• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of Mg2+/Li+ Separation by Nanofiltration*

    2011-03-22 10:11:56YANGGang楊剛SHIHong史宏LIUWenqiang劉文強(qiáng)XINGWeihong邢衛(wèi)紅andXUNanping徐南平
    關(guān)鍵詞:楊剛南平

    YANG Gang (楊剛)**, SHI Hong (史宏), LIU Wenqiang (劉文強(qiáng)), XING Weihong (邢衛(wèi)紅)and XU Nanping (徐南平)

    State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    1 INTRODUCTION

    New technologies are urgently demanded in recent years for saving energy and reducing waste.Membrane separations have therefore been focused on,among which nanofiltration (NF) [1-3] is acknowledged as an efficient process. Such approaches were used for water softening in early days [4], and then were found to be a best choice for the treatment of process fluids. The mode is now being extended to the environmental protection area to recover valuable components. The interest herein is the NF rejections of lithium ions, which is often used for hygroscopic purpose or elsewhere (e.g. lithium battery). Actually membrane processes [5, 6] concerned this refrigeration agent, though a few ideas [7] did not seem practical yet. In nature the lithium element is basically stored in the brine. Its enrichment process is featured with evaporations, by which a variety of ions are removed through crystallizations. The work [8] on NF of the crude lithium brine was comprehensive, but the results almost led to a negative evaluation since the crude brine was too complicated. In the present industrial process it is able to evolve the lithium-containing stream into Mg2+/Li+mixture. A proper implementation of the NF technique might facilitate the removal of ions such as Mg2+with less energy consumption. In this paper, experimental investigations and theoretical predictions are given to elucidate the selective rejections of Mg2+/Li+.

    2 EXPERIMENTAL

    2.1 Chemicals and analysis

    Analytical grade NaCl, MgSO4and glucose were used for the characterization of the DK membrane.Analytical grade LiCl and MgCl2were used to make the Mg2+/Li+/Cl-solutions shown in Table 1. Their mass ratios Mg2+/Li+are around that of the crude brine in the East Taijinaier Salt Lake [8], and the lithium ion concentrations change within a limited scope.All water used was pretreated with reverse osmosis membrane and ion exchange resin with the conductivity less than 0.5 μs·cm-1. Table 2 lists the bulk diffusion coefficients and Stokes radii of the solutes, which were incorporated in the mathematical computation.The data for lithium ion were from [9], while the rest were from [10].

    Table 1 Brine compositions

    Table 2 Bulk diffusion coefficient and Stokes radii

    The cation concentrations were determined by Inductively Coupled Plasma (Shimdzu, Japan). The glucose concentrations were determined by TOC (total organic carbon) analyzer (Shimdzu, Japan).

    2.2 Membrane and apparatus

    The spiral-wound Desal DK membrane element(GE Osmonics) of nominally 8 m2membrane area was used. The parental solution was fed into the membrane element through a feeding pump and then a pressure-boosting pump. The later was equipped with a transducer for a smooth start-up and easy process adjustment. The inlet pressure and retentate flow rate were controlled with accuracy through the adjustment valve and the transducer. The retentate flow rate and the permeate flux were monitored with two electronic flowmeters, while the permeate flux records were calibrated to avoid the temperature, density and mechanical deviations. The storage tank jacket was circulated with cooling water to stabilize the feeding temperature at (35±1) °C.

    2.3 Experimental procedure

    All experiments were carried out at the cross-flow rate of 3 m3·h-1, at which the concentration polarization is negligible [11]. The temperature was kept constant at 35 °C. Both the retentate and permeate flew back to the feed tank. The constant process parameters and the relevant samples were available in the cycling. The permeate flux as well as the concentrations at both membrane sides were determined as the transmembrane pressure stepped up every 0.2 MPa from 0.8 MPa to 1.6 MPa. The membrane separation

    factor (SF) is calculated as

    3 SIMULATIONS

    Modeling of nanofiltration based on the black-box treatment or the Nernst-Planck equations were reported [12-16]. A simplified Donnan steric pore model (DSPM) [17, 18] and its new version [10] were typically impressive. Much work was reported on the improvement [19]. The endeavors partly aimed at in-depth probing fundamental aspects of the mass transfer. Unfortunately, the prediction-oriented utilization is complicated, since it is difficult to obtain the physicochemical parameters such as dielectric constant or streaming potential [20]. And, the model parameters changes with process conditions. For a solution with components of relatively high concentrations,or a real wastewater that is apt to foul the membrane,the theoretical calculation seems deviated while the empirical or semi-empirical treatment works better.On the other hand, the dielectric exclusion is weakened at a high feed concentration, which is the case for the brines in [8, 21] and this paper. Therefore, only the simplified DSPM model is used herein for the process prediction and concise evaluation for rejections of the Mg2+/Li+system. The model parameters,i.e. effective membrane pore radius (rp), effective membrane thickness (Δx/Ak) and effective membrane charge density (Xd), are obtained through the characterization experiments. With the numerical treatment procedure [22], the extended prediction is available.

