• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靶向?qū)Ρ葎〤LT1-(Gd-DTPA)在小鼠乳腺癌磁共振分子成像效果的研究

    2011-06-02 09:36:30FurongYeEunKeeJeongDenisParkerZhengRongLu
    磁共振成像 2011年5期
    關(guān)鍵詞:磁共振靶向分子

    Furong Ye, Eun-Kee Jeong, Denis Parker, Zheng-Rong Lu

    Introduction

    Magnetic resonance imaging (MRI)is a powerful imaging modality for morphological and functional imaging. MRI provides anatomical images of soft tissues with high spatial resolution, but is often limited for molecular imaging because of its low sensitivity[1-3].Signif i cant efforts have been devoted to the design and development of effective targeted MRI contrast agents for molecular imaging of cancer biomarkers expressed on cancer cell surfaces in the last three decades.Targeting agents, e.g. peptides, antibodies and proteins,have been conjugated to polymers or nanoparticles containing a large number of Gd (III)chelates to increase local concentration of contrast agents and to generate detectable MR signals[4-8]. However, the targeted contrast agents based on these polymers or nanoparticles are too large to be excreted from the body via renal filtration,resulting in prolonged tissue retention. Long-term tissue accumulation of Gd (III)based contrast agents may release Gd (III)ions and cause toxic side effects such as systemic nephrogenic fi brosis[9,10]. An innovative design of safe and effective targeted MRI contrast agents is necessary for satisfying the unmet needs for MR cancer molecular imaging.

    We have recently hypothesized that effective MR cancer molecular imaging can be achieved by targeting the molecular biomarkers with high expression in tumor stroma using the agents that can be readily excreted[11-13]. Tumor stroma has a unique extracellular matrix composed of cancer related biomacromolecules needed for cancer cell survival and proliferation. For example, fi brin and fibronectin in tumor stroma are known to associate with increased microvessel permeability and tumor angiogenesis in neoplastic tissues[14,15]. Fibrin and fi bronectin are highly expressed and form complexes in the mesh network of malignant tumors. Their complexes could be a suitable biomarker for cancer molecular imaging with MRI. We have recently synthesized and tested a CLT1-(Gd-DTPA)as a targeted MRI contrast agent for cancer molecular imaging[11]. CLT1 is a cyclic decapeptide, CGLIIQKNEC, that specifically binds to the fi brin-f i bronectin complexes in various tumor tissues with little non-specif i c binding to normal tissues[16]. Our initial study has shown that the agent is effective for MR cancer molecular imaging in a mouse colon cancer model. In this study, we further evaluated the eff i cacy of CLT1-(Gd-DTPA)for cancer molecular imaging in mice bearing MDA-BM-231 breast tumor xenografts.

    1 Materials and Methods

    1.1 Synthesis of CLT1-(Gd-DTPA)

    The CLT1 peptide CGLIIQKNEC was first synthesized using standard solid-phase peptide synthesis from Fmoc-protected amino acids on a 2-chlorotrityl chloride resin. At the end of the peptide synthesis, an excess of DTPA dianhydride in DMSO was reacted with the peptide on the beads at room temperature for 4 hours to conjugate DTPA at the N-terminal of the peptide. The resin was completely washed with water,DMF, dichloromethane and methanol three times each.The CLT1-DTPA was then removed from the resin using a TFA solution (TFA 94%, 1, 2-ethanedithiol 2.5%,triisobutylsilane 2.5%, and water 1%). The product was exposed to air for about 2 hours to allow the formation of disulf i de bonds for the cyclic peptide and then purif i ed using preparative HPLC with a C18 column. CLT1-(Gd-DTPA)was fi nally prepared by complexation of CLT1-DTPA with Gd (OAc)3at pH 6. Excess Gd (OAc)3was removed by precipitation at pH 11. The final product was purif i ed by preparative HPLC.

    1.2 Animal model

    Human breast carcinoma cell line MDA-MB-231 was purchased from American Type Culture Collection(ATCC, Manassas, VA). The MDA-MB-231 human breast cancer cells were cultured in Leibovitz's L-15 medium with 2 mM L-glutamine and 10% FBS. Female athymic nu/nu mice (6 weeks old)were purchased from the National Cancer Institute (Frederick, MD). The mice were cared for according to the guidelines of the IACUC,University of Utah. The mice were subcutaneously implanted in both lower fl anks with 2×106MDA-MB-231 cells in a mixture of 50 μl culture media and 50 μl Matrigel. Mice were used for MRI study when tumor sizes reached 0.5-0.8 cm.

