• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of Mg2+/Li+ Separation by Nanofiltration*

    2011-03-22 10:11:56YANGGang楊剛SHIHong史宏LIUWenqiang劉文強(qiáng)XINGWeihong邢衛(wèi)紅andXUNanping徐南平
    關(guān)鍵詞:楊剛南平

    YANG Gang (楊剛)**, SHI Hong (史宏), LIU Wenqiang (劉文強(qiáng)), XING Weihong (邢衛(wèi)紅)and XU Nanping (徐南平)

    State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    1 INTRODUCTION

    New technologies are urgently demanded in recent years for saving energy and reducing waste.Membrane separations have therefore been focused on,among which nanofiltration (NF) [1-3] is acknowledged as an efficient process. Such approaches were used for water softening in early days [4], and then were found to be a best choice for the treatment of process fluids. The mode is now being extended to the environmental protection area to recover valuable components. The interest herein is the NF rejections of lithium ions, which is often used for hygroscopic purpose or elsewhere (e.g. lithium battery). Actually membrane processes [5, 6] concerned this refrigeration agent, though a few ideas [7] did not seem practical yet. In nature the lithium element is basically stored in the brine. Its enrichment process is featured with evaporations, by which a variety of ions are removed through crystallizations. The work [8] on NF of the crude lithium brine was comprehensive, but the results almost led to a negative evaluation since the crude brine was too complicated. In the present industrial process it is able to evolve the lithium-containing stream into Mg2+/Li+mixture. A proper implementation of the NF technique might facilitate the removal of ions such as Mg2+with less energy consumption. In this paper, experimental investigations and theoretical predictions are given to elucidate the selective rejections of Mg2+/Li+.

    2 EXPERIMENTAL

    2.1 Chemicals and analysis

    Analytical grade NaCl, MgSO4and glucose were used for the characterization of the DK membrane.Analytical grade LiCl and MgCl2were used to make the Mg2+/Li+/Cl-solutions shown in Table 1. Their mass ratios Mg2+/Li+are around that of the crude brine in the East Taijinaier Salt Lake [8], and the lithium ion concentrations change within a limited scope.All water used was pretreated with reverse osmosis membrane and ion exchange resin with the conductivity less than 0.5 μs·cm-1. Table 2 lists the bulk diffusion coefficients and Stokes radii of the solutes, which were incorporated in the mathematical computation.The data for lithium ion were from [9], while the rest were from [10].

    Table 1 Brine compositions

    Table 2 Bulk diffusion coefficient and Stokes radii

    The cation concentrations were determined by Inductively Coupled Plasma (Shimdzu, Japan). The glucose concentrations were determined by TOC (total organic carbon) analyzer (Shimdzu, Japan).

    2.2 Membrane and apparatus

    The spiral-wound Desal DK membrane element(GE Osmonics) of nominally 8 m2membrane area was used. The parental solution was fed into the membrane element through a feeding pump and then a pressure-boosting pump. The later was equipped with a transducer for a smooth start-up and easy process adjustment. The inlet pressure and retentate flow rate were controlled with accuracy through the adjustment valve and the transducer. The retentate flow rate and the permeate flux were monitored with two electronic flowmeters, while the permeate flux records were calibrated to avoid the temperature, density and mechanical deviations. The storage tank jacket was circulated with cooling water to stabilize the feeding temperature at (35±1) °C.

    2.3 Experimental procedure

    All experiments were carried out at the cross-flow rate of 3 m3·h-1, at which the concentration polarization is negligible [11]. The temperature was kept constant at 35 °C. Both the retentate and permeate flew back to the feed tank. The constant process parameters and the relevant samples were available in the cycling. The permeate flux as well as the concentrations at both membrane sides were determined as the transmembrane pressure stepped up every 0.2 MPa from 0.8 MPa to 1.6 MPa. The membrane separation

    factor (SF) is calculated as

    3 SIMULATIONS

    Modeling of nanofiltration based on the black-box treatment or the Nernst-Planck equations were reported [12-16]. A simplified Donnan steric pore model (DSPM) [17, 18] and its new version [10] were typically impressive. Much work was reported on the improvement [19]. The endeavors partly aimed at in-depth probing fundamental aspects of the mass transfer. Unfortunately, the prediction-oriented utilization is complicated, since it is difficult to obtain the physicochemical parameters such as dielectric constant or streaming potential [20]. And, the model parameters changes with process conditions. For a solution with components of relatively high concentrations,or a real wastewater that is apt to foul the membrane,the theoretical calculation seems deviated while the empirical or semi-empirical treatment works better.On the other hand, the dielectric exclusion is weakened at a high feed concentration, which is the case for the brines in [8, 21] and this paper. Therefore, only the simplified DSPM model is used herein for the process prediction and concise evaluation for rejections of the Mg2+/Li+system. The model parameters,i.e. effective membrane pore radius (rp), effective membrane thickness (Δx/Ak) and effective membrane charge density (Xd), are obtained through the characterization experiments. With the numerical treatment procedure [22], the extended prediction is available.