    4 RESULTS AND DISCUSSION

    4.1 Separations of Mg2+/Li+ mixture

    Figure 1 Ion rejection and SF vs. permeation flux

    The ion rejection and SF of Mg2+/Li+are shown in Fig. 1. For Feed A, the Mg2+rejection increases while the Li+rejection decreases with the increase of permeation flux. A strong Donnan effect is observed.In the permeation flux range, the SF decreases from 0.49 to 0.31. The Mg2+rejection for Feed B (as well as Feed C) is similar, but the Li+rejection is different,which increases slightly only at a higher flux. Negative rejections of -40%--20% are observed. The operations for the 3 mixtures started at the same working pressure, so their beginning permeation fluxes increased with their resistant osmotic pressures. The initiate values of SF for Feeds B and C decrease. It is interesting that the starting SF for Feed B is lower than that of Feed C. This is supposed to be caused by the permeation fluxes, the ion concentrations and the ratios. The trend is evident within the flux range, suggesting the phenomena are governed not only by the Donnan exclusion.

    Normally a multi-valent anion is preferentially rejected by a negatively charged NF membrane if there exists a univalent anion. Herein the divalent and univalent cations are selectively rejected. This is encouraging from the perspective of field applications.The selection may be due to the electric properties and the geometric sizes of the ions. Other factors such as the dielectric properties, which are difficult to characterize, might also help lead to the above occurrences.

    Figure 2 Variations of SF with retentate Li+ concentration and Mg2+/Li+ ratioΔp/MPa: □ 0.8; ○ 1.0; △ 1.2; ▽ 1.4; 1.6

    The dependency of the Mg2+/Li+SFon the Li+concentration is shown in Fig. 2, where the parental Mg2+/Li+concentration ratio falls within 18-24. Under a given operating pressure,SFchanges within a narrow range with the Li+concentration or the Mg2+/Li+concentration ratio. Differently, the dependence of SF upon the operating pressure is manifest. For their single electrolyte solutions, the rejection decreases as the corresponding concentration increases, as shown in Fig. 3. It is interesting that their rejections are quite close and Li+rejection is even a little higher.The different dependencies very the electric functions that Mg2+and Li+exert at the membrane surface and inside the pore. This imply that an optimized operation is possible to obtain the Li+-enriched permeate.

    Figure 3 Rejection variations of Mg2+ and Li+Δp/MPa: □ 0.8; ○ 1.0; △ 1.2; ▽ 1.4; 1.6

    4.2 Evaluation with a simulation model

    With the retention data of the neutral solutes, the membrane pore radius (rp) and the effective membrane thickness (Δx/Ak) were calculated as 0.53 nm and 3.42 μm, respectively, through the best-fit method.This is slightly deviated from the data reported, which may be due to the different conditions that the membranes were produced and utilized. The effective membrane charge density (Xd) greatly relies on conditions such as pH and ionic strength [20, 23]. Several reports have used the adsorption isotherm of[20, 24] to relate it with the ionic strength. In this study, the constantsqandsare regressed from the rejections and fluxes and listed in Table 3. The results prove thatXdis greatly influenced by the solution composition, and even its sign is changed with Mg2+added.

    Table 3 Xd fitted with the DSPM model as function of feed characteristics

    Figure 4 gives the predicted relationship ofSFand the permeation flux. The trial withXdobtained from the other ionic systems leads to a complete failu

    frroe

    m.G

    o

    exo

    pde

    c

    rio

    mnef

    on

    r

    tsmit

    wyi tihs

    ftoh

    ue

    n

    dL

    w

    i+h/

    Meng

    2X+/dC i

    ls-

    r e

    mgirxetsusreed.When extended to a moderately broader working pressure range, the predictedSFevolves forward smoothly.The factor decreases as the permeation increases, but the extent is gradually narrower. The factor seems to

    apiTnprh epeftriehorre

    ae d

    cninhtf

    iaf

    aen

    alr

    o e

    rlfneiimjlcetericat t itisivoo

    antnlh u oa

    eoft

    fMaa

    b tgpho2eeu+a t

    0

    .rs3ei

    m1j

    e

    ./ic+

    ClTtailro

    h

    -n/

    ewN

    io

    eat

    nhf+c Ctoshol

    ue-lr uaroetgfisiotunenlgnt.

    emerged is not so clear here for Li (as instructed in F

    noig

    t.

    a2p)

    .p eSaurc

    hs

    iannc e

    e

    xMt

    re

    gm2+i t

    y

    is

    o n f

    otht

    er eDj

    eocntne

    ad

    n

    ceof

    fme

    cp

    tl e

    d

    teo

    leys.Nevertheless the trend shown here suggests a te+chnically viable membrane approach for enriching Li.

