吳 睿 張敏紅 馮京海 鄭姍姍
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點實驗室,北京 100193)
日循環(huán)高溫對肉雞組織鋅離子濃度及金屬硫蛋白含量的影響
吳 睿 張敏紅*馮京海 鄭姍姍
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點實驗室,北京 100193)
本文旨在研究日循環(huán)高溫對肉雞肝臟、胰腺及十二指腸鋅離子濃度和金屬硫蛋白含量的影響。選擇32日齡愛拔益加(AA)肉用公雞120只,隨機分為3組(適溫組、配對組和高溫組),每組4個重復(fù),每個重復(fù)10只雞。適溫組及配對組維持恒溫23℃,配對組按前1天高溫組的采食量飼喂;高溫組溫度為23℃—33℃—23℃循環(huán)變化,自由飲水。結(jié)果顯示,高溫4和8 d可顯著降低肉雞血漿、肝臟、胰腺和十二指腸鋅離子濃度(P<0.05),顯著升高胰腺金屬硫蛋白基因mRNA表達(dá)量(P<0.05);高溫4 d可顯著降低肉雞肝臟和十二指腸金屬硫蛋白含量及其基因mRNA表達(dá)量(P<0.05),高溫8 d均恢復(fù)至正常水平,但顯著降低了肉雞胰腺金屬硫蛋白含量(P<0.05);適溫組與配對組鋅離子濃度、金屬硫蛋白含量及金屬硫蛋白基因mRNA表達(dá)量差異不顯著(P>0.05)。本試驗結(jié)果表明,日循環(huán)高溫可導(dǎo)致肉雞肝臟、胰腺及十二指腸鋅離子濃度和金屬硫蛋白含量下降,其下降與高溫導(dǎo)致的肉雞采食量下降無關(guān),且肉雞肝臟、胰腺及十二指腸中金屬硫蛋白含量與鋅離子濃度變化趨勢相似。
高溫;肉雞;鋅離子濃度;金屬硫蛋白
環(huán)境溫度升高所導(dǎo)致的應(yīng)激作用可對肉雞產(chǎn)生多方面的危害,如采食量下降[1-2]、飼料轉(zhuǎn)化率降低[3]、消化道內(nèi)壁毛細(xì)血管供血量下降[4]、下丘腦嗜食中樞受抑制[5]、肉品質(zhì)下降[6]等,導(dǎo)致肉雞生產(chǎn)性能降低,嚴(yán)重影響肉雞生產(chǎn)的經(jīng)濟效益,給養(yǎng)殖業(yè)造成巨大的經(jīng)濟損失。鋅是動物維持300多種酶活所必需的礦物質(zhì),參與動物機體許多酶解和代謝反應(yīng)[7-9],Bartlett等[10]報道高溫會降低48日齡肉雞血漿鋅離子濃度;Sunder等[11]研究發(fā)現(xiàn)高溫可導(dǎo)致28日齡肉雞脛骨、肝臟及腎臟中鋅離子濃度顯著下降。金屬硫蛋白(MT)是一種小分子量、半胱氨酸富集的金屬結(jié)合蛋白,有廣泛的生物學(xué)活性,如結(jié)合鎘、汞等重金屬[12-14],調(diào)節(jié)鋅離子吸收及代謝平衡[15-19],緩解炎癥反應(yīng)[20-22],抗氧化應(yīng)激等[23-27]。大量研究表明MT能夠被多種金屬誘導(dǎo),而鋅是MT主要的生理誘導(dǎo)劑。鋅能夠緩解熱應(yīng)激對肉雞的不利影響而MT又有抗應(yīng)激作用,那么熱應(yīng)激對肉雞鋅和MT的影響又是怎樣的呢?在熱應(yīng)激情況下鋅與MT的關(guān)系又是怎樣的呢?有關(guān)環(huán)境高溫對肉雞MT含量影響的研究未見報道,特別是此時鋅離子濃度與MT含量關(guān)系的研究未見報道。本試驗以肉雞為研究對象,在人工環(huán)境氣候控制艙內(nèi)通過設(shè)定24 h的溫度變化數(shù)據(jù),并按照此規(guī)律晝夜循環(huán)來模擬夏季持續(xù)高溫,研究日循環(huán)高溫對肉雞肝臟、胰腺及十二指腸鋅離子濃度和MT含量的影響,為闡明熱應(yīng)激對肉雞MT含量的影響及進一步研究熱應(yīng)激情況下鋅對MT含量及其基因mRNA表達(dá)的影響提供基礎(chǔ)數(shù)據(jù)。