    1.3 MR imaging

    MRI study was performed on a Siemens Trio 3T scanner using a human wrist coil[17]. A clinical contrast agent, Gd(DTPA-BMA), was used as a control. A group of 3 mice were used for each contrast agent. The mice were anesthetized by intramuscular administration of a mixture of ketamine (45 mg/kg)and xylazine (6 mg/kg)for MRI. The CLT1-(Gd-DTPA)and Gd(DTPA-BMA)was intravenously injected at a dose of 0.05 and 0.1 mmol/kg, respectively. High resolution 3D images were acquired with a 3D FLASH sequence with 25°flip angle, TR/TE=7.8/2.7 ms, 0.5 mm slice thickness,120 mm field of view (FOV), 0.5×0.5×0.5 mm3voxel size. T1-weighted 2D axial tumor images were acquired with a 2D spin echo sequence with 90°flip angle, TR/TE = 400/10 ms, 2.0 mm slice thickness, 50 mm FOV, and 0.5×0.5×2 mm3voxel size. Contrast enhanced MR images were acquired before and at 1,5, 10, 15, 20, 30 and 60 minutes after injection. MR images were analyzed with Osirix (http://homepage.mac.com/rossetantoine/osirix/)software. The signal intensity was measured in the tumor periphery and inner core, and the signal to noise ratio (SNR)in the tumor tissues was calculated as SNR= (SItissue-SInoise)/SDnoise.MR signal intensity was also measured in the tissue of interest from high-resolution 3D images and SNR was calculated in these tissues. Statistical analysis was performed with Prism software (Version 4.0b, GraphPad software Inc., San Diego, CA)using two-way repeated ANOVA. Bonferroni post-test was used to determine the signif i cant difference in the comparisons among the conjugates. Statistical signif i cance was considered when P < 0.05.

    1.4 Histological analysis

    Immunohistochemistry was performed to evaluate the expression of fibronectin in tumor tissue.Mice bearing MDA-MB-231 tumor xenografts were sacrificed, and tumor tissues were removed and fixed with 3% paraformaldehyde and embedded in paraffin.Tumor tissue was sectioned into 4 μm slices and incubated in 3% hydrogen peroxide, 10% methanol for 10 min at room temperature to block endogenous peroxidase activity. The tumor sections were then boiled in antigen retrieval solution (1 mmol/L Tris-HCl, 0.1 mmol/L EDTA, pH=8.0)for 15 minutes at high power in a microwave and incubated with primary anti-f i bronectin antibody (Sigma-Aldrich, cat#F3648)at appropriate dilutions overnight. After washing with PBS buffer,the sections were incubated with biotinylated secondary antibody and a horseradish peroxidase-streptavidin complex for 1 h each. Tissue samples were then colorized with 3, 3' diaminobenzidine (DAB)substrate,counterstained, mounted and visualized with a brightfield microscope.

    2 Results and Discussion

    Figure 1 Chemical structure of CLT1-(Gd-DTPA)

    Figure 2 T1-weighted 2D spin-echo images of mice bearing MDA-MB 231 xenografts before and at 5, 30 and 60 minutes after intravenous injection of CLT1-(Gd-DTPA)(A, 0.05 mmol/kg)and Omniscan? (B, 0.1 mmol/kg). Arrows point to the tumor.

    The structure of CLT1-(Gd-DTPA)is shown in Figure 1. Gd-DTPA is a clinical MRI contrast agent.The cyclic peptide CLT1 was conjugated to one of the fi ve carboxylic groups of DTPA. The fi nal product had four carboxylates, one amide carbonyl group and three amino groups complexed to a Gd(III)ion. It should have a thermodynamic stability higher than the clinical agent,Gd(DTPA-BMA). T1 and T2 relaxivities of CLT1-(Gd-DTPA)were 4.22 and 4.45 mM-1sec-1at 3T, comparable to other Gd(III)based clinical MRI contrast agents.