    Figure 4 DSPM predictions of SF○ experiment (Feed A); □ experiment (Feed B); △ experiment(Feed C); DSPM (Xd of Mg2+/Li+); DSPM (Xd of Na+)

    The evaluated dependencies of SF upon the retentate Mg2+/Li+ratio as well as the retentate Li+concentration are given in Fig. 5. At the given working pressure,SFis basically not sensitive to the two parameters and maintains around 0.34. The rejections for two ions change, but are in the same trend. Apart from the membrane choice, the operation pressure seems to be a significant adjustment measure for an optimized purification of Li+component. The temperature factor is still left for investigation, but its influence on the membrane pore size and charge density is limited. In most cases room temperature is recommended due to the comprehensive consideration of the membrane service life, energy consumption and operation convenience.

    Figure 5 Predicted SF vs. Mg2+/Li+ ratio and retentate Li+concentration

    4.3 Dependency of effective membrane charge density

    A typical treatment ofXdis the regression approach [10, 17, 19, 25-28], or it may be evaluated via the Gouy-Chapman double electric layer theory and experimental determination of the tangential membrane surface potential [20, 21, 29, 30]. However,Xdis an inenarrable variable [31] as it relates with membrane property, ionic adsorption and ambient pH condition.In this paper,Xdis also found dependent of the permeability, as shown in Fig. 6. An increase appears for the monovalent cation but a decrease occurs for the cation Mg2+. The contradicted trends seem to be affected by the cation valency other than the process phenomenon such as the concentration polarization.The permeate flux might affect the intrapore electrokinetic effect by its contribution to the slip plane movement of the adsorption layer. The absolute value ofXdtends to decrease as the permeate flux increases.This deserves attention in the future modeling. On the other hand,Xdvalue is intensively dependent on the cation pattern.Xdis negative for the monovalent ion but positive for the divalent ion. The trend is similar to the reports in literature [17, 28]. TheXdvariation is likely caused by the ionic adsorption that changes with the ion valency. And, theXdvalue for the Mg2+/Li+/Cl-mixture is between those for Mg2+and Li+systems. The component Mg2+preponderates for the charge density, but with the limited data, no evident linearity is found among them yet.

    Figure 6 Dependency of intrapore charge density on flux○ Ni+; △ Li+; □ Mg2+; ▽ Mg2+/Li+

    The Donnan potential at the pore entrance shown in Fig. 7 also changes with the permeation flux. The linearity is good but the slope and the intercept change with ion pattern. The positive slope for the monovalent ions and the negative one for the divalent cations show the diversion of the charge property. This is similar with the dependence of the streaming potential on the driving pressure, which is also linearly related [32].

    5 CONCLUSIONS

    A DK brand membrane was used to investigate the possibility of separating Li+from the Mg2+/Li+mixture. The prediction with the DSPM model was carried out for an extending analysis. Within the concerned concentration range, the Mg2+/Li+ratio and the Li+concentration were found basically not affecting their separation factor, while the working pressure, or the permeation flux, seemed significant. Higher driving pressure helped raising separation potential. The limitingSFof 0.31 was technically possible for richen Li+with membrane technologies. Actually, the integral membrane process design was able to facilitate a high Li+recovery at a relatively high purity. The data analysis disclosed the dependence of the intrapore membrane charge density on ion pattern, ion concentration and driving pressure force. The empirical expression ofXdfor the mixed electrolyte solution is still necessary for the probe of the separation possibility.

    NOMENCLATURE

    cconcentration, g·L-1

    Di,∞bulk diffusion coefficient, m2·s-1

    Jvvolumetric permeate flux, m·s-1

    Δppressure on both sides of the membrane

    qempirical parameter, mol·m-3

    Rrejection

    R2correlation coefficient

    rpeffective membrane pore radius, m

    rsstokes radius, m

    sempirical parameter

    SFseparation factor

    Xdeffective membrane charge density, mol·m-3

    zionic valence

    Δx/Akeffective membrane thickness, m

    0-feed side

    1 Waypa, J.J., Elimelech, M., Hering, J.G., “Arsenic removal by RO and NF membranes”,J.Am.Water Works Assoc., 89, 102 (1997).

    2 van der Bruggen, B., Vandecasteele, C., “Modelling of the retention of uncharged molecules with nanofiltration”,Water Res., 36, 1360-1368(2002).

    3 Scarpello, J. T., Nair, D., Freitas dos Santos, L. M., White, L. S.,Livingston, A. G., “The separation of homogeneous organometallic catalysts using solvent resistant nanofiltration”,J.Membr.Sci., 203,71 (2002).

