• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      利用非組合精密單點(diǎn)定位技術(shù)確定斜向電離層總電子含量和站星差分碼偏差

      2011-01-31 08:22:40張寶成歐吉坤袁運(yùn)斌李子申
      測(cè)繪學(xué)報(bào) 2011年4期
      關(guān)鍵詞:鐘差偽距電離層

      張寶成,歐吉坤,袁運(yùn)斌,李子申

      1.中國(guó)科學(xué)院測(cè)量與地球物理研究所動(dòng)力大地測(cè)量學(xué)重點(diǎn)試驗(yàn)室,湖北武漢430077;2.中國(guó)科學(xué)院研究生院,北京100049

      1 引 言

      近年來,高時(shí)空分辨率的GPS觀測(cè)數(shù)據(jù)為電離層研究提供了便利[1-10]:基于單臺(tái)GPS雙頻接收機(jī),可用于監(jiān)測(cè)電離層小范圍、短時(shí)間尺度的規(guī)則或異常變化,進(jìn)而反演局部空間大氣,為當(dāng)?shù)嘏c電離層有關(guān)的應(yīng)用如無線電通訊等提供參考[1-2];利用連續(xù)運(yùn)行的GPS參考站網(wǎng),可精密模型化局部區(qū)域的電離層延遲,以有效滿足當(dāng)?shù)夭糠謫晤l用戶的導(dǎo)航[3-4](如美國(guó) WASS系統(tǒng),歐洲EGNOS系統(tǒng)等)以及雙頻用戶的實(shí)時(shí)高精度定位需求[5](如網(wǎng)絡(luò)RTK,real-time kinematic技術(shù));此外,IGS聯(lián)合若干電離層工作組,采用全球范圍測(cè)站的雙頻GPS觀測(cè)數(shù)據(jù),計(jì)算并定期發(fā)布三維(時(shí)間、經(jīng)度、緯度)的全球電離層云圖產(chǎn)品[6](global ionosphere map,GIM),該產(chǎn)品可為全球范圍內(nèi)的電離層演化、建模和預(yù)報(bào)等研究提供重要參考。

      從GPS觀測(cè)數(shù)據(jù)中,獲取高精度的“電離層觀測(cè)值(ionospheric observables)”,是利用GPS研究電離層的先決條件[7-9]。目前,一般基于雙頻GPS觀測(cè)數(shù)據(jù),聯(lián)合無幾何影響組合的碼和相位觀測(cè)值,通過相位平滑偽距方法計(jì)算電離層觀測(cè)值(稱之為“平滑偽距電離層觀測(cè)值”),其中包含了測(cè)站和衛(wèi)星DCB、電離層延遲以及部分與測(cè)站有關(guān)的誤差,如觀測(cè)噪聲和多路徑效應(yīng)等[8-10]。

      最近有研究表明,上述平滑偽距電離層觀測(cè)值較易受平滑弧段長(zhǎng)度以及與測(cè)站有關(guān)的誤差影響:基于短基線試驗(yàn),通過考察各連續(xù)弧段間,平滑偽距電離層觀測(cè)值站間單差結(jié)果的離散程度,證實(shí)了該誤差影響最大可達(dá)±8.8TECu(電離層總電子含量單位),且主要來源于GPS碼觀測(cè)值的多路徑效應(yīng)[9-10]。對(duì)于高精度的電離層研究而言,上述誤差量級(jí)不可忽略:部分時(shí)刻,如夜間等電離層活動(dòng)平穩(wěn)時(shí)期,甚至超過了電離層延遲本身的大?。?],從而嚴(yán)重影響了該時(shí)期內(nèi)電離層研究結(jié)果的可靠性。

      針對(duì)現(xiàn)有方法的不足,本文提出利用非組合PPP算法計(jì)算電離層觀測(cè)值(稱之為“PPP電離層觀測(cè)值”),隨后采用電離層薄層模型以有效分離sTEC和站星DCB的思路?;诙袒€試驗(yàn)和全球分布的IGS參考站觀測(cè)數(shù)據(jù)進(jìn)行試驗(yàn),結(jié)果表明,PPP電離層觀測(cè)值更利于高精度電離層建模和站星DCB性質(zhì)的研究。