    The effectiveness of CLT1-(Gd-DTPA)for MR molecular imaging of fibrin-fibronectin complexes in tumor stroma was evaluated in female athymic nu/nu mice bearing MDA-MB-231 human breast carcinoma xenografts. Figures 2 shows the axial T1-weighted 2D spin-echo images of the tumor tissues of the mice bearing MDA-MB-231 tumor xenografts before and after the injection of CLT1-(Gd-DTPA)and Gd(DTPABMA). Significant enhancement was observed in tumor tissues for both agents in the fi rst 5 minutes postinjection. Gd(DTPA-BMA)was then cleared from the tumor tissue and tumor enhancement returned to the background level after 30 minutes post-injection.Strong enhancement was still visible in the tumor tissues at 60 minutes after injection for CLT1-(Gd-DTPA). The enhancement of the targeted agent in the tumor periphery was more significant than that in the tumor core. Figure 3 shows the signal-to-noise ratios(SNR)in the tumor periphery before and at various time points after injecting the contrast agents. The SNR in the tumor tissue with Gd(DTPA-BMA)reduced to the background level at 30 minutes post-injection, while approximately 30% increase of SNR was observed at 60 minutes after the injection in the tumor periphery with the targeted contrast agent. The SNR indirectly ref l ects the concentration of the agents in tumor, with higher SNR indicating higher concentrations of the contrast agents in the tissues. The results indicate the binding and retention of the targeted contrast agent in tumor tissue for signif i cant tumor enhancement.

    Figure 3 The plots of SNR versus time in tumor periphery before and after injection of CLT1-(Gd-DTPA)(△)and Omniscan?(○).

    MR signal intensity with the contrast agents in other regions of interest was also determined in the high-resolution 3D MR images of mice to preliminarily evaluate their biodistribution and pharmacokinetic properties. Figure 4 shows SNR in the blood, liver and muscle of the mice injected with CLT1-(Gd-DTPA)and Gd(DTPA-BMA). CLT1-(Gd-DTPA)had similar blood SNR kinetics as Gd(DTPA-BMA), indicating that the targeted agent had similar pharmacokinetics as the clinical agent with little binding to the soluble fi bronectin and fi brinogen in the blood. The blood SNR decreased rapidly for both agents and almost returned to the background level at 60 minutes after the injection.CLT1-(Gd-DTPA)had higher initial SNR in the liver than Gd(DTPA-BMA), possibly due to the lipophilic nature of the peptide. The SNR of the targeted agent in the liver then returned to the similar level as that of Gd(DTPA-BMA)at 60 minutes after the injection.Both agents resulted in minimally increased SNR in the muscle. The results suggest that CLT1-(Gd-DTPA)behaved as a low molecular weight contrast agent and had little non-specif i c binding to normal tissues.

    Immunohistochemistry confirmed the presence of fibronectin in the MDA-MB-231 breast cancer xenografts after in vivo MR imaging. Figure 5 shows the histological images of fibronectin in MDA-MB-231 tumor tissues. The high expression of fibronectin was shown in the tumor stroma with staining of an antifibronectin antibody. The abundant presence of fibrinfibronectin complexes in tumor stroma allowed speci fic and prolonged binding of a sufficient amount of CLT1-(Gd-DTPA)to generate measurable enhancement in the tumor tissue.

    Figure 4 Plots of SNR versus time in the blood (A), liver (B),and muscle (C)of mice bearing MDA-MB 231 xenografts before and after injection of CLT1-(Gd-DTPA)(△, 0.05 mmol/kg)and Omniscan? (○, 0.1 mmol/kg).

    It is difficult for contrast enhanced MRI to effectively detect the biomarkers expressed on cancer cells because of its low sensitivity. We have shown that contrast enhanced MRI can be effective for molecular imaging of cancer biomarkers abundantly expressed in tumor stroma. The presence of cancerrelated biomacromolecules in tumor stroma facilitates cancer cell survival and promotes tumor proliferation and metastasis[14,15]. These biomacromolecules can be used as viable biomarkers for cancer diagnosis and prognosis. Fibrin and fi bronectin form clot complexes upon fibrin polymerization in tumor stroma and serve as a provisional matrix for adhesion and migration of cancer cells. Due to the abundant presence of the fibrinfibronectin complexes in the tumor stroma, a sufficient amount of CLT1-(Gd-DTPA)could specifically bind to the molecular targets. CLT1-(Gd-DTPA)had little non-specific binding to the proteins in the blood and normal tissue. Since the targeted contrast agent was a low molecular weight chelate, the unbound agent could readily be cleared from blood circulation and normal tissues. Consequently, significant tumor enhancement with little background enhancement was observed with the targeted agent since 30 minutes after the injection at a reduced dose. The low molecular weight targeted contrast agent is advantageous as compared to targeted macromolecular contrast agents for further clinical development due to rapid excretion and minimal retention in normal tissues.

    Figure 5 Immunostaining of fibronectin in MDA-MB-231 breast tumor xenografts (right)and muscle tissue (right)with anti-fibronectin primary antibody. The arrow points to the fi bronectin in the extracellular space of tumor tissue.