    4 RESULTS AND DISCUSSION

    4.1 Separations of Mg2+/Li+ mixture

    Figure 1 Ion rejection and SF vs. permeation flux

    The ion rejection and SF of Mg2+/Li+are shown in Fig. 1. For Feed A, the Mg2+rejection increases while the Li+rejection decreases with the increase of permeation flux. A strong Donnan effect is observed.In the permeation flux range, the SF decreases from 0.49 to 0.31. The Mg2+rejection for Feed B (as well as Feed C) is similar, but the Li+rejection is different,which increases slightly only at a higher flux. Negative rejections of -40%--20% are observed. The operations for the 3 mixtures started at the same working pressure, so their beginning permeation fluxes increased with their resistant osmotic pressures. The initiate values of SF for Feeds B and C decrease. It is interesting that the starting SF for Feed B is lower than that of Feed C. This is supposed to be caused by the permeation fluxes, the ion concentrations and the ratios. The trend is evident within the flux range, suggesting the phenomena are governed not only by the Donnan exclusion.

    Normally a multi-valent anion is preferentially rejected by a negatively charged NF membrane if there exists a univalent anion. Herein the divalent and univalent cations are selectively rejected. This is encouraging from the perspective of field applications.The selection may be due to the electric properties and the geometric sizes of the ions. Other factors such as the dielectric properties, which are difficult to characterize, might also help lead to the above occurrences.

    Figure 2 Variations of SF with retentate Li+ concentration and Mg2+/Li+ ratioΔp/MPa: □ 0.8; ○ 1.0; △ 1.2; ▽ 1.4; 1.6

    The dependency of the Mg2+/Li+SFon the Li+concentration is shown in Fig. 2, where the parental Mg2+/Li+concentration ratio falls within 18-24. Under a given operating pressure,SFchanges within a narrow range with the Li+concentration or the Mg2+/Li+concentration ratio. Differently, the dependence of SF upon the operating pressure is manifest. For their single electrolyte solutions, the rejection decreases as the corresponding concentration increases, as shown in Fig. 3. It is interesting that their rejections are quite close and Li+rejection is even a little higher.The different dependencies very the electric functions that Mg2+and Li+exert at the membrane surface and inside the pore. This imply that an optimized operation is possible to obtain the Li+-enriched permeate.

    Figure 3 Rejection variations of Mg2+ and Li+Δp/MPa: □ 0.8; ○ 1.0; △ 1.2; ▽ 1.4; 1.6

    4.2 Evaluation with a simulation model

    With the retention data of the neutral solutes, the membrane pore radius (rp) and the effective membrane thickness (Δx/Ak) were calculated as 0.53 nm and 3.42 μm, respectively, through the best-fit method.This is slightly deviated from the data reported, which may be due to the different conditions that the membranes were produced and utilized. The effective membrane charge density (Xd) greatly relies on conditions such as pH and ionic strength [20, 23]. Several reports have used the adsorption isotherm of[20, 24] to relate it with the ionic strength. In this study, the constantsqandsare regressed from the rejections and fluxes and listed in Table 3. The results prove thatXdis greatly influenced by the solution composition, and even its sign is changed with Mg2+added.

    Table 3 Xd fitted with the DSPM model as function of feed characteristics

    Figure 4 gives the predicted relationship ofSFand the permeation flux. The trial withXdobtained from the other ionic systems leads to a complete failu

    frroe

    m.G

    o

    exo

    pde

    c

    rio

    mnef

    on

    r

    tsmit

    wyi tihs

    ftoh

    ue

    n

    dL

    w

    i+h/

    Meng

    2X+/dC i

    ls-

    r e

    mgirxetsusreed.When extended to a moderately broader working pressure range, the predictedSFevolves forward smoothly.The factor decreases as the permeation increases, but the extent is gradually narrower. The factor seems to

    apiTnprh epeftriehorre

    ae d

    cninhtf

    iaf

    aen

    alr

    o e

    rlfneiimjlcetericat t itisivoo

    antnlh u oa

    eoft

    fMaa

    b tgpho2eeu+a t

    0

    .rs3ei

    m1j

    e

    ./ic+

    ClTtailro

    h

    -n/

    ewN

    io

    eat

    nhf+c Ctoshol

    ue-lr uaroetgfisiotunenlgnt.

    emerged is not so clear here for Li (as instructed in F

    noig

    t.

    a2p)

    .p eSaurc

    hs

    iannc e

    e

    xMt

    re

    gm2+i t

    y

    is

    o n f

    otht

    er eDj

    eocntne

    ad

    n

    ceof

    fme

    cp

    tl e

    d

    teo

    leys.Nevertheless the trend shown here suggests a te+chnically viable membrane approach for enriching Li.