選擇1日齡健康愛拔益加(AA)肉用公雞120只,隨機分為3組,每組4個重復(fù),每個重復(fù)10只雞。試驗雞飼養(yǎng)在層疊式籠中,自由采食和飲水,24 h光照,飼糧為玉米-豆粕型飼糧。在32日齡時,將試驗雞轉(zhuǎn)入人工環(huán)境控制艙內(nèi)飼養(yǎng)。3個組分別為適溫組(normal-temperature group,NTG)、配對組(paired-feeding group,PFG)和高溫組(high-temperature group,HTG),其中適溫組晝夜維持恒溫23℃,自由采食;配對組晝夜維持恒溫23℃,試驗第1天自由采食,并統(tǒng)計第1天高溫組的采食量,從第2天開始配對組的飼料投喂量與前1天高溫組的采食量相同;高溫組溫度以23℃—33℃—23℃循環(huán)變化,相對濕度為(50±5)%,24 h晝夜溫度變化規(guī)律為02:00—07:00由23℃勻速升至33℃,07:00—09:00維持33℃恒溫,09:00—14:00由33℃勻速降至23℃,14:00至第2天02:00維持23℃恒溫,自由采食飲水。肉雞在氣候艙內(nèi)適應(yīng)3 d后開始正式試驗,試驗期為8 d。飼養(yǎng)管理按AA肉仔雞飼養(yǎng)管理手冊進行。飼糧參照NRC(1994)肉雞飼養(yǎng)標(biāo)準(zhǔn)配制?;A(chǔ)飼糧組成及營養(yǎng)水平見表1。試驗開始前對飼糧隨機采樣2 kg左右,并用四分法取出約250 g,用國標(biāo) GB/T 13885—2003推薦的原子吸收光譜法測定飼糧中鋅含量為90.49 mg/kg。
正式試驗開始的前1天(日循環(huán)高溫處理0 d)、試驗第4天(日循環(huán)高溫處理4 d)、試驗第8天(日循環(huán)高溫處理8 d),每重復(fù)隨機選擇1只雞,翅靜脈采集抗凝血10 m L左右,3 000 r/m in離心10 m in,分離血漿,-20℃保存待測血漿指標(biāo);采血后將肉雞頸部放血,剝皮,快速解剖分離肝臟、胰腺及十二指腸,各組織分別取1和3 g左右,投入液氮速凍后于-80℃保存待測。
1.3.1 直腸溫度和呼吸率
分別在試驗正式開始前1天、試驗第4天、試驗第8天的09:00每個重復(fù)隨機取2只雞,使用電子溫度計測定直腸溫度,探頭插入直腸的深度為3 cm。同時用秒表計時,計數(shù)器計數(shù)的方式測定肉雞1 m in內(nèi)的呼吸次數(shù)。
表1 基礎(chǔ)飼糧組成及營養(yǎng)水平(干物質(zhì)基礎(chǔ))Table 1 Composition and nutrient levels of basal diets(DM basis) %
1.3.2 血漿及組織鋅離子濃度
將采集的肉雞血漿及組織用硝酸-高氯酸進行濕法消化[28],冷卻定容后用原子吸收分光光度計測定血漿及組織消化液中鋅離子濃度[29]。測定用硝酸及高氯酸均為優(yōu)級純,所使用玻璃器皿提前用5%硝酸浸泡以去除離子干擾。
1.3.3 組織MT含量
用銀離子飽和法[30]測定肝臟、胰腺及十二指腸中MT含量,測定用牛血紅蛋白購自Sigma公司,銀離子標(biāo)準(zhǔn)液由中國計量科學(xué)院提供,使用儀器為SOLAAR M 6型原子吸收光譜儀。
1.3.4 MT 基因 mRNA 表達(dá)量