    CTL1-(Gd-DTPA)resulted in significant enhancement in the tumor periphery of the breast tumor tissue, the regions rich of angiogenic microvessels,similar to the enhancement in the colon cancer model reported in our previous publication[11]. It has been known that the presence of fibrin and fibronectin in tumor extracellular matrix might promote tumor angiogenesis[14,15]. Strong enhancement with the targeted contrast agent in tumor periphery suggested high expression of the fibrin-fibronectin complexes in the highly angiogenic regions of the tumor tissue. This result correlated well to the possible biological functions of fibrin-fibronectin complexes in cancer biology.Accurate characterization of tumor angiogenesis is critical for cancer diagnosis and prognosis and for assessment of tumor response to anticancer therapies.MRI with CLT1-(Gd-DTPA)has a potential to be used for characterizing angiogenesis in breast cancer and for non-invasive evaluation of the efficacy of antiangiogenesis therapy.

    3 Conclusion

    The targeted contrast agent CLT1-(Gd-DTPA)had minimal non-specific binding in blood and in normal tissues. A sufficient amount of CLT1-(Gd-DTPA)specifically bound in the breast tumor and generated strong and prolonged enhancement in the tumor tissue for effective molecular imaging of breast cancer with MRI. CLT1-(Gd-DTPA)is a promising low molecular weight targeted contrast agent for MR molecular imaging of the fibrin-fibronectin complexes in breast cancer. It has a great potential for the accurate detection and diagnosis of breast cancer.

    4 Acknowledgements

    This research was supported in part by the NIH R01 CA097465. We greatly appreciate Dr. Yongen Sun and Ms. Melody Johnson for their technical assistance in animal handling and MRI data acquisition.

    [1]Stephen RM, Gillies RJ. Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res, 2007, 24(6): 1172-1185.

    [2]Caravan P, Ellison JJ, McMurry TJ, et al. Gadolinium(III)Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev, 1999, 99(9): 2293-2352.

    [3]G?hr-Rosenthal S, Schmitt-Willich H, Ebert W, et al.The demonstration of human tumors on nude mice using gadolinium-labelled monoclonal antibodies for magnetic resonance imaging. Invest Radiol, 1993, 28(9): 789-795.

    [4]Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med, 1998, 4(5): 623-626.

    [5]Curtet C, Maton F, Havet T, et al. Polylysine-Gd-DTPAn and polylysine-Gd-DOTAn coupled to anti-CEA F(ab')2 fragments as potential immunocontrast agents. Relaxometry,biodistribution, and magnetic resonance imaging in nude mice grafted with human colorectal carcinoma. Invest Radiol, 1998, 33(10):752-761.

    [6]Ke T, Jeong EK, Wang X, et al. RGD targeted poly(L-glutamic acid)-cystamine-(Gd-DO3A)conjugate for detecting angiogenesis biomarker alpha(v)beta3 integrin with MRT, mapping. Int J Nanomedicine, 2007, 2(2):191-199.

    [7]Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation, 2001, 104(11):1280-1285.

    [8]Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al.Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A, 2007, 104(3):961-966.

    [9]Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging,2007, 26(5): 1190-1197.

    [10]Sieber MA, Pietsch H, Walter J, et al. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Nvest Radiol, 2008, 43(1): 65-75.

    [11]Ye F, Wu X, Jeong EK, Jia Z, et al. A peptide targeted contrast agent specif i c to fi brin-f i bronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem,2008n 19(12):2300-2343.

    [12]Tan M, Wu X, Jeong EK, et al. Peptide-targeted Nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging.Biomacromolecules, 2010, 11(3):754-761.

    [13]Tan M, Wu X, Jeong EK, et al. An effective targeted nanoglobular manganese(II)chelate conjugate for magnetic resonance molecular imaging of tumor extracellular matrix.Mol Pharm, 2010, 7(4): 936-943.

    [14]Dvorak HF, Senger DR, Dvorak AM, et al. Regulation of extravascular coagulation by microvascular permeability.Science, 1985, 227(4690): 1059-1061.

    [15]Neri D, Carnemolla B, Nissim A, et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol, 1997, 15(12): 1271-1275.

    [16]Pilch J, Brown DM, Komatsu M, et al. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci U S A, 2006, 103(8):2800-2804.

    [17]Zong Y, Guo J, Ke T, et al. Effect of size and charge on pharmacokinetics and in vivo MRI contrast enhancement of biodegradable polydisulfide Gd(III)complexes. J Control Release, 2006, 112(3): 350-356.