    Figure 4 DSPM predictions of SF○ experiment (Feed A); □ experiment (Feed B); △ experiment(Feed C); DSPM (Xd of Mg2+/Li+); DSPM (Xd of Na+)

    The evaluated dependencies of SF upon the retentate Mg2+/Li+ratio as well as the retentate Li+concentration are given in Fig. 5. At the given working pressure,SFis basically not sensitive to the two parameters and maintains around 0.34. The rejections for two ions change, but are in the same trend. Apart from the membrane choice, the operation pressure seems to be a significant adjustment measure for an optimized purification of Li+component. The temperature factor is still left for investigation, but its influence on the membrane pore size and charge density is limited. In most cases room temperature is recommended due to the comprehensive consideration of the membrane service life, energy consumption and operation convenience.

    Figure 5 Predicted SF vs. Mg2+/Li+ ratio and retentate Li+concentration

    4.3 Dependency of effective membrane charge density

    A typical treatment ofXdis the regression approach [10, 17, 19, 25-28], or it may be evaluated via the Gouy-Chapman double electric layer theory and experimental determination of the tangential membrane surface potential [20, 21, 29, 30]. However,Xdis an inenarrable variable [31] as it relates with membrane property, ionic adsorption and ambient pH condition.In this paper,Xdis also found dependent of the permeability, as shown in Fig. 6. An increase appears for the monovalent cation but a decrease occurs for the cation Mg2+. The contradicted trends seem to be affected by the cation valency other than the process phenomenon such as the concentration polarization.The permeate flux might affect the intrapore electrokinetic effect by its contribution to the slip plane movement of the adsorption layer. The absolute value ofXdtends to decrease as the permeate flux increases.This deserves attention in the future modeling. On the other hand,Xdvalue is intensively dependent on the cation pattern.Xdis negative for the monovalent ion but positive for the divalent ion. The trend is similar to the reports in literature [17, 28]. TheXdvariation is likely caused by the ionic adsorption that changes with the ion valency. And, theXdvalue for the Mg2+/Li+/Cl-mixture is between those for Mg2+and Li+systems. The component Mg2+preponderates for the charge density, but with the limited data, no evident linearity is found among them yet.

    Figure 6 Dependency of intrapore charge density on flux○ Ni+; △ Li+; □ Mg2+; ▽ Mg2+/Li+

    The Donnan potential at the pore entrance shown in Fig. 7 also changes with the permeation flux. The linearity is good but the slope and the intercept change with ion pattern. The positive slope for the monovalent ions and the negative one for the divalent cations show the diversion of the charge property. This is similar with the dependence of the streaming potential on the driving pressure, which is also linearly related [32].

    5 CONCLUSIONS

    A DK brand membrane was used to investigate the possibility of separating Li+from the Mg2+/Li+mixture. The prediction with the DSPM model was carried out for an extending analysis. Within the concerned concentration range, the Mg2+/Li+ratio and the Li+concentration were found basically not affecting their separation factor, while the working pressure, or the permeation flux, seemed significant. Higher driving pressure helped raising separation potential. The limitingSFof 0.31 was technically possible for richen Li+with membrane technologies. Actually, the integral membrane process design was able to facilitate a high Li+recovery at a relatively high purity. The data analysis disclosed the dependence of the intrapore membrane charge density on ion pattern, ion concentration and driving pressure force. The empirical expression ofXdfor the mixed electrolyte solution is still necessary for the probe of the separation possibility.

    NOMENCLATURE

    cconcentration, g·L-1

    Di,∞bulk diffusion coefficient, m2·s-1

    Jvvolumetric permeate flux, m·s-1

    Δppressure on both sides of the membrane

    qempirical parameter, mol·m-3

    Rrejection

    R2correlation coefficient

    rpeffective membrane pore radius, m

    rsstokes radius, m

    sempirical parameter

    SFseparation factor

    Xdeffective membrane charge density, mol·m-3

    zionic valence

    Δx/Akeffective membrane thickness, m

    0-feed side

    1 Waypa, J.J., Elimelech, M., Hering, J.G., “Arsenic removal by RO and NF membranes”,J.Am.Water Works Assoc., 89, 102 (1997).

    2 van der Bruggen, B., Vandecasteele, C., “Modelling of the retention of uncharged molecules with nanofiltration”,Water Res., 36, 1360-1368(2002).