    4 van der Bruggen, B., Vandecasteele, C., “Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry”,Environ.Pollut.,122, 435 (2003).

    5 Watari, K., Kobayashi, M., “Filtration method of absorptive liquid for freezer/cooling-heating device and filter cartridge”, JP. Pat.,09150040 (1997).

    6 Riffat, S.B., Su, Y.H., “A novel absorption refrigeration cycle using centrifugal reverse osmosis”,J.Inst.Energ., 74, 66-69 (2001).

    7 Xuan, B.M., “Lithium bromide absorption refrigerator with membrane separation unit for concentrating”, CN. Pat., 1645012 (2005).

    8 Wen, X.M., Ma, P.H., Zhu, C.L., He, Q., Deng, X.C., “Preliminary study on recovering lithium chloride from lithium- containing waters by nanofiltration”,Sep.Purif.Technol., 49, 230-236 (2006).

    9 Sabate, J., Labanda, J., Llorens, J., “Influence of coion and counterion size on multi-ionic solution nanofiltration”,J.Membr.Sci., 345,298-304 (2009).

    10 Bowen, W.R., Welfoot, J.S., “Modeling the performance of membrane nanofiltration-critical assessment and model development”,Chem.Eng.Sci., 57, 1121-1137 (2002).

    11 Yang, G., Xing, W.H., Xu, N.P., “Concentration polarization in spiral-wound nanofiltration membrane elements”,Desalination, 154,89-99 (2003).

    12 Levenstein, R., Hasson, D., Semiat, R., “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes”, J. Membr. Sci., 116, 77-92 (1996).

    13 Wang, X.L., Tsuru, T., Togoh, M., Nakao, S., Kimura, S., “The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membrane”, J. Membr. Sci., 135, 19-32(1997).

    14 Ismail, A.F., Hassan, A.R., “The deduction of fine structural details of asymmetric nanofiltration membranes using theoretical models”,J. Membr. Sci., 231 (1/2), 25-36 (2004).

    15 Ahmad, A.L., Chong, M.F., Bhatia, S., “Mathematical modeling and simulation of the multiple solutes system for nanofiltration process”,J. Membr. Sci., 253 (1-2), 103-115 (2005).

    16 Sabatea, J., Labandab, J., Llorensb, J., “Influence of coion and counterion size on multi-ionic solution nanofiltration”, J. Membr.Sci., 345, 298-304 (2009).

    17 Bowen, W.R., Mukhtar, H., “Characterisation and prediction of separation performance of nanofiltration membranes”, J. Membr.Sci., 112, 263-274 (1996).

    18 Bowen, W. R., Mohammad, A. W., “Diafiltration by nanofiltration:Prediction and optimization”, AIChE J., 44,1799-1812(1998).

    19 Bandini, S., Vezzani, D., “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization”, Chem. Eng. Sci.,58, 3303-3326 (2003).

    20 Szymczyk, A., Fatin-Rouge, N., Fievet, P., Ramseyer, C., Vidonne.,A., “Identification of dielectric effects in nanofiltration of metallic salts”, J. Membr. Sci., 287, 102-110 (2007).

    21 Szymczyk, A., Fievet, P., “Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model”, J. Membr. Sci., 252, 77-88 (2005).

    22 Mohammad, A.W., Takriff, M.S., “Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes”, Desalination, 157, 105-111 (2003).

    23 Santafe-Moros, A., Gozálvez-Zafrilla, J.M., Lora-Garcia, J., “Applicability of the DSPM with dielectric exclusion to a high rejection nanofiltration membrane in the separation of nitrate solutions”, Desalination, 221, 268-276 (2008).

    24 Childress, A.E., Elimelech, M., “Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes”, J. Membr. Sci., 119, 253-268 (1996).

    25 Schaep, J., Bowen, W.R., “Modelling the retention of ionic components for different nanofiltration membranes”, Sep. Purif. Technol.,22-23, 169-179 (2001).

    26 Bowen, W.R., Cassey, B., Jones, P., Oatley, D.L., “Modelling the performance of membrane nanofiltration-application to an industrially relevant separation”, J. Membr. Sci., 242, 211-220 (2004).

    27 Hussain, A.A., Nataraj, S.K., Abashar, M.E.E., Al-Mutaz, I.S., Aminabhavi, T.M., “Prediction of physical properties of nanofiltration membranes using experiment and theoretical models”, J. Membr.Sci., 310, 321-336 (2008).

    28 Kovacsa, Z., Discacciati, M., Samhaber, W., “Modeling of batch and semi-batch membrane filtration processes”, J. Membr. Sci., 327,164-173 (2009).

    29 Szymczyk, A., Sba, M., Fievet, P., Vidonne, A., “Transport properties and electrokinetic characterization of an amphoteric nanofilter”,Langmuir, 22, 3910-3919 (2006).