      2 電離層觀測(cè)值

      標(biāo)準(zhǔn)PPP算法一般采用消電離層組合觀測(cè)值作為基本觀測(cè)量[11-12],以在觀測(cè)域中事先消除電離層延遲對(duì)參數(shù)估值的影響;但該觀測(cè)值組合過程卻不便于進(jìn)行電離層的研究。本文對(duì)標(biāo)準(zhǔn)PPP算法作如下的改進(jìn):①采用GPS雙頻原始的碼和相位觀測(cè)值作為基本觀測(cè)量;② 將站星視線方向電離層延遲連同其余未知參數(shù)一起估計(jì)。由于該P(yáng)PP算法采用非組合GPS觀測(cè)值,故也稱之為“非組合PPP算法”。本節(jié)首先論述了PPP電離層觀測(cè)值的估計(jì)方法和具體形式,隨后簡(jiǎn)要介紹平滑偽距電離層觀測(cè)值的計(jì)算過程,并分別分析了兩類電離層觀測(cè)值的誤差影響因素。

      2.1 電離層觀測(cè)值與站星DCB

      IGS發(fā)布的精密衛(wèi)星鐘差可表達(dá)成

      式中,fi,i=1,2為GPS觀測(cè)值頻率;和分別表示衛(wèi)星鐘差的“真值”和IGS發(fā)布值,兩者之間存在系統(tǒng)偏差,原因在于IGS采用消電離層組合碼和相位觀測(cè)值計(jì)算衛(wèi)星鐘差,故產(chǎn)品中亦包含了相應(yīng)衛(wèi)星硬件延遲,j=1,2的影響。

      當(dāng)IGS鐘差產(chǎn)品用于改正觀測(cè)值時(shí),將不可避免地引入衛(wèi)星硬件延遲參數(shù)。在非組合PPP的參數(shù)估計(jì)過程中,接收機(jī)和衛(wèi)星的硬件延遲可被電離層延遲、接收機(jī)鐘差以及模糊度吸收??蓪㈦婋x層延遲和站星DCB組合成

      2.2 非組合PPP求解電離層觀測(cè)值

      非組合PPP算法中,待估參數(shù)包含式(2)中的電離層觀測(cè)值、測(cè)站坐標(biāo)、雙頻相位模糊度、接收機(jī)鐘差以及天頂對(duì)流層延遲等。本文采用正反卡爾曼濾波算法進(jìn)行參數(shù)估計(jì),以保證各類參數(shù)估值的全局最優(yōu)性。在接下來的論述中,以正向?yàn)V波算法為例,簡(jiǎn)要介紹了觀測(cè)方程和狀態(tài)方程的形式,以及所采用的質(zhì)量控制策略;重點(diǎn)推導(dǎo)分析了PPP電離層估值的形式及誤差影響因素。

      2.2.1 觀測(cè)方程

      假定在歷元i,測(cè)站r同時(shí)觀測(cè)到m顆衛(wèi)星,聯(lián)合所有衛(wèi)星觀測(cè)值,可以得到線性化觀測(cè)方程

      式中,

      對(duì)于雙頻觀測(cè)而言,y(i)中包含了4m個(gè)線性化的碼、相位觀測(cè)值;觀測(cè)值中的系統(tǒng)誤差如衛(wèi)星軌道和鐘差、相位纏繞、潮汐效應(yīng)等均已改正;觀測(cè)誤差εy服從正態(tài)分布,其均值和協(xié)方差矩陣分別為0和Qy,設(shè)計(jì)矩陣A(i)和待估參數(shù)X(i)的具體形式分別為

      式中,?、Im和em分別表示克羅內(nèi)克積、m維單位矩陣以及各元素均為1的列向量;μ為電離層延遲對(duì)不同頻率觀測(cè)值的影響因子,考慮到電離層的彌散效應(yīng),μ可表示為

      Γ為二維對(duì)角陣,其對(duì)角元為不同頻率GPS觀測(cè)值的波長(zhǎng)因子

      考察式(5)中對(duì)應(yīng)的設(shè)計(jì)矩陣可知,在參數(shù)化電離層觀測(cè)值的過程中,充分考慮了電離層對(duì)不同頻率GPS觀測(cè)值影響的彌散效應(yīng),以及群、相延遲效應(yīng)(碼和相位觀測(cè)值的電離層延遲大小相等,符號(hào)相反);此外,考慮到雙頻模糊度參數(shù)僅與相位觀測(cè)值有關(guān),故式(5)中的參數(shù)化形式可有效消除各類參數(shù)之間的列相關(guān)以及由此所引起的秩虧或病態(tài)問題,從而使得參數(shù)估值結(jié)果具有較強(qiáng)的穩(wěn)定性。