    3 Scarpello, J. T., Nair, D., Freitas dos Santos, L. M., White, L. S.,Livingston, A. G., “The separation of homogeneous organometallic catalysts using solvent resistant nanofiltration”,J.Membr.Sci., 203,71 (2002).

    4 van der Bruggen, B., Vandecasteele, C., “Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry”,Environ.Pollut.,122, 435 (2003).

    5 Watari, K., Kobayashi, M., “Filtration method of absorptive liquid for freezer/cooling-heating device and filter cartridge”, JP. Pat.,09150040 (1997).

    6 Riffat, S.B., Su, Y.H., “A novel absorption refrigeration cycle using centrifugal reverse osmosis”,J.Inst.Energ., 74, 66-69 (2001).

    7 Xuan, B.M., “Lithium bromide absorption refrigerator with membrane separation unit for concentrating”, CN. Pat., 1645012 (2005).

    8 Wen, X.M., Ma, P.H., Zhu, C.L., He, Q., Deng, X.C., “Preliminary study on recovering lithium chloride from lithium- containing waters by nanofiltration”,Sep.Purif.Technol., 49, 230-236 (2006).

    9 Sabate, J., Labanda, J., Llorens, J., “Influence of coion and counterion size on multi-ionic solution nanofiltration”,J.Membr.Sci., 345,298-304 (2009).

    10 Bowen, W.R., Welfoot, J.S., “Modeling the performance of membrane nanofiltration-critical assessment and model development”,Chem.Eng.Sci., 57, 1121-1137 (2002).

    11 Yang, G., Xing, W.H., Xu, N.P., “Concentration polarization in spiral-wound nanofiltration membrane elements”,Desalination, 154,89-99 (2003).

    12 Levenstein, R., Hasson, D., Semiat, R., “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes”, J. Membr. Sci., 116, 77-92 (1996).

    13 Wang, X.L., Tsuru, T., Togoh, M., Nakao, S., Kimura, S., “The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membrane”, J. Membr. Sci., 135, 19-32(1997).

    14 Ismail, A.F., Hassan, A.R., “The deduction of fine structural details of asymmetric nanofiltration membranes using theoretical models”,J. Membr. Sci., 231 (1/2), 25-36 (2004).

    15 Ahmad, A.L., Chong, M.F., Bhatia, S., “Mathematical modeling and simulation of the multiple solutes system for nanofiltration process”,J. Membr. Sci., 253 (1-2), 103-115 (2005).

    16 Sabatea, J., Labandab, J., Llorensb, J., “Influence of coion and counterion size on multi-ionic solution nanofiltration”, J. Membr.Sci., 345, 298-304 (2009).

    17 Bowen, W.R., Mukhtar, H., “Characterisation and prediction of separation performance of nanofiltration membranes”, J. Membr.Sci., 112, 263-274 (1996).

    18 Bowen, W. R., Mohammad, A. W., “Diafiltration by nanofiltration:Prediction and optimization”, AIChE J., 44,1799-1812(1998).

    19 Bandini, S., Vezzani, D., “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization”, Chem. Eng. Sci.,58, 3303-3326 (2003).

    20 Szymczyk, A., Fatin-Rouge, N., Fievet, P., Ramseyer, C., Vidonne.,A., “Identification of dielectric effects in nanofiltration of metallic salts”, J. Membr. Sci., 287, 102-110 (2007).

    21 Szymczyk, A., Fievet, P., “Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model”, J. Membr. Sci., 252, 77-88 (2005).

    22 Mohammad, A.W., Takriff, M.S., “Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes”, Desalination, 157, 105-111 (2003).

    23 Santafe-Moros, A., Gozálvez-Zafrilla, J.M., Lora-Garcia, J., “Applicability of the DSPM with dielectric exclusion to a high rejection nanofiltration membrane in the separation of nitrate solutions”, Desalination, 221, 268-276 (2008).

    24 Childress, A.E., Elimelech, M., “Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes”, J. Membr. Sci., 119, 253-268 (1996).

    25 Schaep, J., Bowen, W.R., “Modelling the retention of ionic components for different nanofiltration membranes”, Sep. Purif. Technol.,22-23, 169-179 (2001).

    26 Bowen, W.R., Cassey, B., Jones, P., Oatley, D.L., “Modelling the performance of membrane nanofiltration-application to an industrially relevant separation”, J. Membr. Sci., 242, 211-220 (2004).

    27 Hussain, A.A., Nataraj, S.K., Abashar, M.E.E., Al-Mutaz, I.S., Aminabhavi, T.M., “Prediction of physical properties of nanofiltration membranes using experiment and theoretical models”, J. Membr.Sci., 310, 321-336 (2008).