    猜你喜歡
    磁共振靶向分子
    如何判斷靶向治療耐藥
    超聲及磁共振診斷骶尾部藏毛竇1例
    MUC1靶向性載紫杉醇超聲造影劑的制備及體外靶向?qū)嶒?yàn)
    毛必靜:靶向治療,你了解多少?
    肝博士(2020年5期)2021-01-18 02:50:18
    分子的擴(kuò)散
    磁共振有核輻射嗎
    磁共振有核輻射嗎
    “精日”分子到底是什么?
    新民周刊(2018年8期)2018-03-02 15:45:54
    米和米中的危險(xiǎn)分子
    臭氧分子如是說(shuō)
    狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 免费少妇av软件| 不卡视频在线观看欧美| 亚洲精品久久久久久婷婷小说| 我的女老师完整版在线观看| 国产高清有码在线观看视频| 少妇熟女欧美另类| 欧美变态另类bdsm刘玥| 91久久精品电影网| 精品国产三级普通话版| 国产av国产精品国产| 人妻少妇偷人精品九色| 日韩电影二区| 国产午夜福利久久久久久| 国产一区二区三区av在线| 亚洲内射少妇av| 一二三四中文在线观看免费高清| 国产视频内射| kizo精华| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 日韩成人av中文字幕在线观看| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 3wmmmm亚洲av在线观看| 久久99热这里只频精品6学生| 精品人妻熟女av久视频| 欧美潮喷喷水| 我的老师免费观看完整版| 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 国产片特级美女逼逼视频| 亚洲av在线观看美女高潮| 欧美人与善性xxx| 中文天堂在线官网| 高清av免费在线| 午夜福利在线观看吧| 婷婷色av中文字幕| 国产探花极品一区二区| 久久国产乱子免费精品| 最近中文字幕高清免费大全6| 少妇人妻精品综合一区二区| 80岁老熟妇乱子伦牲交| 亚洲精品亚洲一区二区| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 免费黄频网站在线观看国产| 欧美日韩一区二区视频在线观看视频在线 | 国产成年人精品一区二区| 一个人免费在线观看电影| 国产美女午夜福利| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 一级毛片我不卡| 免费黄网站久久成人精品| 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕 | 亚洲久久久久久中文字幕| 欧美人与善性xxx| 国产精品国产三级专区第一集| 亚洲欧洲日产国产| 久久精品夜色国产| 91狼人影院| 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 午夜精品在线福利| 国产欧美日韩精品一区二区| 亚洲精品亚洲一区二区| 超碰av人人做人人爽久久| 少妇熟女欧美另类| 久久久久久久久久成人| 亚洲精品成人久久久久久| 我要看日韩黄色一级片| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 亚洲国产高清在线一区二区三| 久久99热这里只有精品18| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区 | 蜜桃久久精品国产亚洲av| 日本熟妇午夜| 国产 一区精品| 亚洲av电影在线观看一区二区三区 | 韩国av在线不卡| 国产激情偷乱视频一区二区| 成人毛片a级毛片在线播放| 久久久久久久久久黄片| 中文乱码字字幕精品一区二区三区 | 久久国产乱子免费精品| 久久韩国三级中文字幕| 尤物成人国产欧美一区二区三区| 夜夜看夜夜爽夜夜摸| 久久久久久伊人网av| 六月丁香七月| 免费黄网站久久成人精品| 国产精品.久久久| 亚洲精品成人久久久久久| 一级毛片久久久久久久久女| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 午夜激情久久久久久久| 国产美女午夜福利| 国产成人午夜福利电影在线观看| 国产精品无大码| 99九九线精品视频在线观看视频| 亚洲一区高清亚洲精品| 亚洲最大成人中文| 日韩不卡一区二区三区视频在线| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 你懂的网址亚洲精品在线观看| 一级毛片 在线播放| 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 亚洲成色77777| 日韩欧美 国产精品| 日韩精品有码人妻一区| 国产亚洲最大av| 六月丁香七月| 中文字幕人妻熟人妻熟丝袜美| 国产精品1区2区在线观看.| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频| 欧美高清性xxxxhd video| 欧美不卡视频在线免费观看| 亚洲精品成人久久久久久| 久久精品久久精品一区二区三区| 久久精品国产亚洲av天美| 三级经典国产精品| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 中文字幕久久专区| 汤姆久久久久久久影院中文字幕 | 夜夜爽夜夜爽视频| 免费看a级黄色片| 日韩成人av中文字幕在线观看| 如何舔出高潮| 全区人妻精品视频| 日韩强制内射视频| 欧美日韩亚洲高清精品| 九九在线视频观看精品| 欧美另类一区| 国产单亲对白刺激| 精品国产一区二区三区久久久樱花 | 真实男女啪啪啪动态图| 国产高潮美女av| 一级a做视频免费观看| 国产麻豆成人av免费视频| 日韩成人伦理影院| 欧美bdsm另类| 丰满少妇做爰视频| 免费av观看视频| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 亚洲av不卡在线观看| 老司机影院毛片| 色吧在线观看| 麻豆精品久久久久久蜜桃| 欧美人与善性xxx| 26uuu在线亚洲综合色| 一本久久精品| 免费av观看视频| 日本午夜av视频| 亚洲aⅴ乱码一区二区在线播放| 欧美成人午夜免费资源| 中文天堂在线官网| 女人十人毛片免费观看3o分钟| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 欧美成人精品欧美一级黄| 99久久九九国产精品国产免费| 菩萨蛮人人尽说江南好唐韦庄| 国内精品宾馆在线| 熟妇人妻久久中文字幕3abv| av免费在线看不卡| 久久99热6这里只有精品| 黄色一级大片看看| 麻豆国产97在线/欧美| 99热这里只有是精品在线观看| 黄色配什么色好看| 一级片'在线观看视频| 国产中年淑女户外野战色| 久久久久久久久久成人| 五月玫瑰六月丁香| 99久国产av精品| 三级经典国产精品| 国产成人精品婷婷| 欧美日韩亚洲高清精品| 欧美精品一区二区大全| 久久97久久精品| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 日韩欧美精品免费久久| 97超碰精品成人国产| 精品久久久久久久久亚洲| 亚洲精品影视一区二区三区av| 国产成人a区在线观看| 国内精品美女久久久久久| 国产亚洲最大av| 中文字幕制服av| 在线天堂最新版资源| 夫妻午夜视频| 国产乱人偷精品视频| 国产免费福利视频在线观看| av在线播放精品| 中文在线观看免费www的网站| 欧美区成人在线视频| 七月丁香在线播放| 一个人观看的视频www高清免费观看| 欧美3d第一页| 国产一区二区三区av在线| 国产午夜福利久久久久久| 欧美+日韩+精品| 中文字幕人妻熟人妻熟丝袜美| 熟妇人妻不卡中文字幕| 99久国产av精品| 国产亚洲一区二区精品| 国产精品美女特级片免费视频播放器| 天天躁日日操中文字幕| 中国国产av一级| 色吧在线观看| 亚州av有码| 3wmmmm亚洲av在线观看| 22中文网久久字幕| 老司机影院毛片| 黄色配什么色好看| 欧美区成人在线视频| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 99久久人妻综合| 久久久亚洲精品成人影院| 亚洲aⅴ乱码一区二区在线播放| 成人综合一区亚洲| 日韩制服骚丝袜av| 干丝袜人妻中文字幕| 国产熟女欧美一区二区| 一夜夜www| 午夜精品一区二区三区免费看| 国产精品无大码| 久久国内精品自在自线图片| 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 日本黄色片子视频| 国产午夜福利久久久久久| 日本av手机在线免费观看| 国产成人a区在线观看| 亚洲精品日韩av片在线观看| 免费黄色在线免费观看| 99视频精品全部免费 在线| 嫩草影院精品99| 又爽又黄a免费视频| 亚洲真实伦在线观看| 最后的刺客免费高清国语| 91精品一卡2卡3卡4卡| 国产成人91sexporn| 三级国产精品片| 国产av码专区亚洲av| 乱人视频在线观看| 免费观看精品视频网站| 七月丁香在线播放| 久久草成人影院| 欧美精品一区二区大全| 婷婷色综合www| 不卡视频在线观看欧美| 嫩草影院精品99| 国产一区有黄有色的免费视频 | 亚洲欧美中文字幕日韩二区| 亚洲成人av在线免费| or卡值多少钱| 国产亚洲av片在线观看秒播厂 | 久99久视频精品免费| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 高清在线视频一区二区三区| 亚洲成人中文字幕在线播放| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 在线观看美女被高潮喷水网站| 精品久久久噜噜| eeuss影院久久| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| 六月丁香七月| 国产毛片a区久久久久| 色综合站精品国产| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 