av激情在线播放| 男人爽女人下面视频在线观看| 丝袜喷水一区| 成人毛片60女人毛片免费| 激情五月婷婷亚洲| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产极品天堂在线| 欧美另类一区| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 久久精品国产a三级三级三级| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 日本欧美国产在线视频| 内地一区二区视频在线| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| 亚洲四区av| 少妇的逼水好多| 只有这里有精品99| 91在线精品国自产拍蜜月| 精品亚洲乱码少妇综合久久| 天堂中文最新版在线下载| 精品久久国产蜜桃| 建设人人有责人人尽责人人享有的| 不卡视频在线观看欧美| 精品一区二区三区四区五区乱码 | 免费在线观看黄色视频的| 中国国产av一级| 韩国高清视频一区二区三区| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 亚洲四区av| 日韩成人伦理影院| 国产极品粉嫩免费观看在线| 国产免费一区二区三区四区乱码| videos熟女内射| 99国产综合亚洲精品| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 亚洲av成人精品一二三区| 精品卡一卡二卡四卡免费| 精品亚洲乱码少妇综合久久| 肉色欧美久久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 9热在线视频观看99| 中国美白少妇内射xxxbb| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 亚洲国产成人一精品久久久| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 国产免费视频播放在线视频| 日日啪夜夜爽| 人成视频在线观看免费观看| 大片电影免费在线观看免费| 亚洲精品第二区| 熟女av电影| 免费播放大片免费观看视频在线观看| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 黑人欧美特级aaaaaa片| 97人妻天天添夜夜摸| 中文字幕av电影在线播放| 亚洲伊人色综图| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 精品久久蜜臀av无| 久久人人97超碰香蕉20202| 国产免费现黄频在线看| 国国产精品蜜臀av免费| 欧美日韩亚洲高清精品| 香蕉丝袜av| av一本久久久久| 国产乱人偷精品视频| 日韩人妻精品一区2区三区| 一二三四中文在线观看免费高清| 丝袜喷水一区| 超色免费av| 精品少妇内射三级| 久久国产精品男人的天堂亚洲 | 丰满乱子伦码专区| 丝袜在线中文字幕| 全区人妻精品视频| 激情五月婷婷亚洲| 欧美成人午夜免费资源| 亚洲一码二码三码区别大吗| 国产精品一区二区在线不卡| 久久久久久久国产电影| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| av黄色大香蕉| 亚洲av中文av极速乱| 校园人妻丝袜中文字幕| 涩涩av久久男人的天堂| 一区二区三区精品91| 国产av国产精品国产| 日韩电影二区| 国产高清三级在线| 中文乱码字字幕精品一区二区三区| 午夜影院在线不卡| 超色免费av| 欧美 亚洲 国产 日韩一| 精品人妻在线不人妻| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| 国产毛片在线视频| 一级片'在线观看视频| 中文字幕制服av| 午夜福利网站1000一区二区三区| 国产视频首页在线观看| 久久久久久久国产电影| 交换朋友夫妻互换小说| 9色porny在线观看| 国产高清三级在线| 日本午夜av视频| 女性被躁到高潮视频| 欧美人与善性xxx| 十分钟在线观看高清视频www| 国产亚洲一区二区精品| 99视频精品全部免费 在线| 成人影院久久| 日本欧美视频一区| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 国产成人精品福利久久| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区蜜桃 | 免费久久久久久久精品成人欧美视频 | 国产精品不卡视频一区二区| 99热国产这里只有精品6| 国产精品99久久99久久久不卡 | 日韩一区二区三区影片| 成人免费观看视频高清| 搡老乐熟女国产| 欧美97在线视频| 亚洲美女视频黄频| 少妇 在线观看| 欧美最新免费一区二区三区| 成人18禁高潮啪啪吃奶动态图| 内地一区二区视频在线| 中文欧美无线码| 水蜜桃什么品种好| 波野结衣二区三区在线| 