    28 Kovacsa, Z., Discacciati, M., Samhaber, W., “Modeling of batch and semi-batch membrane filtration processes”, J. Membr. Sci., 327,164-173 (2009).

    29 Szymczyk, A., Sba, M., Fievet, P., Vidonne, A., “Transport properties and electrokinetic characterization of an amphoteric nanofilter”,Langmuir, 22, 3910-3919 (2006).

    30 Szymczyk, A., Fatin-Rouge, N., Fievet, P., “Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes”, J. Colloid Interf. Sci., 309, 245-252 (2007).

    31 Sharma, R. R., Chellam, S., “Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation”, J. Colloid Interf. Sci., 298, 327-340 (2006).

    32 Fievet, P., Sba, M., Szymczyk, A., “Analysis of the pressure-induced potential arising across selective multilayer membranes”, J. Membr.Sci., 264, 1-12 (2005).

    猜你喜歡
    楊剛南平
    Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
    疑點(diǎn)重重的“妻子”
    徐南平一行到晉中國家農(nóng)高區(qū)調(diào)研
    南平:婦聯(lián)干部當(dāng)好“五員”助力婦女脫貧增收
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    改革開放初期,南平紡織廠女工在紡紗。
    追查
    一把鋼釘毀人生
    做人與處世(2014年8期)2014-07-17 05:40:26
    暖春
    金山(2012年5期)2012-04-29 00:44:03
    Effect of the Para-substituent of the Tridentate Pyridine-based Ru(II) Complex upon the Catalytic Activity in Transfer Hydrogenation*
    Model Study on a Submerged Catalysis/Membrane Filtration System for Phenol Hydroxylation Catalyzed by TS-1*
    国产精品三级大全| 少妇熟女欧美另类| av国产精品久久久久影院| av网站在线播放免费| 欧美精品国产亚洲| 爱豆传媒免费全集在线观看| 性少妇av在线| 亚洲成国产人片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成国产人片在线观看| 成人国语在线视频| av免费在线看不卡| 久久久久精品久久久久真实原创| 日本av免费视频播放| 黄片无遮挡物在线观看| 26uuu在线亚洲综合色| 国产麻豆69| 精品国产一区二区久久| 日本午夜av视频| 久久久久精品久久久久真实原创| 亚洲国产av影院在线观看| 国产精品亚洲av一区麻豆 | 亚洲av国产av综合av卡| 亚洲精品日韩在线中文字幕| 亚洲精品,欧美精品| 亚洲精品日韩在线中文字幕| 国产精品成人在线| 久久久精品国产亚洲av高清涩受| 久久久久视频综合| 欧美日韩视频高清一区二区三区二| 午夜日韩欧美国产| 亚洲精品国产av成人精品| 91精品国产国语对白视频| 一二三四中文在线观看免费高清| 啦啦啦在线免费观看视频4| 丝袜美足系列| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频| 老司机影院成人| 麻豆乱淫一区二区| 亚洲综合精品二区| 又黄又粗又硬又大视频| 欧美国产精品va在线观看不卡| 老司机影院成人| 999久久久国产精品视频| 9热在线视频观看99| 一区二区三区乱码不卡18| 欧美日韩亚洲国产一区二区在线观看 | 国产男女超爽视频在线观看| 一级毛片黄色毛片免费观看视频| 日韩制服丝袜自拍偷拍| 国产极品天堂在线| 国产av码专区亚洲av| 日韩av不卡免费在线播放| 国产欧美日韩综合在线一区二区| 又粗又硬又长又爽又黄的视频| 国产男女内射视频| 丝袜美足系列| 少妇人妻精品综合一区二区| 久久这里有精品视频免费| 男女下面插进去视频免费观看| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡 | 99re6热这里在线精品视频| 国产黄频视频在线观看| 一区二区三区四区激情视频| 国产男女内射视频| 国产 精品1| 精品人妻在线不人妻| 1024视频免费在线观看| 777米奇影视久久| 久久青草综合色| 亚洲av男天堂| 成年美女黄网站色视频大全免费| 哪个播放器可以免费观看大片| 欧美日本中文国产一区发布| 久久精品国产亚洲av高清一级| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 