將采集的肉雞組織在低溫?zé)o污染條件下提取RNA,并反轉(zhuǎn)錄為cDNA,用實時熒光定量PCR(real-time PCR)法對肉雞組織內(nèi)MT基因mRNA的相對表達(dá)量進行測定。所用儀器為美國AB公司的7500型熒光定量PCR儀,采用2-△△Ct法進行數(shù)據(jù)的相對定量分析,以β-actin作為內(nèi)參基因,上游引物序列為:3'-CTCCTGCTCCTGTGCTGGGTCGTGC-5',下游引物序列為:3'-CGGTTCCTTGCAGACACAGCCCTT-5'。
采用 SAS 8.1軟件對數(shù)據(jù)進行分析,并用ANOVA程序進行單因素方差分析,用Duncan氏法進行差異顯著性檢驗。試驗數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差表示,差異顯著性水平為P<0.05。
由表2可知,在高溫前(日循環(huán)高溫處理0 d),3個試驗組肉雞的呼吸率和直腸溫度均處于同一水平,各組間差異不顯著(P>0.05);日循環(huán)高溫處理4和8 d后,高溫組肉雞的呼吸率和直腸溫度均顯著高于適溫組(P<0.05),而配對組與適溫組均無顯著差異(P>0.05)。
表2 日循環(huán)高溫對肉雞呼吸率和直腸溫度的影響Table 2 Effect of cyclic high temperatures on the respiratory rate(RR)and rectal temperature(RT)of broiler chickens
由表3可知,在高溫前,3個試驗組肉雞的血漿及各組織鋅離子濃度均處于同一水平,各組間差異不顯著(P>0.05);日循環(huán)高溫處理4和8 d后,高溫組肉雞的血漿、肝臟、胰腺及十二指腸鋅離子濃度與適溫組相比均顯著下降(P<0.05),配對組與適溫組均無顯著差異(P>0.05)。
由表4可知,3個試驗組肉雞在高溫前組織MT含量均處于同一水平,各組間差異不顯著(P>0.05);日循環(huán)高溫處理4 d后,高溫組肉雞肝臟和十二指腸MT含量與適溫組相比顯著下降(P<0.05),胰腺MT含量與適溫組無顯著差異(P>0.05);日循環(huán)高溫處理8 d后,肉雞胰腺MT含量與適溫組相比顯著下降(P<0.05),配對組與適溫組均無顯著差異(P>0.05)。
由表5可知,3個試驗組肉雞在高溫前MT基因mRNA表達(dá)量均處于同一水平,各組間差異不顯著(P>0.05);日循環(huán)高溫處理4和8 d后,高溫組肉雞胰腺MT基因mRNA表達(dá)量與適溫組相比顯著升高(P<0.05);日循環(huán)高溫處理4 d后,肉雞肝臟及十二指腸MT基因mRNA表達(dá)量與適溫組相比顯著下降(P<0.05),配對組與適溫組均無顯著差異(P>0.05)。
肉雞沒有汗腺又被覆羽毛,因此對環(huán)境溫度的調(diào)節(jié)能力較差。一般成年肉雞的飼養(yǎng)適宜溫度為21~25℃。在本試驗中日循環(huán)高溫處理溫度為33℃—23℃—33℃,可導(dǎo)致肉雞直腸溫度和呼吸率顯著升高,說明此試驗條件可以使肉雞產(chǎn)生熱應(yīng)激。
鋅參與動物機體內(nèi)許多酶解和代謝反應(yīng),大量有關(guān)鋅對熱應(yīng)激影響的研究被報道。Sahin等[31-32]進行的有關(guān)補鋅對熱應(yīng)激鵪鶉的研究表明,在每千克基礎(chǔ)飼糧中補充30或60 mg硫酸鋅可以提高熱應(yīng)激情況下蛋用鵪鶉的飼料效率、產(chǎn)蛋量及蛋品質(zhì);提高肉用熱應(yīng)激鵪鶉的生產(chǎn)性能和屠體重。也有報道,每千克基礎(chǔ)飼糧中補充80[33]或 100 mg[34]的蛋氨酸鋅能夠提高熱應(yīng)激蛋雞的蛋重,減少蛋雞破蛋率。本試驗從不同高溫時間、肉雞的不同器官著手進一步探討了高溫對鋅離子濃度的影響,得出日循環(huán)高溫處理4和8 d高溫組肉雞血漿、肝臟、胰腺及十二指腸中鋅離子濃度與適溫組及對照組相比均顯著下降,此結(jié)果與Sahin等[35]的報道相一致。由于適溫組與配對組除采食量不同,其他試驗條件均一致,而配對組的采食量由高溫組決定,適溫組與配對組鋅離子水平無顯著差異即采食量的變化不會導(dǎo)致各組間試驗指標(biāo)顯著差異。說明高溫組肉雞肝臟、胰腺及十二指腸鋅離子含量的下降與高溫導(dǎo)致肉雞采食量下降無關(guān)。