中文字幕最新亚洲高清| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 久久久精品区二区三区| 国产免费福利视频在线观看| 亚洲情色 制服丝袜| 韩国av在线不卡| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 亚洲四区av| 欧美日本中文国产一区发布| 国产欧美另类精品又又久久亚洲欧美| av线在线观看网站| av免费观看日本| 99热全是精品| 边亲边吃奶的免费视频| 一本久久精品| 免费av不卡在线播放| 亚洲欧美一区二区三区国产| 性高湖久久久久久久久免费观看| 中文精品一卡2卡3卡4更新| 黄网站色视频无遮挡免费观看| 免费高清在线观看日韩| 亚洲色图综合在线观看| 国产成人午夜福利电影在线观看| 一区在线观看完整版| 亚洲综合色惰| 性色av一级| a级毛片在线看网站| 久久国内精品自在自线图片| 日韩成人伦理影院| av免费观看日本| 51国产日韩欧美| 天堂中文最新版在线下载| 午夜福利影视在线免费观看| 伦理电影大哥的女人| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 日韩大片免费观看网站| 午夜影院在线不卡| 免费久久久久久久精品成人欧美视频 | 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 国产乱人偷精品视频| 草草在线视频免费看| 自线自在国产av| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 视频在线观看一区二区三区| 一级黄片播放器| 日韩一本色道免费dvd| 国产片特级美女逼逼视频| 国产福利在线免费观看视频| 日本欧美国产在线视频| 不卡视频在线观看欧美| 欧美精品av麻豆av| 大香蕉97超碰在线| 国产一区二区三区综合在线观看 | 777米奇影视久久| 亚洲精品国产av成人精品| 国产探花极品一区二区| 国产 一区精品| 9热在线视频观看99| av有码第一页| 91在线精品国自产拍蜜月| 免费看不卡的av| 有码 亚洲区| 免费少妇av软件| 亚洲av男天堂| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| a 毛片基地| 中文字幕人妻丝袜制服| 美女内射精品一级片tv| 九草在线视频观看| 久久青草综合色| 中国美白少妇内射xxxbb| 欧美国产精品一级二级三级| 久久狼人影院| 亚洲精品色激情综合| 国产在线一区二区三区精| 国产精品一国产av| 在线观看www视频免费| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看| 美女内射精品一级片tv| 伦理电影大哥的女人| 少妇的逼好多水| 18禁国产床啪视频网站| 又粗又硬又长又爽又黄的视频| 精品亚洲成a人片在线观看| www.色视频.com| 亚洲精品国产av蜜桃| 国产 一区精品| 国产精品久久久久久久久免| av在线观看视频网站免费| 97精品久久久久久久久久精品| 中文天堂在线官网| 大香蕉97超碰在线| 肉色欧美久久久久久久蜜桃| 一区二区三区乱码不卡18| 免费观看av网站的网址| a级毛片黄视频| 视频在线观看一区二区三区| 国产精品一二三区在线看| 国产熟女午夜一区二区三区| 免费看av在线观看网站| 国产精品一国产av| 香蕉精品网在线| 日韩伦理黄色片| 亚洲伊人色综图| 亚洲国产av新网站| 久久久久久人人人人人| 哪个播放器可以免费观看大片| 丰满饥渴人妻一区二区三| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| 成人毛片60女人毛片免费| 大香蕉97超碰在线| 寂寞人妻少妇视频99o| 9191精品国产免费久久| 成人免费观看视频高清| 99久久综合免费| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 一级黄片播放器| 91国产中文字幕| 妹子高潮喷水视频| 69精品国产乱码久久久| 热re99久久精品国产66热6| 如日韩欧美国产精品一区二区三区| 热re99久久精品国产66热6| 欧美日韩视频精品一区| 亚洲精品456在线播放app| 国产 一区精品| 欧美日韩亚洲高清精品| av福利片在线| 内地一区二区视频在线| 亚洲av男天堂| 国产日韩欧美在线精品| 一边亲一边摸免费视频| 国产淫语在线视频| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 国产精品女同一区二区软件| 久久久久久久久久成人| 看免费av毛片| 成人免费观看视频高清| 久久午夜福利片| 免费高清在线观看日韩| 咕卡用的链子| 大话2 男鬼变身卡| 少妇人妻精品综合一区二区| 这个男人来自地球电影免费观看 | 日韩在线高清观看一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产欧美日韩一区二区三区在线| 日本与韩国留学比较| 久久久精品区二区三区| 美女主播在线视频| 亚洲av在线观看美女高潮|