精品少妇一区二区三区视频日本电影 | 1024视频免费在线观看| 日韩中文字幕视频在线看片| 最近中文字幕高清免费大全6| a级毛片黄视频| 成年av动漫网址| 精品视频人人做人人爽| 久久久精品免费免费高清| 大香蕉久久网| 国产高清国产精品国产三级| 亚洲成人手机| 国产亚洲一区二区精品| 蜜桃国产av成人99| 国产一区有黄有色的免费视频| 精品一品国产午夜福利视频| 亚洲欧美成人精品一区二区| 一级,二级,三级黄色视频| 又大又黄又爽视频免费| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲高清精品| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 91国产中文字幕| 午夜久久久在线观看| videossex国产| 婷婷色av中文字幕| 成年动漫av网址| 美女脱内裤让男人舔精品视频| 一区在线观看完整版| 久久久精品94久久精品| 欧美国产精品va在线观看不卡| 伊人久久国产一区二区| 在线精品无人区一区二区三| 男的添女的下面高潮视频| 久久这里只有精品19| 久久 成人 亚洲| 韩国高清视频一区二区三区| 国产av一区二区精品久久| 成年美女黄网站色视频大全免费| 又大又黄又爽视频免费| 久久精品久久精品一区二区三区| 少妇熟女欧美另类| 成年动漫av网址| 亚洲国产精品一区二区三区在线| 国产97色在线日韩免费| av卡一久久| 国产成人欧美| 久久亚洲国产成人精品v| 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 最近手机中文字幕大全| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 波多野结衣一区麻豆| 久久午夜综合久久蜜桃| 国产 精品1| 午夜影院在线不卡| 色网站视频免费| 亚洲美女视频黄频| 日日爽夜夜爽网站| 如何舔出高潮| 国产不卡av网站在线观看| 日韩人妻精品一区2区三区| 在线观看三级黄色| 午夜老司机福利剧场| 啦啦啦视频在线资源免费观看| 黄色视频在线播放观看不卡| 国产乱人偷精品视频| 国产欧美亚洲国产| 如日韩欧美国产精品一区二区三区| av网站在线播放免费| 一二三四中文在线观看免费高清| 婷婷成人精品国产| 精品少妇黑人巨大在线播放| 这个男人来自地球电影免费观看 | 七月丁香在线播放| 婷婷色综合www| 亚洲图色成人| 午夜福利在线免费观看网站| 波多野结衣一区麻豆| 美女xxoo啪啪120秒动态图| 色婷婷久久久亚洲欧美| 日日啪夜夜爽| 美女脱内裤让男人舔精品视频| 久久这里只有精品19| 久久韩国三级中文字幕| 欧美成人午夜免费资源| 在线天堂中文资源库| 一区在线观看完整版| av国产精品久久久久影院| 妹子高潮喷水视频| 欧美人与善性xxx| 免费人妻精品一区二区三区视频| 制服人妻中文乱码| 一级a爱视频在线免费观看| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人 | 91在线精品国自产拍蜜月| 人人澡人人妻人| 热re99久久精品国产66热6| 亚洲视频免费观看视频| 这个男人来自地球电影免费观看 | 高清不卡的av网站| 国产成人欧美| 国产欧美亚洲国产| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 性色av一级| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 国产亚洲最大av| 国产精品免费视频内射| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 成人影院久久| 久久久久国产精品人妻一区二区| 蜜桃在线观看..| 1024视频免费在线观看| 久久久精品94久久精品| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 亚洲美女黄色视频免费看| 啦啦啦中文免费视频观看日本| 女人被躁到高潮嗷嗷叫费观| 成年人免费黄色播放视频| 婷婷色综合大香蕉| 看免费av毛片| 国产爽快片一区二区三区| 国产白丝娇喘喷水9色精品| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| tube8黄色片| 永久免费av网站大全| 亚洲综合色网址| 国产精品久久久久成人av| 国产av一区二区精品久久| 中文欧美无线码| 亚洲精品久久午夜乱码| av线在线观看网站| av.在线天堂| 欧美日韩亚洲国产一区二区在线观看 | 久久午夜福利片| 国产精品久久久久久精品古装| 国产精品.久久久| 国产成人91sexporn| 高清欧美精品videossex| 精品人妻在线不人妻| 最新的欧美精品一区二区| 黄色怎么调成土黄色| 国产精品熟女久久久久浪| 美女午夜性视频免费| 久久久亚洲精品成人影院| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 国产在线视频一区二区| 日韩伦理黄色片| 午夜91福利影院| 日韩制服丝袜自拍偷拍| 免费观看av网站的网址| 免费av中文字幕在线| 精品国产超薄肉色丝袜足j| 久久久久精品人妻al黑| 亚洲av男天堂| 成年人午夜在线观看视频| 免费看不卡的av| 国产 一区精品| 黄色毛片三级朝国网站| 国产亚洲av片在线观看秒播厂| 国产成人精品无人区| 国产亚洲最大av| 如何舔出高潮| av.