    30 Szymczyk, A., Fatin-Rouge, N., Fievet, P., “Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes”, J. Colloid Interf. Sci., 309, 245-252 (2007).

    31 Sharma, R. R., Chellam, S., “Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation”, J. Colloid Interf. Sci., 298, 327-340 (2006).

    32 Fievet, P., Sba, M., Szymczyk, A., “Analysis of the pressure-induced potential arising across selective multilayer membranes”, J. Membr.Sci., 264, 1-12 (2005).

    猜你喜歡
    楊剛南平
    Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
    疑點(diǎn)重重的“妻子”
    徐南平一行到晉中國家農(nóng)高區(qū)調(diào)研
    南平:婦聯(lián)干部當(dāng)好“五員”助力婦女脫貧增收
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    改革開放初期,南平紡織廠女工在紡紗。
    追查
    一把鋼釘毀人生
    做人與處世(2014年8期)2014-07-17 05:40:26
    暖春
    金山(2012年5期)2012-04-29 00:44:03
    Effect of the Para-substituent of the Tridentate Pyridine-based Ru(II) Complex upon the Catalytic Activity in Transfer Hydrogenation*
    Model Study on a Submerged Catalysis/Membrane Filtration System for Phenol Hydroxylation Catalyzed by TS-1*
    国产精品秋霞免费鲁丝片| 国产日韩欧美亚洲二区| 蜜桃在线观看..| 国内毛片毛片毛片毛片毛片| 免费观看a级毛片全部| 亚洲欧洲日产国产| 97精品久久久久久久久久精品| av在线app专区| av有码第一页| 中亚洲国语对白在线视频| 少妇人妻久久综合中文| 黄色a级毛片大全视频| 国产1区2区3区精品| 国产亚洲精品一区二区www | 麻豆乱淫一区二区| 久热爱精品视频在线9| 国产精品1区2区在线观看. | 国产亚洲欧美在线一区二区| 国产欧美亚洲国产| 五月开心婷婷网| 最近中文字幕2019免费版| 亚洲中文av在线| 大陆偷拍与自拍| 男女之事视频高清在线观看| 亚洲九九香蕉| 欧美亚洲 丝袜 人妻 在线| 国产男人的电影天堂91| 国产精品一区二区精品视频观看| 在线永久观看黄色视频| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 91九色精品人成在线观看| 嫩草影视91久久| 国产精品.久久久| 美女主播在线视频| 王馨瑶露胸无遮挡在线观看| av在线app专区| 国产一区二区三区在线臀色熟女 | 欧美在线黄色| 亚洲激情五月婷婷啪啪| 黄片播放在线免费| 亚洲国产成人一精品久久久| 91成年电影在线观看| 日韩有码中文字幕| 99国产精品99久久久久| 国产高清视频在线播放一区 | 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 久久99一区二区三区| 老司机福利观看| 国产99久久九九免费精品| 精品国产国语对白av| 久久ye,这里只有精品| 国产不卡av网站在线观看| av欧美777| 国产精品av久久久久免费| av网站免费在线观看视频| 久久久国产成人免费| 女人精品久久久久毛片| 久久久久精品国产欧美久久久 | 天天躁夜夜躁狠狠躁躁| 国产xxxxx性猛交| 在线天堂中文资源库| 欧美精品一区二区大全| 国产精品成人在线| 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 婷婷色av中文字幕| 亚洲精品美女久久久久99蜜臀| 亚洲熟女精品中文字幕| 色播在线永久视频| 日本欧美视频一区| 国产成人影院久久av| 高清在线国产一区| 欧美 日韩 精品 国产| 国产在线免费精品| 成人国语在线视频| 久热爱精品视频在线9| 午夜视频精品福利| 亚洲国产av影院在线观看| 免费不卡黄色视频| 国产亚洲午夜精品一区二区久久| 首页视频小说图片口味搜索| 亚洲av国产av综合av卡| 狠狠狠狠99中文字幕| 精品少妇黑人巨大在线播放| 深夜精品福利| 久久久国产精品麻豆| 黄色视频,在线免费观看| 国产亚洲精品久久久久5区| 欧美精品一区二区大全| 国产一区二区三区av在线| 日本wwww免费看| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频| 丁香六月天网| 亚洲一区二区三区欧美精品| 国产免费视频播放在线视频| 