69av精品久久久久久| 国产午夜精品一二区理论片| 日韩欧美三级三区| av线在线观看网站| 男人舔女人下体高潮全视频| 久久草成人影院| 久久精品人妻少妇| 亚洲欧美中文字幕日韩二区| 身体一侧抽搐| 亚洲欧美清纯卡通| 看免费成人av毛片| 亚洲最大成人av| 国产日韩欧美在线精品| 国产成人免费观看mmmm| 直男gayav资源| 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 欧美区成人在线视频| 一区二区三区四区激情视频| 搞女人的毛片| 最近视频中文字幕2019在线8| 国产精品麻豆人妻色哟哟久久 | 精品一区二区三卡| 亚州av有码| 伊人久久国产一区二区| 久久久成人免费电影| 久久草成人影院| 免费看a级黄色片| 最近2019中文字幕mv第一页| 欧美xxⅹ黑人| 精品久久久精品久久久| 成人亚洲精品一区在线观看 | 黄片无遮挡物在线观看| a级毛色黄片| 久久久久久九九精品二区国产| 亚洲精品国产av成人精品| 女人久久www免费人成看片| 深爱激情五月婷婷| 久久久欧美国产精品| 国产男人的电影天堂91| 免费黄频网站在线观看国产| 国产精品一及| 极品少妇高潮喷水抽搐| 男人舔女人下体高潮全视频| 干丝袜人妻中文字幕| 亚洲精品日韩在线中文字幕| 国产精品美女特级片免费视频播放器| 中文天堂在线官网| 简卡轻食公司| 在线观看av片永久免费下载| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版 | 99久久九九国产精品国产免费| 免费大片18禁| 高清视频免费观看一区二区 | 一个人看的www免费观看视频| 一夜夜www| 尾随美女入室| 偷拍熟女少妇极品色| 人人妻人人看人人澡| 床上黄色一级片| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久久人妻蜜臀av| 国产成人精品婷婷| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 91精品国产九色| 亚洲精品亚洲一区二区| 在线 av 中文字幕| 午夜福利在线观看免费完整高清在| 亚洲精品影视一区二区三区av| 十八禁网站网址无遮挡 | 欧美高清成人免费视频www| 久久99精品国语久久久| 午夜激情福利司机影院| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 精品熟女少妇av免费看| 一级毛片我不卡| 网址你懂的国产日韩在线| av在线播放精品| 亚洲在久久综合| 偷拍熟女少妇极品色| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 欧美变态另类bdsm刘玥| 国产亚洲最大av| 精品久久久久久久人妻蜜臀av| 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久久久成人av| 婷婷六月久久综合丁香| 久久精品国产亚洲av天美| 免费播放大片免费观看视频在线观看| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久| 亚洲不卡免费看| 日韩制服骚丝袜av| 尤物成人国产欧美一区二区三区| 免费电影在线观看免费观看| 中文字幕免费在线视频6| 91av网一区二区| 亚洲成人一二三区av| 国产精品无大码| 亚洲一区高清亚洲精品| 哪个播放器可以免费观看大片| 成人二区视频| 欧美日韩精品成人综合77777| 亚洲精品中文字幕在线视频 | 亚洲aⅴ乱码一区二区在线播放| 欧美不卡视频在线免费观看| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 久久久色成人| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 日韩精品青青久久久久久| 乱系列少妇在线播放| 国产永久视频网站| 在线免费观看不下载黄p国产| 婷婷色麻豆天堂久久| 99热全是精品| 国产 一区精品| 极品教师在线视频| 日韩伦理黄色片| 欧美高清性xxxxhd video| 亚洲国产精品专区欧美| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 高清在线视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 午夜精品一区二区三区免费看| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 2018国产大陆天天弄谢| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 欧美人与善性xxx| 天美传媒精品一区二区| 国产毛片a区久久久久| 性插视频无遮挡在线免费观看| 欧美最新免费一区二区三区| 插阴视频在线观看视频| 国产高潮美女av| 99热全是精品| 男女下面进入的视频免费午夜| 丝瓜视频免费看黄片| 亚洲av男天堂| 天堂av国产一区二区熟女人妻| 九色成人免费人妻av| 