MTs是屬于胞內(nèi)金屬結(jié)合蛋白的一種,有著廣泛的生物學(xué)特性。一些研究表明,高溫能夠影響動物MT的含量,但結(jié)論并不一致。Ding等[36]研究發(fā)現(xiàn)嚴(yán)重?zé)齻笮∈蟾闻KMT含量增加;Liberge等[37]在對甲殼綱橈足亞綱動物的研究中發(fā)現(xiàn)熱應(yīng)激沒有誘導(dǎo)MT的合成。但有關(guān)熱應(yīng)激對肉雞MT含量影響的研究未見報道。本試驗結(jié)果表明,日循環(huán)高溫處理4 d高溫組肉雞肝臟和十二指腸MT含量與適溫組相比顯著下降;隨著日循環(huán)高溫時間延長至8 d,高溫組肉雞胰腺的MT含量與適溫組相比顯著下降,而適溫組與配對組均無顯著差異,說明高溫組MT的下降與熱應(yīng)激導(dǎo)致采食量下降無關(guān)。雖然胰腺和肝臟及十二指腸MT含量下降的時間點不同,但熱應(yīng)激都導(dǎo)致了肉雞肝臟、胰腺及十二指腸MT含量顯著下降,這與熱應(yīng)激時鋅離子濃度的變化趨勢相同。因此可以推測熱應(yīng)激條件下MT發(fā)揮生理功能與鋅離子濃度有關(guān),但具體的作用機制仍需深入研究。
為了進一步探討引起MT變化的原因,一些有關(guān)MT基因mRNA表達(dá)量的研究被報道。Tamai等[38]研究發(fā)現(xiàn)在熱應(yīng)激時酵母中的MT基因mRNA可以被激活并轉(zhuǎn)錄。Ding等[36]報道在嚴(yán)重?zé)齻? h后小鼠肝臟MT基因mRNA表達(dá)量開始升高,在24 h時達(dá)到最高點。本試驗對肉雞肝臟、胰腺及十二指腸MT基因mRNA表達(dá)量的測定結(jié)果顯示,日循環(huán)高溫處理4 d導(dǎo)致高溫組肉雞肝臟和十二指腸MT基因mRNA表達(dá)量與適溫組相比均顯著下降,胰腺MT基因mRNA表達(dá)量與適溫組相比顯著升高,適溫組與配對組MT基因mRNA表達(dá)量無顯著差異,說明肉雞MT基因mRNA變化與高溫導(dǎo)致采食量下降無關(guān)。肉雞肝臟、胰腺及十二指腸MT基因mRNA表達(dá)量變化規(guī)律與其MT含量變化規(guī)律并不完全一致,胰腺MT基因mRNA表達(dá)量雖然升高,但MT蛋白合成并沒有增加,這也說明MT的翻譯在一定程度上需要鋅離子的參與,但導(dǎo)致這樣結(jié)果的原因仍需進一步研究。
①日循環(huán)高溫可顯著降低肉雞血漿鋅離子濃度,顯著降低肉雞肝臟、胰腺及十二指腸鋅離子濃度和MT含量,且鋅離子濃度和MT含量的下降不是由熱應(yīng)激導(dǎo)致的肉雞采食量下降引起的。
②肉雞肝臟、胰腺及十二指腸中MT含量與鋅離子濃度呈現(xiàn)相同的變化趨勢。
[1]PROUDFOOT F G,HULAN H W.Nutritive value of triticale as a feed ingredient for broiler chickens[J].Poultry Science,1988,67:1743-1749.