十八禁高潮呻吟视频| 精品免费久久久久久久清纯 | 一级片免费观看大全| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| 一区二区三区乱码不卡18| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 国精品久久久久久国模美| av线在线观看网站| av超薄肉色丝袜交足视频| 欧美精品av麻豆av| av线在线观看网站| 中亚洲国语对白在线视频| 青春草亚洲视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩,欧美,国产一区二区三区| 热99re8久久精品国产| 日韩免费高清中文字幕av| 成年动漫av网址| 18在线观看网站| 亚洲 欧美一区二区三区| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 国产精品.久久久| 国产97色在线日韩免费| 亚洲精品在线美女| 国产免费福利视频在线观看| 91老司机精品| 精品亚洲乱码少妇综合久久| 日韩大码丰满熟妇| 欧美乱码精品一区二区三区| 青春草视频在线免费观看| 亚洲激情五月婷婷啪啪| 真人做人爱边吃奶动态| 在线观看一区二区三区激情| 国产一区二区三区av在线| 色播在线永久视频| 欧美激情 高清一区二区三区| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 亚洲国产精品999| 最黄视频免费看| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 波多野结衣一区麻豆| netflix在线观看网站| 欧美97在线视频| 十八禁人妻一区二区| 日日夜夜操网爽| av在线老鸭窝| 国产欧美日韩一区二区精品| 丝袜脚勾引网站| 亚洲成av片中文字幕在线观看| 极品人妻少妇av视频| 亚洲国产精品成人久久小说| 国产免费现黄频在线看| 老司机福利观看| 热re99久久精品国产66热6| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 这个男人来自地球电影免费观看| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 国产男人的电影天堂91| 亚洲精品在线美女| 亚洲男人天堂网一区| 久久久水蜜桃国产精品网| 一边摸一边做爽爽视频免费| 亚洲欧美色中文字幕在线| 欧美在线一区亚洲| 日本撒尿小便嘘嘘汇集6| 色视频在线一区二区三区| 下体分泌物呈黄色| 精品人妻一区二区三区麻豆| 国产精品.久久久| 中文字幕人妻熟女乱码| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 91精品三级在线观看| 国产一区二区三区av在线| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 亚洲中文av在线| 日本vs欧美在线观看视频| 久久久久网色| 人妻 亚洲 视频| 性色av乱码一区二区三区2| av超薄肉色丝袜交足视频| 视频区图区小说| 亚洲专区字幕在线| 在线观看一区二区三区激情| 男女之事视频高清在线观看| 欧美国产精品一级二级三级| 热re99久久精品国产66热6| 国产精品.久久久| 大码成人一级视频| 一边摸一边做爽爽视频免费| www.999成人在线观看| 麻豆国产av国片精品| 久久精品国产综合久久久| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 老司机午夜十八禁免费视频| 欧美一级毛片孕妇| 国产av国产精品国产| 亚洲av成人不卡在线观看播放网 | 正在播放国产对白刺激| 三上悠亚av全集在线观看| 啦啦啦 在线观看视频| 在线观看免费日韩欧美大片| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 99国产精品一区二区蜜桃av | 大香蕉久久成人网| 大片免费播放器 马上看| 日本91视频免费播放| av有码第一页| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 1024香蕉在线观看| 亚洲天堂av无毛| 久久热在线av| 在线观看www视频免费| av视频免费观看在线观看| 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 日日夜夜操网爽| 无遮挡黄片免费观看| 久久人妻熟女aⅴ| 久久久久国产一级毛片高清牌| 国产亚洲精品一区二区www | 久久热在线av| av电影中文网址| 国产日韩欧美亚洲二区| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 亚洲精品国产av蜜桃| 免费女性裸体啪啪无遮挡网站| 日本av手机在线免费观看| 成年动漫av网址| 国产一区二区在线观看av| 一区二区三区激情视频| 成年美女黄网站色视频大全免费| 久久精品国产综合久久久| 亚洲av美国av| 婷婷丁香在线五月| 韩国精品一区二区三区| 久久香蕉激情| 亚洲精品一卡2卡三卡4卡5卡 | 国产99久久九九免费精品| 欧美黑人精品巨大| 91麻豆av在线| 久久人人97超碰香蕉20202| 亚洲精品自拍成人| 99国产精品一区二区三区| 美女高潮到喷水免费观看| 