在线天堂| 免费av中文字幕在线| 国产精品久久久久久久久免| 精品国产一区二区三区久久久樱花| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 国产成人精品福利久久| 亚洲综合色惰| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀 | 不卡视频在线观看欧美| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 亚洲男人天堂网一区| 国产麻豆69| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 日本黄色日本黄色录像| 七月丁香在线播放| 一级黄片播放器| 黄色一级大片看看| 七月丁香在线播放| 国产成人aa在线观看| 91成人精品电影| 欧美xxⅹ黑人| 熟女少妇亚洲综合色aaa.| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 一级片免费观看大全| 午夜免费鲁丝| 亚洲伊人色综图| 交换朋友夫妻互换小说| 久久久久久久精品精品| tube8黄色片| 两性夫妻黄色片| 国产1区2区3区精品| tube8黄色片| 男女边摸边吃奶| 看免费av毛片| 一个人免费看片子| 亚洲精品自拍成人| 啦啦啦中文免费视频观看日本| 久久国产精品男人的天堂亚洲| 男女啪啪激烈高潮av片| 国产免费视频播放在线视频| 国产又爽黄色视频| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 日韩电影二区| 国产 一区精品| 春色校园在线视频观看| 黄片小视频在线播放| 亚洲av男天堂| 国产亚洲一区二区精品| 香蕉丝袜av| 欧美少妇被猛烈插入视频| 成人二区视频| 国产精品av久久久久免费| 日韩精品免费视频一区二区三区| 制服丝袜香蕉在线| 国产亚洲最大av| 亚洲精品一区蜜桃| 国产成人精品久久二区二区91 | 日本av免费视频播放| 王馨瑶露胸无遮挡在线观看| 精品人妻在线不人妻| 欧美日韩视频精品一区| 国产精品久久久久成人av| 国产成人一区二区在线| 一级毛片 在线播放| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 色哟哟·www| 久久人人97超碰香蕉20202| 日韩av不卡免费在线播放| 王馨瑶露胸无遮挡在线观看| 亚洲视频免费观看视频| 七月丁香在线播放| 精品国产超薄肉色丝袜足j| 日本-黄色视频高清免费观看| 日本爱情动作片www.在线观看| 国产xxxxx性猛交| 日本色播在线视频| 不卡av一区二区三区| 在线精品无人区一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 亚洲欧美精品自产自拍| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区| 99热国产这里只有精品6| 国产黄色视频一区二区在线观看| 日韩熟女老妇一区二区性免费视频| 欧美中文综合在线视频| 99久久人妻综合| 超色免费av| 亚洲国产最新在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 精品久久蜜臀av无| 国产一级毛片在线| 你懂的网址亚洲精品在线观看| 欧美日韩视频高清一区二区三区二| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 欧美成人午夜精品| 亚洲经典国产精华液单| 国产男女内射视频| 久久久久久人妻| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 亚洲中文av在线| 国产精品免费大片| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 日韩欧美精品免费久久| 国产成人一区二区在线| 18禁裸乳无遮挡动漫免费视频| 晚上一个人看的免费电影| 国产成人精品久久二区二区91 | 18禁裸乳无遮挡动漫免费视频| 日韩中字成人| 午夜日韩欧美国产| 秋霞伦理黄片| 99热网站在线观看| 欧美亚洲日本最大视频资源| 伊人亚洲综合成人网| 好男人视频免费观看在线| 亚洲成av片中文字幕在线观看 | 人妻少妇偷人精品九色| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 美女大奶头黄色视频| 国产1区2区3区精品| 免费看不卡的av| 精品午夜福利在线看| 香蕉精品网在线| 欧美精品人与动牲交sv欧美| 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看| 亚洲四区av| 国产女主播在线喷水免费视频网站| 欧美日韩av久久| 亚洲精品自拍成人| 老汉色∧v一级毛片| 少妇被粗大猛烈的视频| av在线app专区| 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| 午夜激情av网站| 欧美激情高清一区二区三区 | 国产爽快片一区二区三区| 国产精品国产三级专区第一集| 国产黄色视频一区二区在线观看| 久久久久久久久久人人人人人人| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 在线观看三级黄色| 十八禁高潮呻吟视频| 日韩中字成人| 国产精品一二三区在线看| 中文天堂在线官网| 国产精品久久久久成人av| 免费大片黄手机在线观看| 国产片内射在线| 精品一品国产午夜福利视频| 亚洲综合色惰| 国产精品国产三级国产专区5o| 免费观看在线日韩| 咕卡用的链子| 美女脱内裤让男人舔精品视频| 99久久综合免费| 在线天堂中文资源库| 中国国产av一级| 一区二区日韩欧美中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久大尺度免费视频| 中文欧美无线码| 少妇 在线观看| 