[2]LEESON S,SUMMERS J D.Response of White Leghorns to diets containing ground or whole triticale[J].Canadian Journal of Animal Science,1987,67(2):583-585.
[3]MCNAUGHTON J L,REECE F N.Response of broiler chickens to dietary energy and lysine levels in a warm environment[J].Poultry Science,1984,63:1170-1174.
[4]李靜,喬健,高銘宇,等.37℃持續(xù)熱應(yīng)激對肉雞動脈壓的影響[J].畜牧與獸醫(yī),2006,38(11):4-6.
[5]杜榮,張敏紅,張衛(wèi)紅,等.急性熱應(yīng)激對肉雞血漿及尿中的礦物質(zhì)濃度的影響[J].畜牧獸醫(yī)學(xué)報,2000,31(4):311-316.
[6]WOELFEL R L,OWENS C M,HIRSCHLER E M,et al.The characterization and incidence of pale,soft,and exudative broiler meat in a commercial processing plant[J].Poultry Science,2002,81(4):579-584.
[7]徐振華,李褔昌,秦應(yīng)和.日糧鋅水平對生長肉兔生產(chǎn)性能、血清肝臟抗氧化酶活性和金屬硫蛋白-1基因表達(dá)的影響[J].動物營養(yǎng)學(xué)報,2008,20(3):337-342.
[8]王全溪,邵良平,林樹根,等.日糧鋅水平對雛番鴨免疫器官中細(xì)胞凋亡及表達(dá)的影響[J].動物營養(yǎng)學(xué)報,2008,20(5):509-514.
[9]王建楓,孫建義,翁曉燕,等.日糧鋅對大鼠肝臟脂肪酸代謝的影響[J].動物營養(yǎng)學(xué)報,2008,20(5):586-591.
[10]BARTLETT J R,SM ITH M O.Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress[J].Poultry Science,2003,82(10):1580-1588.
[11]SUNDER G S,PANDA A K,GOPINATH N C S,et al.Effects of higher levels of zinc supplementation on performance,m ineral availability,and immune competence in broiler chickens[J].The Journal of Applied Poultry Research,2008,17:79-86.
[12]JAMESC F,RODNEY R D,CHARLECM,et al.Tissue-specific accumulation of metallothionein in chickens as influenced by the route of zinc administration[J].The Journal of Nutrition,1988,118:176-182.
[13]TOMOK K,NORIO I.Function ofmetallothionein in gene expression and signal transduction:new ly found protective role of metallothionein[J].Journal of Health Science,2008,54(3):251-260.