成人影院久久| 一区二区日韩欧美中文字幕| 人妻久久中文字幕网| 亚洲av成人不卡在线观看播放网 | 新久久久久国产一级毛片| 制服诱惑二区| 一区二区三区激情视频| 18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 久久九九热精品免费| 9热在线视频观看99| 99国产综合亚洲精品| 精品国产乱子伦一区二区三区 | 日日爽夜夜爽网站| www.999成人在线观看| 欧美国产精品一级二级三级| avwww免费| 免费不卡黄色视频| 亚洲精品一区蜜桃| 久久这里只有精品19| 热re99久久精品国产66热6| av网站免费在线观看视频| 人妻人人澡人人爽人人| 国产在线免费精品| 啦啦啦在线免费观看视频4| 国产精品国产av在线观看| 成年女人毛片免费观看观看9 | 91九色精品人成在线观看| 成年人免费黄色播放视频| 亚洲精品国产色婷婷电影| 国产成人系列免费观看| 十分钟在线观看高清视频www| 少妇粗大呻吟视频| 美女主播在线视频| 欧美 日韩 精品 国产| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影小说| 国产精品av久久久久免费| 国产1区2区3区精品| 国产精品二区激情视频| 国产精品一区二区免费欧美 | 国产免费视频播放在线视频| 大香蕉久久网| 国精品久久久久久国模美| 久久av网站| 国产片内射在线| 国产精品香港三级国产av潘金莲| 欧美日韩亚洲国产一区二区在线观看 | 国产激情久久老熟女| 成年av动漫网址| 麻豆国产av国片精品| 韩国高清视频一区二区三区| 国产成人影院久久av| 精品福利观看| 久久免费观看电影| 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看 | 狂野欧美激情性bbbbbb| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 九色亚洲精品在线播放| 美女大奶头黄色视频| 国产精品久久久久成人av| 黄色视频,在线免费观看| 少妇猛男粗大的猛烈进出视频| 男女床上黄色一级片免费看| 精品少妇久久久久久888优播| 亚洲第一青青草原| 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 国精品久久久久久国模美| 一二三四社区在线视频社区8| 久久热在线av| 在线精品无人区一区二区三| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 大片免费播放器 马上看| 五月开心婷婷网| 国精品久久久久久国模美| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 一个人免费在线观看的高清视频 | 一二三四社区在线视频社区8| 欧美久久黑人一区二区| 亚洲久久久国产精品| 人人澡人人妻人| 宅男免费午夜| 日本av手机在线免费观看| 亚洲久久久国产精品| 天堂8中文在线网| 亚洲av美国av| 91老司机精品| 国产精品九九99| 看免费av毛片| 国产三级黄色录像| 王馨瑶露胸无遮挡在线观看| 日韩欧美免费精品| 美女国产高潮福利片在线看| 麻豆av在线久日| 精品少妇一区二区三区视频日本电影| 一区二区三区精品91| 亚洲中文字幕日韩| 美女主播在线视频| av线在线观看网站| 极品人妻少妇av视频| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 亚洲av成人不卡在线观看播放网 | 两个人免费观看高清视频| 多毛熟女@视频| 国产免费av片在线观看野外av| 男女国产视频网站| 国产欧美日韩一区二区三 | 国产精品香港三级国产av潘金莲| 免费av中文字幕在线| 在线永久观看黄色视频| 人人澡人人妻人| 捣出白浆h1v1| 国产成人a∨麻豆精品| 亚洲精品国产精品久久久不卡| 成人三级做爰电影| 国产亚洲av片在线观看秒播厂| 在线av久久热| 精品人妻1区二区| 成年人黄色毛片网站| 亚洲三区欧美一区| 精品熟女少妇八av免费久了| 乱人伦中国视频| 99久久精品国产亚洲精品| av在线app专区| 久久久久视频综合| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 国产精品国产av在线观看| 亚洲国产精品一区三区| 久久久久精品人妻al黑| 精品高清国产在线一区| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 成人手机av| 国产高清视频在线播放一区 | 欧美黑人精品巨大| 欧美久久黑人一区二区| 日韩熟女老妇一区二区性免费视频| 精品少妇内射三级| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清 | 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美乱码精品一区二区三区| 国产成人精品无人区| 一级a爱视频在线免费观看| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 亚洲伊人久久精品综合| 啦啦啦免费观看视频1| 欧美国产精品一级二级三级| 91精品三级在线观看| 99国产精品99久久久久| 亚洲欧美一区二区三区黑人| 一级a爱视频在线免费观看| 91国产中文字幕| 飞空精品影院首页| 十分钟在线观看高清视频www| 欧美在线黄色| 两个人看的免费小视频| 女人久久www免费人成看片| 国产亚洲精品一区二区www | 51午夜福利影视在线观看| 欧美日韩av久久| 十八禁人妻一区二区| 欧美日韩亚洲高清精品| 在线av久久热| 国产又色又爽无遮挡免| 啦啦啦视频在线资源免费观看| 最近中文字幕2019免费版| 老司机深夜福利视频在线观看 | 天天躁夜夜躁狠狠躁躁| 欧美一级毛片孕妇| 亚洲,欧美精品.