      若僅考慮觀測(cè)誤差的高度角相關(guān)性,Qy為一對(duì)角矩陣,對(duì)角元素可表示為

      2.2.2 狀態(tài)方程

      在本文采用的卡爾曼濾波模型中,狀態(tài)方程可簡(jiǎn)要表示為

      式中,X(i)和X(i-1)分別表示相鄰歷元的狀態(tài)向量;Φi,i-1為對(duì)應(yīng)的狀態(tài)轉(zhuǎn)移矩陣;ω為服從正態(tài)分布的過程噪聲,其均值和協(xié)方差矩陣分別為0和Qω;Δt為相鄰歷元的時(shí)間間隔。式(11)中的P矩陣表示位置參數(shù)的轉(zhuǎn)移矩陣,在靜態(tài)定位的條件下,其為單位陣;其余矩陣分別對(duì)應(yīng)于天頂對(duì)流層延遲、接收機(jī)鐘差、電離層觀測(cè)值以及模糊度參數(shù)的轉(zhuǎn)移矩陣,其中,兩類大氣延遲參數(shù)均被模型化為隨機(jī)游走過程,鐘差和模糊度參數(shù)模型化為時(shí)變和時(shí)不變參數(shù);各類狀態(tài)參數(shù)的譜密度(矩陣)如式(12)所示,其具體的取值依實(shí)際情況而定,例如對(duì)于動(dòng)態(tài)定位而言,位置參數(shù)譜密度的取值取決于載體運(yùn)動(dòng)狀態(tài);各類大氣延遲參數(shù)的譜密度(矩陣)則根據(jù)大氣條件的變化特性進(jìn)行確定[13]。

      在實(shí)施濾波的過程中,衛(wèi)星截止高度角選取為5°,以保證天頂對(duì)流層延遲與坐標(biāo)天頂分量的可分離性;在本文隨后的試驗(yàn)中,選取與觀測(cè)數(shù)據(jù)采樣間隔一致的IGS鐘差產(chǎn)品,以避免衛(wèi)星鐘差內(nèi)插所引起的誤差影響。對(duì)于可能出現(xiàn)的部分模型誤差,如碼觀測(cè)值粗差、相位觀測(cè)值周跳等,采用基于DIA(detection,identification,adaptation)的質(zhì)量控制策略以克服其不利影響[5]。

      2.3 平滑偽距電離層觀測(cè)值

      利用相位平滑偽距算法計(jì)算電離層觀測(cè)值的過程可簡(jiǎn)要概括為

      式中,PI和ΦI分別表示偽距和相位無幾何影響組合觀測(cè)值,下標(biāo)1和2表示對(duì)應(yīng)頻段;N為模糊度參數(shù);ε表示觀測(cè)噪聲和多路徑效應(yīng)。

      聯(lián)合式(13)和(14),可利用下式計(jì)算得到平滑偽距電離層觀測(cè)值

      式中,〈〉arc表示對(duì)某衛(wèi)星連續(xù)弧段內(nèi)觀測(cè)值取平均過程。顯見,式(2)和式(15)兩種電離層觀測(cè)值中所包含的電離層延遲和差分碼偏差形式相同,差別在于不同的誤差影響因素。

      與采用PPP技術(shù)估計(jì)ιsr過程中采用高度角加權(quán)和最優(yōu)濾波估計(jì)策略以充分消除觀測(cè)噪聲的影響不同,~LI,arc將不可避免地受到εP影響:式(15)中的取平均過程無法有效消除εP中非隨機(jī)誤差項(xiàng),如多路徑效應(yīng)等;此外,當(dāng)平滑弧段較短時(shí),部分觀測(cè)噪聲的影響同樣無法充分消除。在隨后的試驗(yàn)分析中,為避免低高度角觀測(cè)值中較強(qiáng)誤差的影響,計(jì)算平滑偽距電離層觀測(cè)值時(shí),截止高度角選取為15°。