亚洲精品自拍成人| 97人妻天天添夜夜摸| 午夜福利在线观看免费完整高清在| 热re99久久国产66热| 精品酒店卫生间| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 只有这里有精品99| 日韩伦理黄色片| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 大香蕉久久成人网| 水蜜桃什么品种好| 最近最新中文字幕大全免费视频 | 精品第一国产精品| 色94色欧美一区二区| 婷婷色综合www| 国产精品 国内视频| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| 午夜影院在线不卡| 日韩一本色道免费dvd| 日本av手机在线免费观看| 黄片小视频在线播放| 夫妻午夜视频| 十八禁高潮呻吟视频| 日韩精品有码人妻一区| 久久精品久久久久久久性| 国产精品国产三级专区第一集| 性色av一级| 久久久精品国产亚洲av高清涩受| 亚洲欧美色中文字幕在线| 欧美另类一区| 久久久久国产网址| 久久国内精品自在自线图片| 欧美亚洲 丝袜 人妻 在线| 亚洲三区欧美一区| 亚洲一区二区三区欧美精品| 亚洲国产精品成人久久小说| 亚洲一码二码三码区别大吗| 国产日韩一区二区三区精品不卡| 日韩一区二区视频免费看| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 成年动漫av网址| 激情五月婷婷亚洲| 少妇的逼水好多| 黑人猛操日本美女一级片| 欧美变态另类bdsm刘玥| www.熟女人妻精品国产| 国产精品国产av在线观看| 国产视频首页在线观看| 18禁国产床啪视频网站| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 一边亲一边摸免费视频| 青春草视频在线免费观看| 熟女少妇亚洲综合色aaa.| 久久久精品免费免费高清| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 国产男女内射视频| 久久国产精品男人的天堂亚洲| 国产精品人妻久久久影院| 亚洲伊人色综图| 精品久久久久久电影网| 99久久人妻综合| 日韩制服骚丝袜av| av线在线观看网站| 国产成人91sexporn| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 国产精品av久久久久免费| 少妇熟女欧美另类| 日本vs欧美在线观看视频| 欧美变态另类bdsm刘玥| 午夜日韩欧美国产| 亚洲av国产av综合av卡| 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久| 国产精品.久久久| 久久久久精品性色| 免费观看a级毛片全部| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 蜜桃国产av成人99| 国产精品人妻久久久影院| 在线精品无人区一区二区三| 日本欧美国产在线视频| 亚洲美女黄色视频免费看| tube8黄色片| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 激情视频va一区二区三区| 成人国语在线视频| 欧美人与善性xxx| 一本久久精品| 日本av免费视频播放| 在线观看一区二区三区激情| 久久青草综合色| 国产成人精品无人区| 中文字幕制服av| 有码 亚洲区| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 久久这里只有精品19| 久久久欧美国产精品| 丰满少妇做爰视频| 国产精品成人在线| 天天影视国产精品| 国精品久久久久久国模美| 香蕉丝袜av| 亚洲欧美中文字幕日韩二区| 色网站视频免费| 免费高清在线观看视频在线观看| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 成人二区视频| 一区在线观看完整版| 中文字幕制服av| 精品国产乱码久久久久久小说| 韩国高清视频一区二区三区| a级毛片在线看网站| 最近的中文字幕免费完整| 久久久久久久久久久久大奶| www日本在线高清视频| 亚洲欧美一区二区三区黑人 | 日韩电影二区| 亚洲av电影在线观看一区二区三区| 夫妻性生交免费视频一级片| 天堂俺去俺来也www色官网| 精品久久蜜臀av无| av有码第一页| 欧美日韩av久久| 日韩一卡2卡3卡4卡2021年| 国产伦理片在线播放av一区| 在现免费观看毛片| 国产国语露脸激情在线看| 久热这里只有精品99| 午夜91福利影院| 如日韩欧美国产精品一区二区三区| 亚洲三级黄色毛片| 色播在线永久视频| 成人手机av| 久久久久久久亚洲中文字幕| av在线播放精品| 亚洲一区二区三区欧美精品| 免费黄频网站在线观看国产| 久久97久久精品| 亚洲av中文av极速乱| 极品少妇高潮喷水抽搐| 亚洲精品久久午夜乱码| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 国产av国产精品国产| 视频在线观看一区二区三区| 国产精品麻豆人妻色哟哟久久| 免费观看无遮挡的男女| 免费高清在线观看视频在线观看| 国产免费又黄又爽又色| 色播在线永久视频| 亚洲色图 男人天堂 中文字幕| 久久这里有精品视频免费| 亚洲综合精品二区| 看非洲黑人一级黄片| 国产精品不卡视频一区二区| 亚洲精品日本国产第一区| 亚洲国产av影院在线观看| 在线精品无人区一区二区三| 欧美精品亚洲一区二区| 桃花免费在线播放| 黄色配什么色好看| 三级国产精品片| 国产成人精品婷婷| 成人亚洲欧美一区二区av| 婷婷成人精品国产| 91久久精品国产一区二区三区|