• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of sodium salicylate on oxidative stress and insulin resistance induced by free fatty acids

    2010-12-14 01:44:16BingHeShengZhaoWeiZhangYanLiandPingHan

    Bing He, Sheng Zhao, Wei Zhang, Yan Li and Ping Han

    Shenyang, China

    Effect of sodium salicylate on oxidative stress and insulin resistance induced by free fatty acids

    Bing He, Sheng Zhao, Wei Zhang, Yan Li and Ping Han

    Shenyang, China

    (Hepatobiliary Pancreat Dis Int 2010; 9: 49-53)

    free fatty acids;sodium salicylate;oxidative stress;insulin resistance;hepatic glucose production

    Introduction

    The association among obesity, insulin resistance,and type 2 diabetes mellitus is well documented,[1]and free fatty acids (FFAs) have been implicated as an important causative link among them.[2]An elevation of plasma FFAs has been reported to impair insulin action, to accelerate β-cell apoptosis, and might be a major risk factor for type 2 diabetes.[2,3]

    Almost 100 years ago, Williamson[4]showed that high-dose salicylate treatment reduces the severity of glycosuria in diabetic patients, and in 1957, Reid et al[5]further demonstrated that 10-14 days of aspirin treatment improves the results of oral glucose tolerance tests in diabetic patients. It has been reported recently that high-dose salicylate improves FFA-induced insulin resistance and β-cell dysfunction,[6,7]but the mechanism remains uncertain. Previously we found that in insulinresistant rats, the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde(MDA), a marker of oxidative stress. To date, few studies have investigated the impact of salicylates on oxidative stress levels in animal models. While oxidative stress is associated with a wide variety of pathologies, including diabetes, cardiovascular disease, and cancer, diabetes mellitus is particularly strongly associated.[8]Thus, the objective of this study was to assess the impact of theanti-in fl ammatory drug sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance.

    MethodsAnimal models

    Forty-eight normal male Wistar rats, weighing 230-260 g,were housed in the Department of Laboratory Animals,China Medical University (Shenyang, China). The rats were housed under controlled temperature (23 ℃) and were exposed to a 12∶12-hour light-dark cycle with ad libitum access to water and standard rat chow. After 3-5 days of adaptation to the facility, the rats were anesthetized, and indwelling catheters were inserted as described previously.[9]The rats were allowed 3-4 days of postsurgical recovery before experiments.

    Experimental design

    The rats were fasted overnight for 14 hours and randomized to three groups, one of which received intralipid (20% intralipid+20 U/ml heparin, 5.5 μl/min;IH group, n=16), one was a saline-treated control (equal volume; SAL group, n=16), while another group received sodium salicylate (20% intralipid+20 U/ml heparin, 5.5 μl/min+sodium salicylate, 0.117 mg/kg per minute; IHS group, n=16). The duration of infusion in each group was 7 hours, and [6-3H] glucose (20 μCi, bolus+0.4 μCi/min infusion) was given during the last 2 hours of the experiment to assess endogenous glucose production(EGP) and glucose utilization (GU). Further, the rats were divided into 2 groups of 8 each: a basal infusion group and a hyperinsulinemic-euglycemic clamping group. Clamping was made to maintain blood glucose concentrations at 5.0 mmol/L during the last 2 hours, while steady-state human insulin infusion (5 mU/kg per minute) was given by infusing 20% glucose at a variable rate. Blood samples for testing glucose, insulin, FFAs, C-peptide, and [6-3H]glucose-speci fi c activity were taken during the last 30 minutes. The total blood volume withdrawn was 3.0-3.3 ml during the basal experiment and 3.5-3.8 ml during the clamping experiment. After plasma separation, red blood cells diluted 1∶1 in heparinized saline (4 U/ml)were reinfused into the rats. At the end of the experiment,liver and gastrocnemius samples were removed within 45 seconds of anesthetic injection while infusion was maintained through the jugular vein.