[14]JAMESC F,RODNEY R D,CHARLESh C M,et al.Ron-induced metallothionein in chick liver:a rapid,route-dependent effect independent of zinc status[J].The Journal of Nutrition,1990,120:1214-1222.
[15]BORGHESIL A,LYNESM A.Stress proteins as agents of immunological change:some lessons from metallothionein[J].Cell Stress & Chaperones,1996,1(2):99-108.
[16]COYLE P,PHILCOX JC,CAREY L C,etal.Metallothionein:the multipurpose protein[J].Cellular and Molecular Life Sciences,2002,59:627-647.
[17]FERNANDO L P,WEID,ANDREWSG K.Structure and expression of chicken metallothionein[J].Journal of Nutrition,1989,119(2):309-318.
[18]HAQA F,MAHONEY M,KOROPATNICK J.Signaling events formetallothionein induction[J].Mutation Research,2003,533:211-226.
[19]MCCORM ICK C C.Induction and accumulation of metallothionein in liver and pancreas of chicks given oral zinc:a tissue comparison[J].The Journal of Nutrition,1984,114(1):191-203.
[20]SCHROEDER JJ,COUSINSR J.Interleukin 6 regulatesmetallothionein gene expression and zincmetabolism in hepatocytemonolayer cultures[J].Proceedings of the National Academy of Sciences of the United States of America,1990,87(8):3137-3141.
[21]ARIZONO K,KAGAWA S,HAMADA H,et al.Nitric oxidemediated metallothionein induction by lipopolysaccharide[J].Research Communications in Molecular Pathology and Pharmacology,1995,90(1):49-58.
[22]DE S K,MCMASTER M T,ANDREWSG K.Endotoxin induction of murine metallothionein gene expression[J].The Journal of Biological Chem istry,1990,265(25):15267-15274.
[23]BAUMAN J W,MADHU C,MCKIM J M,Jr,et al.Induction of hepaticmetallothionein by paraquat[J].Toxicology and Applied Pharmacology,1992,117:233-241.
[24]BAUMAN JW,LIU Y P,ANDREWS G K,et al.Exam ination of potential mechanism(s)of metallothionein induction by diethylmaleate[J].Toxicology and Applied Pharmacology,1992,117:226-232.
[25]BAUMAN JW,MCKIM JM,Jr,LIU J,et al.Induction of metallothionein by diethyl maleate[J].Toxicology and Applied Pharmacology,1992,114:188-196.
[26]BAUMAN JW,LIU J,LIU Y P,et al.Increase in metallothionein produced by chem icals that induce oxidative stress[J].Toxicology and Applied Pharmacology,1991,110(2):347-354.
[27]M IN K S,TERANO Y,ONOSAKA S,etal.Induction of hepatic metallothionein by nonmetallic compounds associated with acute-phase response in inflammation[J].Toxicology and Applied Pharmacology,1991,111:152-162.
[28]吳大亮,楊開友.食品濕法消化中幾個問題的探討[J].海峽預(yù)防醫(yī)學(xué)雜志,1996,2(2):46.
[29]郭亞東,陳克嶙.火焰原子吸收光譜法測定生物樣品中鋅、銅和錳[J].光譜實驗室,2006,23(3):463-464.
[30]SCHEUHAMMER A M,CHERIAN M G.Quantification ofmetallothioneins by a silver-saturation method[J].Toxicology and Applied Pharmacology,1986,82(3):417-425.
[31]SAHIN K,SM ITH M O,ONDERCIM,et al.Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heatdistressed quail[J].Poultry Science,2005,84:882-887.
[32]SAHIN K,KUCUK O.Zinc supplementation alleviates heat stress in laying Japanese quail[J].Journal of Nutrition,2003,33:2808-2811.
[33]MORENG R E,BALNAVE D,ZHANG D.Dietary zinc methionine effect on eggshell quality of hens drinking salinewater[J].Poultry Science,1992,71:1163-1167.