| 亚洲 欧美一区二区三区| 成在线人永久免费视频| a级毛片黄视频| 免费人妻精品一区二区三区视频| 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 我的亚洲天堂| 成年人免费黄色播放视频| 91九色精品人成在线观看| 人成视频在线观看免费观看| 热re99久久精品国产66热6| 三级毛片av免费| 国产又爽黄色视频| 国产精品一区二区免费欧美 | a 毛片基地| 久久性视频一级片| 嫩草影视91久久| 亚洲国产欧美在线一区| 午夜福利,免费看| 丝袜美足系列| 久久久久久久久久久久大奶| 少妇粗大呻吟视频| 大码成人一级视频| 一本一本久久a久久精品综合妖精| 免费一级毛片在线播放高清视频 | 免费久久久久久久精品成人欧美视频| 中文字幕人妻丝袜一区二区| 一本久久精品| 最新的欧美精品一区二区| 999久久久国产精品视频| 可以免费在线观看a视频的电影网站| 在线观看免费视频网站a站| 色视频在线一区二区三区| 最近中文字幕2019免费版| 午夜激情av网站| 一区在线观看完整版| 亚洲成人免费av在线播放| 男女国产视频网站| 色94色欧美一区二区| a级毛片黄视频| tocl精华| 天天躁狠狠躁夜夜躁狠狠躁| 精品第一国产精品| 成人免费观看视频高清| 9热在线视频观看99| 一区在线观看完整版| 一个人免费看片子| 两个人看的免费小视频| 丝袜美腿诱惑在线| 亚洲精品成人av观看孕妇| 视频区图区小说| avwww免费| 国产99久久九九免费精品| 久久人妻熟女aⅴ| 一区二区三区激情视频| 桃花免费在线播放| 欧美激情 高清一区二区三区| 亚洲av成人一区二区三| 麻豆av在线久日| 成年av动漫网址| 国产男女内射视频| 在线天堂中文资源库| 老司机亚洲免费影院| 久久九九热精品免费| 亚洲成人免费av在线播放| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 97精品久久久久久久久久精品| bbb黄色大片| avwww免费| 亚洲精品av麻豆狂野| 满18在线观看网站| 午夜视频精品福利| 日本猛色少妇xxxxx猛交久久| 成年人免费黄色播放视频| 国产精品熟女久久久久浪| 国产av又大| 亚洲国产毛片av蜜桃av| 黄色怎么调成土黄色| 男女之事视频高清在线观看| 欧美亚洲日本最大视频资源| 中文字幕色久视频| 十八禁网站网址无遮挡| 亚洲一区中文字幕在线| 99热国产这里只有精品6| 国产真人三级小视频在线观看| 看免费av毛片| 满18在线观看网站| 午夜精品国产一区二区电影| 多毛熟女@视频| 久久精品人人爽人人爽视色| av免费在线观看网站| 国产欧美日韩综合在线一区二区| 日韩电影二区| 亚洲中文日韩欧美视频| 男女边摸边吃奶| www.自偷自拍.com| 国产人伦9x9x在线观看| 国内毛片毛片毛片毛片毛片| 热re99久久精品国产66热6| 日韩中文字幕视频在线看片| 亚洲精品美女久久久久99蜜臀| 五月天丁香电影| 操出白浆在线播放| 欧美黑人精品巨大| 99久久99久久久精品蜜桃| a在线观看视频网站| 日本五十路高清| 中文字幕最新亚洲高清| 日韩欧美免费精品| 丝袜在线中文字幕| 亚洲avbb在线观看| 久久女婷五月综合色啪小说| 亚洲成人免费电影在线观看| 亚洲精品乱久久久久久| 成年人免费黄色播放视频| 97人妻天天添夜夜摸| 日韩一卡2卡3卡4卡2021年| 免费在线观看完整版高清| 超碰成人久久| 日韩有码中文字幕| 国产欧美日韩一区二区三 | 亚洲av日韩精品久久久久久密| 欧美精品亚洲一区二区| 两人在一起打扑克的视频| a级片在线免费高清观看视频| 亚洲精品国产av成人精品| 日本av免费视频播放| 国产淫语在线视频| 精品国产国语对白av| 中文欧美无线码| 精品视频人人做人人爽| 亚洲av片天天在线观看| 国产精品成人在线| 男女无遮挡免费网站观看| 丝袜美足系列| 国产色视频综合| 男女无遮挡免费网站观看| 丝袜美足系列| 欧美精品一区二区免费开放| 日韩精品免费视频一区二区三区| 91精品伊人久久大香线蕉| 超色免费av| 欧美精品高潮呻吟av久久| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 国产日韩欧美在线精品| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久久久久婷婷小说| 天天影视国产精品| 国产1区2区3区精品| 欧美日韩成人在线一区二区| 欧美在线黄色| 精品卡一卡二卡四卡免费| 香蕉国产在线看| 精品视频人人做人人爽| 精品国产国语对白av| 后天国语完整版免费观看| 两个人免费观看高清视频| 中文字幕精品免费在线观看视频| 免费在线观看黄色视频的| a级片在线免费高清观看视频| www日本在线高清视频| 日本wwww免费看| 91精品三级在线观看| 久热爱精品视频在线9| 成年女人毛片免费观看观看9 |