      3 試驗(yàn)分析

      為對(duì)比分析測(cè)站有關(guān)誤差對(duì)兩類電離層觀測(cè)值的影響,采用相同的觀測(cè)數(shù)據(jù),分別設(shè)計(jì)如下兩類試驗(yàn):

      (1)sTEC分離試驗(yàn)??紤]到電離層延遲與衛(wèi)星高度角的相關(guān)性,通過模型化式(2)或(15)中的,可有效分離sTEC和站星DCB。基于某短基線試驗(yàn),考察了兩種電離層觀測(cè)值分離得到的sTEC對(duì)定位結(jié)果的影響。值得注意的是,試驗(yàn)中基于如下分步策略分離PPP電離層觀測(cè)值中的sTEC:首先采用非組合PPP技術(shù)估計(jì)得到形如式(2)的電離層觀測(cè)值,隨后將該類觀測(cè)值作為電離層建模的輸入量;

      (2)站星DCB估計(jì)試驗(yàn)。利用(1)中的電離層模型,基于全球均勻分布的若干IGS參考站觀測(cè)數(shù)據(jù),將估計(jì)得到的衛(wèi)星DCB與CODE公布的對(duì)應(yīng)月平均值進(jìn)行比較,進(jìn)一步對(duì)比驗(yàn)證兩類電離層觀測(cè)值的精度。

      3.1 sTEC分離試驗(yàn)

      式(2)和(15)中的Isr和DCB項(xiàng)Br+Bs可采用電離層薄層模型結(jié)合相應(yīng)的投影函數(shù)估計(jì)得到[4,8-9],該模型假定電離層為距離地球表面一定高度(如350km)的薄層,同時(shí)將sTEC投影至穿刺點(diǎn)(站星視線與薄層的交點(diǎn))處的垂直TEC(vertical TEC,vTEC),具體公式為[13]

      式中,R為地球半徑;H為薄層高度,本文選取為350km;z和z′分別是衛(wèi)星在接收機(jī)和穿刺點(diǎn)處的天頂距。

      隨后,利用某數(shù)學(xué)函數(shù)模型化vTEC的時(shí)空變化特性,對(duì)于本文的單站電離層建模而言,由于GPS信號(hào)覆蓋范圍有限,二次多項(xiàng)式函數(shù)即可有效描述單站電離層延遲在單天內(nèi)變化,具體公式為

      式中,t表示觀測(cè)時(shí)刻;x和y可分別表示為x=(λIPP-λR)cos(φ)和y=μIPP-μR,λ和φ表示地理經(jīng)緯度,μ表示地磁緯度,下標(biāo)IPP和R分別表示穿刺點(diǎn)和測(cè)站;本文假定未知參數(shù)a00、a10和 a01為與時(shí)間相關(guān)的分段函數(shù),即aij(t)=aij,k,aij,k在時(shí)間間隔[tk,tk+t]內(nèi)為常數(shù),其中t為間隔長(zhǎng)度,本文取為5min。

      聯(lián)合式(2)、(16)和(17)可得利用PPP電離層觀測(cè)值估計(jì)sTEC和站星DCB的方程

      式中,tk≤t≤tk+Δt表示某時(shí)間間隔,α=為乘常系數(shù),Bsr=Br+Bs為可估的站星DCB綜合影響。類似的,基于式(15)可得到平滑偽距電離層估計(jì)sTEC和站星DCB的觀測(cè)方程,其具體形式與式(18)相同,這里不再列出。

      試驗(yàn)包含2009年DOY(年積日)201日—204日共4天的短基線(長(zhǎng)1.7m)觀測(cè)數(shù)據(jù),采樣間隔為5s。以其中某測(cè)站的數(shù)據(jù)為例,基于兩種電離層觀測(cè)值,利用式(18)估計(jì)站星視線方向的sTEC,對(duì)應(yīng)結(jié)果如圖1所示。

      圖1 短基線試驗(yàn)中,某測(cè)站視線方向電離層總電子含量估值Fig.1 Calibrated slant Total Electron Content for one receiver from the short-baseline experiment