    Laboratory methods

    Plasma glucose was measured with the glucose oxygenase method (BIOSEN5030, Germany). Plasma radioactivity from [6-3H] glucose was determined after deproteinization with Ba(OH)2and ZnSO4. The intraassay coef fi cient of variation was 6.5%. Insulin and C-peptide levels were determined by radioimmunoassay(Beijing Furui Biological Engineering Co., China).The coef fi cients of variation were <8% and 10.5%respectively. Plasma FFA levels were measured using a colorimetric kit, MDA levels and glutathione peroxidase(GSH-PX) activity in the liver and muscle were also measured using colorimetric kits (Nanjing Jiancheng Institute of Bio-engineering, China).

    Calculations

    Glucose turnover (rate of appearance of glucose determined with [6-3H] glucose) was calculated using the steady-state formula.[10]Data were presented as average values in samples taken in the last 30 minutes of the experiment.

    Statistical analysis

    The data were expressed as mean±SD. All calculations were performed using the SPSS12.0 software package.Experimental results were analyzed using one-way ANOVA with a probability for type 1 error set at P<0.05.

    ResultsPlasma levels of FFAs, glucose, insulin, and C-peptide

    IH elevated plasma FFA levels by 2-fold, and increased basal plasma insulin and C-peptide levels by 0.6 and 0.7-fold respectively. Plasma glucose levels were higher with IH vs. SAL infusion in the basal experiments but were maintained at 5.0 mmol/L during the clamping(Table). Sodium salicylate decreased FFAs slightly,signi fi cantly decreased basal plasma glucose level by 70%, and reduced basal plasma insulin and C-peptide levels by 39% and 32%, respectively (Table).

    Hepatic glucose production (HGP)

    In the basal state, IH increased HGP by 1.5-fold,while sodium salicylate decreased HGP by 16%. During the hyperinsulinemic-euglycemic clamping, HGP in the IH group was 2-fold that in the SAL group and the infusion of sodium salicylate resulted in a decrease of 20% in HGP.

    Glucose utilization (GU)

    Under basal state conditions, IH increased GU by 1.6-fold. GU was reduced by 20% with intralipidinfusion during the clamping, as compared with that with SAL infusion. Sodium salicylate decreased GU by 18% in the basal state, and increased GU by 14% in clamping conditions, compared with the IH group.

    Table. Plasma levels of FFAs, glucose, insulin, and C-peptide in basal fasting state and in the clamped state (insulin infusion rate: 5 mU/kg per minute)

    Fig. 1. Liver and muscle MDA levels. Data were expressed as mean±SD; SAL: saline; IH: intralipid + heparin; IHS: intralipid+heparin+sodium salicylate; *: P<0.05, vs. SAL; **: P<0.01, vs.SAL; #: P<0.01, vs. IH.

    Fig. 2. Liver and muscle GSH-PX activity. Data were expressed as mean±SD; SAL: saline; IH: intralipid+heparin; IHS: intralipid+heparin+sodium salicylate; *: P<0.01, vs. SAL; #: P<0.05, vs. IH;##: P<0.01, vs. IH.

    MDA levels and GSH-PX activity in the liver and muscle

    After intralipid infusion, MDA levels in the liver and muscle were increased by 2- and 4-fold, while GSHPX activity decreased by 45% and 46%, respectively.Compared to the IH group, sodium salicylate treatment reduced MDA content in the liver and muscle by 63%and 66%, and elevated the GSH-PX activity by 35% and 37%, respectively (Figs. 1, 2).

    Discussion

    The elevation of plasma FFAs has been shown to impair insulin action and cause insulin resistance. Insulin resistance is a key etiological factor for type 2 diabetes mellitus. Additional 41 million people are prediabetic with a constellation of insulin resistance, hypertension,and dyslipidemia, which puts them at increased risk for cardiovascular morbidity and mortality.[11]Thus,there is an urgent need for effective interventions to prevent diabetes in insulin-resistant populations. In recent studies, the improvement of insulin resistance by anti-in fl ammatory salicylates has been investigated,but the molecular target remains uncertain. A better understanding of the mechanisms will be required to combat the epidemics of type 2 diabetes and cardiovascular diseases that are fueled by obesityassociated insulin resistance. In this study, the effects of FFAs on hepatic and skeletal muscle glucose metabolism were tested. In addition, we determined whether highdose anti-in fl ammatory salicylates prevent FFA-induced alterations of insulin action and the biochemical mechanisms that underlie these effects.