[34]BALNAVE D,ZHANG D.Response of laying hens on saline drinking water to dietary supplementation with various Zn compounds[J].Poultry Science,1993,72:603-609.
[35]SAHIN K,SAHIN N,KUCUK O,et al.Role of dietary zinc in heat-stressed poultry:a review[J].Poultry Science,2009,88(10):2176-2183.
[36]DING H Q,ZHOU B,LIU L,etal.Oxidative stress and metallothionein expression in the liver of ratswith severe thermal injury[J].Burns,2002,28(3):215-221.
[37]LIBERGE M,BARTHéLéMY M R.Localization of metallothionein,heat shock protein(Hsp70),and superoxide dismutase expression inHemidiaptomus roubaui(Copepoda,Crustacea)exposed to cadm ium and heat stress[J].Zool,2007,85(3):362-371.
[38]TAMAIK T,LIU X,SILAR P,et al.Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways[J].Molecular and Cellular Biology,1994,14(12):8155-8165.
*Corresponding author,professor,E-mail:zmh66@126.com
(編輯 何麗霞)
Effect of Cyclic H igh Tem peratures on the Zn2+Concentration and Metallothionein Content in Tissues of Broilers
WU Rui ZHANG Minhong*FENG Jinghai ZHENG Shanshan
(State Key Laboratory of Animal Nutrition,Institute of Animal Sciences,The Chinese Academy of Agricultural Sciences,Beijing100193,China)
The experimentwas conducted to investigate the effect of cyclic high temperatures on the Zn2+concentration and metallothionein content in pancreas,liver and duodenum of broiler chickens.One hundred and twenty 32-day-old Arbor Acresmale broilers were random ly allotted to 3 groups(normal-temperature group,paired-feeding group and high-temperature group)with 4 replicates in each group and 10 birds in each replicate.The broilers in the normal-temperature group and paired-feeding group were maintained in a controlled environment temperature at 23℃,and the paired-feeding group were matched the diet intake of broilers in high-temperature group at the previous day of the experiment.The broilers in the high-temperature group were housed in a controlled environment temperature with daily cyclic high temperature(23℃ -33℃ -23℃),and drinkedad libitum.The results showed as follow s:after 4 and 8 d cyclic high temperatures,the Zn2+concentration in plasma,liver,pancreas and duodenum of broilers was significantly decreased(P< 0.05),and themRNA expression level ofmetallothionein gene in pancreaswas significantly increased(P<0.05).After 4 d cyclic high temperatures,themetallothionein contentand itsmRNA expression level in liver and duodenum of broilers were significantly decreased(P<0.05),after 8 d cyclic high temperatures,they became the normol levels,but themetallothionein content in pancreas was significantly decreased(P<0.05);there was no significant differences in the Zn2+concentration andmetallothionein content,and themRNA expression level of metallothionein gene between the normal-temperature group and paired-feeding group(P>0.05).In conclusion,cyclic high temperatures significantly decreases the Zn2+concentration and metallothionein content in liver,pancreas and duodenum of broilers,which is independentof the decreasing of food intake induced by cyclic high temperatures,and the changing trend ofmetallothionein content is sim ilarwith thatof zinc concentration in liver,pancreas and duodenum of broilers.[Chinese Journal of Animal Nutrition,2011,23(8):1273-1279]
cyclic high temperatures;broiler;Zn2+;metallothionein
S815.5
A
1006-267X(2011)08-1273-07
10.3969/j.issn.1006-267x.2011.08.004
2011-03-14
動物營養(yǎng)學(xué)國家重點實驗室項目(2004DA125184G0807)
吳 睿(1984—),女,黑龍江佳木斯人,碩士研究生,從事家禽營養(yǎng)調(diào)控的研究。E-mail:wurui840330@sina.com
*通訊作者:張敏紅,研究員,博士生導(dǎo)師,E-mail:zmh66@126.com