      圖1中顯見,利用平滑偽距電離層觀測(cè)值估計(jì)得到的sTEC存在較多負(fù)值和散點(diǎn),與實(shí)際不符,其原因在于較短的平滑弧段難以有效消除與測(cè)站有關(guān)的誤差影響;比較而言,利用PPP電離層觀測(cè)值估計(jì)sTEC的結(jié)果較為可靠,除極個(gè)別異常點(diǎn)外,sTEC估值的平滑性和變化規(guī)律均與已知的電離層特性吻合。

      為進(jìn)一步對(duì)比分析圖1中兩類sTEC的估計(jì)精度,以DOY 201/09的試驗(yàn)數(shù)據(jù)為例,利用其中一臺(tái)接收機(jī)的觀測(cè)值實(shí)施單頻PPP仿動(dòng)態(tài)定位試驗(yàn),對(duì)應(yīng)的電離層延遲采用另一接收機(jī)分離得到的sTEC加以改正,北東天定位誤差結(jié)果如圖2所示(縱軸單位為m),其中測(cè)站坐標(biāo)參考值為單天雙頻PPP靜態(tài)解。

      從圖2中的結(jié)果可知,采用PPP電離層改正得到的定位結(jié)果具有較快的濾波收斂時(shí)間和較強(qiáng)的收斂穩(wěn)定性,三坐標(biāo)分量的收斂時(shí)間分別約為10min、30min和25min,濾波收斂后的位置誤差RMS分別為3cm、4cm和7cm(表1所示);而對(duì)于采用平滑偽距電離層改正的定位結(jié)果而言,定位結(jié)果存在較大的偏差,部分時(shí)刻(如17:00附近)甚至出現(xiàn)跳躍,原因可能在于部分衛(wèi)星的sTEC估值存在較大誤差;此時(shí),濾波收斂特性不明確,定位結(jié)果可靠性明顯不如前者。

      圖2 單頻PPP仿動(dòng)態(tài)定位試驗(yàn)位置誤差結(jié)果Fig.2 Accuracy of positioning with simulated kinematic single-frequency PPP implementation

      3.2 站星DCB估計(jì)試驗(yàn)

      選取全球范圍分布的8個(gè)IGS站2009年DOY 1、3、19和26共四天的觀測(cè)數(shù)據(jù),基于式(18)中的電離層模型,分別利用式(2)和式(15)兩類電離層觀測(cè)值求取站星DCB。圖3中列出了2009年1月各天的地磁Kp指數(shù)(http:∥ftp.gwdg.de/pub/geophys/kp-ap/tab/kp0901.tab),上述4天對(duì)應(yīng)于1月內(nèi)地磁活動(dòng)最強(qiáng)的時(shí)期,此時(shí)電離層受地磁影響較大,式(18)將不能充分描述vTEC的時(shí)空變化特性[8],DCB估值精度可被認(rèn)為是利用GPS研究電離層所能達(dá)到的精度“下限”,在電離層活動(dòng)較為平靜的條件下,DCB估值的精度可望進(jìn)一步提高,試驗(yàn)選取的各IGS站所處位置及采樣間隔等信息如表2所示。

      圖3 2009年1月各日地磁活動(dòng)Kp指數(shù)Fig.3 Kp index of geomagnetic activity for January,2009

      表1 單頻PPP試驗(yàn)各坐標(biāo)分量定位誤差的統(tǒng)計(jì)性質(zhì)Tab.1 Summary statistics of component errors for both single frequency PPP implementations cm

      表2 試驗(yàn)選取的各IGS站信息描述Tab.2 Description of IGS sites chosen for experiment

      基于全球分布的100多個(gè)IGS站的雙頻GPS觀測(cè)數(shù)據(jù),CODE利用球諧函數(shù)擬合全球范圍內(nèi)的電離層,同時(shí)估計(jì)各測(cè)站和衛(wèi)星DCB。該參數(shù)估計(jì)過程中所采用的觀測(cè)數(shù)據(jù)較多,空間結(jié)構(gòu)較強(qiáng)[14],相對(duì)于本文中提出的基于8測(cè)站觀測(cè)值估計(jì)站星DCB而言,CODE發(fā)布的DCB結(jié)果將具有更高的可靠性,考慮到衛(wèi)星DCB多天內(nèi)的穩(wěn)定性,以CODE發(fā)布的月平均值作為參考,將本文計(jì)算的衛(wèi)星4天內(nèi)的DCB均值與之進(jìn)行對(duì)齊(引入衛(wèi)星DCB均值為零的基準(zhǔn))和比較,具體結(jié)果如圖4所示。