夜夜爽夜夜爽视频| 五月玫瑰六月丁香| 午夜久久久久精精品| 免费看不卡的av| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 国产精品日韩av在线免费观看| 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| 97超碰精品成人国产| 嫩草影院新地址| 亚洲欧美成人精品一区二区| 可以在线观看毛片的网站| 精品久久久久久久久亚洲| 狂野欧美白嫩少妇大欣赏| 亚洲精品aⅴ在线观看| 亚洲精品第二区| 亚洲欧美日韩无卡精品| 干丝袜人妻中文字幕| 草草在线视频免费看| 久久久久久久久久久丰满| 少妇丰满av| 老师上课跳d突然被开到最大视频| 国产高潮美女av| 美女高潮的动态| 国产精品av视频在线免费观看| 极品教师在线视频| 免费不卡的大黄色大毛片视频在线观看 | 日韩人妻高清精品专区| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕 | 国产淫语在线视频| 欧美性猛交╳xxx乱大交人| 亚洲色图av天堂| 午夜亚洲福利在线播放| 高清午夜精品一区二区三区| 免费黄色在线免费观看| 纵有疾风起免费观看全集完整版 | 夫妻午夜视频| 免费看光身美女| 久久6这里有精品| 内射极品少妇av片p| 毛片一级片免费看久久久久| 看免费成人av毛片| 国产精品嫩草影院av在线观看| 久久99精品国语久久久| 国产精品国产三级国产专区5o| 日韩不卡一区二区三区视频在线| 国产淫语在线视频| 亚洲国产精品sss在线观看| 韩国av在线不卡| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利视频精品| 国产伦一二天堂av在线观看| 好男人视频免费观看在线| av网站免费在线观看视频 | 国产熟女欧美一区二区| 少妇熟女欧美另类| 精品一区二区免费观看| 久久这里有精品视频免费| 久久久久精品久久久久真实原创| 国产淫语在线视频| 国产高清有码在线观看视频| 色5月婷婷丁香| 一区二区三区乱码不卡18| 22中文网久久字幕| 好男人在线观看高清免费视频| 久久99精品国语久久久| 国产在视频线在精品| www.色视频.com| 赤兔流量卡办理| 久久6这里有精品| 免费无遮挡裸体视频| 男人和女人高潮做爰伦理| 国产精品一区二区在线观看99 | 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 色5月婷婷丁香| 国产在视频线精品| 肉色欧美久久久久久久蜜桃 | 国产69精品久久久久777片| 亚洲伊人久久精品综合| 晚上一个人看的免费电影| 欧美精品国产亚洲| 亚洲在线自拍视频| or卡值多少钱| 99视频精品全部免费 在线| 精品久久久久久久末码| 午夜福利在线在线| 日韩欧美国产在线观看| 久久这里只有精品中国| 日韩视频在线欧美| 久久午夜福利片| 女的被弄到高潮叫床怎么办| 一边亲一边摸免费视频| 伦理电影大哥的女人| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站 | 国产亚洲一区二区精品| 久久这里只有精品中国| 看黄色毛片网站| 青春草亚洲视频在线观看| 久久久久久久久久人人人人人人| av一本久久久久| 岛国毛片在线播放| 国产美女午夜福利| 午夜日本视频在线| 亚洲精品一区蜜桃| 男女国产视频网站| 久久久久免费精品人妻一区二区| 免费观看的影片在线观看| 日韩欧美精品v在线| 特大巨黑吊av在线直播| 七月丁香在线播放| 精品人妻一区二区三区麻豆| 欧美一区二区亚洲| 一级毛片黄色毛片免费观看视频| 婷婷色综合www| 91av网一区二区| a级毛色黄片| 日韩中字成人| 国产在线男女| 色哟哟·www| 看十八女毛片水多多多| 久99久视频精品免费| 亚洲av中文av极速乱| 中文在线观看免费www的网站| 亚洲国产精品专区欧美| 麻豆成人av视频| 好男人在线观看高清免费视频| 寂寞人妻少妇视频99o| 嘟嘟电影网在线观看| av免费观看日本| 国产激情偷乱视频一区二区| 国产精品三级大全| 一个人看的www免费观看视频| 麻豆乱淫一区二区| 人人妻人人澡欧美一区二区| 久久久a久久爽久久v久久| 天堂√8在线中文| 亚洲成色77777| 美女cb高潮喷水在线观看| 国产一区二区三区av在线| 成人亚洲精品av一区二区| 精品一区在线观看国产| 中文资源天堂在线| 精品欧美国产一区二区三| 两个人的视频大全免费| 精品久久久久久成人av| 国产乱人视频| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区| 蜜桃久久精品国产亚洲av| 听说在线观看完整版免费高清| 国产一区二区三区综合在线观看 | 日韩在线高清观看一区二区三区| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| 欧美日韩亚洲高清精品| 亚洲国产精品专区欧美| 久久精品国产亚洲av涩爱| 久久6这里有精品| 日产精品乱码卡一卡2卡三| 超碰97精品在线观看| 高清av免费在线|