      圖4 基于兩類電離層觀測(cè)值的衛(wèi)星DCB估值與CODE參考值之差Fig.4 The discrepancy between satellites’DCBs estimated with two kinds of ionospheric observables and their reference values published by CODE

      圖4中顯見,除個(gè)別衛(wèi)星(PRN 3和14),利用PPP電離層觀測(cè)值估計(jì)得到的衛(wèi)星DCB與CODE參考值之間的差異均不超過0.1ns;相比較而言,平滑偽距電離層觀測(cè)值估計(jì)得到的衛(wèi)星DCB與參考值之間偏差較大,部分衛(wèi)星,如PRN 3、6和23等均在0.2~0.3ns之間,上述試驗(yàn)結(jié)果表明PPP電離層觀測(cè)值更有利于高精度的電離層延遲提取、建模和預(yù)報(bào)等研究。

      4 結(jié)論與展望

      提出一種利用非組合PPP估計(jì)電離層觀測(cè)值,進(jìn)而分離得到sTEC和站星DCB的算法,并分別采用短基線和全球部分IGS站實(shí)測(cè)數(shù)據(jù)進(jìn)行了驗(yàn)證。研究結(jié)果表明,PPP電離層觀測(cè)值雖然與常用的平滑偽距電離層觀測(cè)值具有相同的形式,但它受與測(cè)站有關(guān)的誤差影響較小,因此更適合于高精度的電離層建模,推薦采用這種電離層觀測(cè)值作為研究電離層的基本觀測(cè)量。

      研究將PPP應(yīng)用范圍擴(kuò)展至電離層延遲提取和建模應(yīng)用,同時(shí)對(duì)于站星DCB變化性質(zhì)的研究亦具有一定的借鑒意義。

      隨著GPS、GLONASS的日益現(xiàn)代化以及GALILEO和COMPASS等導(dǎo)航系統(tǒng)逐漸投入運(yùn)營(yíng),考慮到各系統(tǒng)播發(fā)的測(cè)距信號(hào)結(jié)構(gòu)類似,本文提出的算法對(duì)于聯(lián)合多系統(tǒng)、多頻率的觀測(cè)數(shù)據(jù)研究電離層而言,具有普適性。

      在下一步的工作中,基于現(xiàn)有的CORS系統(tǒng),考慮將PPP電離層觀測(cè)值應(yīng)用于區(qū)域電離層延遲建模,屆時(shí),測(cè)站坐標(biāo)已知、雙差整周模糊度可被準(zhǔn)確固定等約束信息可使得PPP電離層觀測(cè)值估值具有更高的可靠性,進(jìn)而可望顯著提高區(qū)域電離層模型化的精度和有效性。

      致謝:本文曾受中國(guó)科學(xué)院研究生科技創(chuàng)新與社會(huì)實(shí)踐資金專項(xiàng)資助。

      [1] ZHANG Donghe,XIAO Zuo.A Method of Calculating TEC with GPS Data and Its Application to the Ionospheric Disturbance[J].Chinese Journal of Geophysics,2000,43(4):451-458.(張東和,蕭佐.利用GPS計(jì)算TEC的方法及其對(duì)電離層擾動(dòng)的觀測(cè)[J].地球物理學(xué)報(bào),2000,43(4):451-458.)

      [2] XIAO Zuo,ZHANG Donghe.An Approach to Study the Day-to-day Variations of Ionospheric TEC Directly by GPS Time-delay Signal[J].Chinese Journal of Geophysics Space Science,2000,20(2):97-102.(蕭佐,張東和.通過GPS觀測(cè)數(shù)據(jù)研究電離層總電子含量的逐日變化[J].空間科學(xué)學(xué)報(bào),2000,20(2):97-102.)

      [3] SARDON E,RIUS A,ZARRAOA N.Estimation of the Transmitter and Receiver Differential Biases and the Ionospheric Total Electron Content from Global Positioning System Observations[J].Radio Science,1994,29(3):577-586.

      [4] YUAN Y B,HUO X L,OU J K.Models and Methods for Precise Determination of Ionospheric Delay Using GPS[J].Progress in Natural Science,2007,17(2):187-196.

      [5] ZHANG B C.Determination of Un-differenced Atmospheric Delays for Network-based RTK[C]∥Proceedings of Institute of Navigation GNSS 2009.Savannah:[s.n.],2009:2727-2738.

      [6] DOW J M,NEILAN R E,GENDT G.The International GPS Service(IGS):Celebrating the 10th Anniversary and Looking to the Next Decade[J].Advances in Space Research,2005,36(3):320-326.

      [7] BRUNNER F K,GU M.An Improved Model for Dual Frequency Ionospheric Correction of GPS Observations[J].Manuscripta Geodaetica,1991,16(3):205-214.

      [8] CHANG Qing,ZHANG Donghe,XIAO Zuo,et al.A Method for Estimating GPS Instrumental Biases and Its Application in TEC Calculation[J].Chinese Journal of Geophysics,2001,44(5):596-601.(常青,張東和,蕭佐,等.GPS系統(tǒng)硬件延遲估計(jì)方法及其在TEC計(jì)算中的應(yīng)用[J].地球物理學(xué)報(bào),2001,44(5):596-601.)

      [9] BRUNNINI C,AZPILICUETA F J.Accuracy Assessment of the GPS-based Slant Total Electron Content[J].Journal of Geodesy,2009,83(8):773-785.

      [10] CIRAOLO L,AZPILICUETA F J,BRUNNINI C,et al.Calibration Errors on Experimental Slant Total Electron Content(TEC)Determined with GPS[J].Journal of Geodesy,2007,81(2):111-120.

      [11] KOUBA J,HéROUX H.Precise Point Positioning Using IGS Orbit and Clock Products[J].GPS Solutions,2001,5(2):12-28.

      [12] ZHANG X H,F(xiàn)ORSBERG R.Assessment of Long-range Kinematic GPS Positioning Errors by Comparison with Airborne Laser Altimetry and Satellite Altimetry[J].Journal of Geodesy,2007,81(3):201-211.

      [13] OU J K.Atmosphere and Its Effects on GPS Surveying[M]∥LGR-Series Publication of the Delft Geodetic Computing Centre:No.14.Delft:Delft Geodetic Computing Centre,1996:138.

      [14] OU Jikun.Uniform Expression of Solutions of Ill-posed Problems in Surveying Adjustment and the Fitting Method by Selection of the Parameter Weights[J].Acta Geodaetica et Cartographica Sinica,2004,33(4):283-288.(歐吉坤.測(cè)量平差中不適定問題解的統(tǒng)一表達(dá)與選權(quán)擬合法[J].測(cè)繪學(xué)報(bào),2004,33(4):283-288.)

      猜你喜歡
      鐘差偽距電離層
      一種電離層TEC格點(diǎn)預(yù)測(cè)模型
      Kalman濾波估算電離層延遲的一種優(yōu)化方法
      IGS快速/超快速衛(wèi)星鐘差精度評(píng)定與分析
      北斗偽距觀測(cè)值精度分析
      電離層對(duì)中高軌SAR影響機(jī)理研究
      GNSS偽距粗差的開窗探測(cè)及修復(fù)
      實(shí)時(shí)干涉測(cè)量中對(duì)流層延遲與鐘差精修正建模
      載人航天(2016年4期)2016-12-01 06:56:24
      基于拉格朗日的IGS精密星歷和鐘差插值分析
      聯(lián)合碼偽距和載波寬巷組合的相對(duì)定位技術(shù)研究
      Linux Shell語言在電離層解算中的應(yīng)用
      上杭县| 弋阳县| 高平市| 灌云县| 双峰县| 长治县| 曲阜市| 平利县| 水富县| 大姚县| 齐河县| 寿光市| 铅山县| 阿拉善右旗| 大理市| 巧家县| 响水县| 绥滨县| 孙吴县| 广灵县| 漾濞| 贺州市| 招远市| 公主岭市| 泽州县| 贵州省| 上犹县| 沙河市| 武功县| 广昌县| 二连浩特市| 广平县| 方城县| 望奎县| 长武县| 河曲县| 江达县| 镇江市| 新郑市| 中西区| 鄂伦春自治旗|