    In our animal model, IH elevated basal plasma FFAs to above the physiological range but within the FFA elevation seen in uncontrolled diabetes. The FFA levels in the clamping were lower than the basal FFA levels,which are consistent with the antilipolytic and FFA reesteri fi cation effects of insulin.[12]IH increased insulin and C-peptide levels in all groups, because of increased insulin secretion in the basal state and a decreased insulin clearance during the clamping.[13]Sodium salicylate down-regulated high FFA-induced endogenous insulin secretion, and decreased plasma glucose levels accordingly. Acetylsalicylic acid was reported to promote fatty acid oxidation and reduce the plasma FFA level.[14]However, we did not fi nd a signi fi cant decrease of FFAs after sodium salicylate infusion, which may be due to the short infusion time.

    Previous studies have reported that FFAs cause insulin resistance by increasing gluconeogenesis in the liver,[15]impairing the insulin-mediated suppression of HGP, and inhibiting insulin-stimulated glucose uptake in skeletal muscle.[16]The skeletal muscle is the major site for insulin-stimulated glucose disposal, and is the major target for peripheral insulin resistance.[17]Our study showed that FFAs induced hepatic insulin resistance by elevating HGP levels and induced peripheral insulin resistance by decreasing GU and metabolism. A 7-hour infusion of sodium salicylate resulted in signi fi cant improvements in insulin sensitivity, including a 20%decrease in HGP and a 15% increase in GU.

    We found that IH increased MDA levels in the liver and skeletal muscle by 2- and 4-fold, and reduced the GSH-PX activity by 45% and 46%, respectively. MDA is a marker of oxidative stress, while GSH-PX re fl ects the capacity for elimination of free radicals. These results showed that FFAs are strongly associated with a persistent imbalance between the production of highly reactive molecular species and antioxidant defense.[18]It has been reported that the increased production of these active molecules or a reduced capacity for elimination causes abnormal changes in intracellular signaling and gene expression, ultimately resulting in a pathological situation that includes insulin resistance.[19]After administration of sodium salicylate, MDA levels in the liver and muscle decreased by 63% and 64%,and the GSH-PX activity increased by 35% and 37%,respectively. These results indicated that sodium salicylate signi fi cantly relieves the degree of oxidative stress in the liver and skeletal muscle. At the same time,it improved hepatic and peripheral insulin resistance by decreasing HGP and increasing GU. High doses of salicylate (4-10 g/d), including sodium salicylate and aspirin, have been used to treat in fl ammatory conditions such as rheumatic fever and rheumatoid arthritis. These high doses are thought to inhibit nuclear factor kappa B (NF-κB) and its upstream activator IκB kinase β (IKK-β), as opposed to working through cyclooxygenases, the classical targets of non-steroidal anti-in fl ammatory drugs.[20,21]High doses of salicylates also lower blood glucose concentrations although their potential for treating diabetes has been all but forgotten by modern biomedical science. In this study, we found that the anti-in fl ammatory drug, sodium salicylate,relieved oxidative damage in the liver and skeletal muscle, and improved FFA-induced insulin resistance.Thus we presumed that sodium salicylate might inhibit IKK-β- and NF-κB-mediated transcription, which in certain cells would enhance the production of low-level in fl ammatory cytokines, such as TNF-α and IL-6. It has been demonstrated that in fl ammatory cytokines increase the transcription and translation of reactive molecular species and activate some reactive molecular species.[22,23]Ultimately, the anti-in fl ammatory drug sodium salicylate may improve insulin resistance through abating the degree of oxidative stress in the liver and skeletal muscle.

    In summary, our data demonstrate that the shortterm elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and skeletal muscle. Also, in this study we preliminarily assessed the ef fi cacy of the anti-in fl ammatory drug sodium salicylate as a new treatment for insulin resistance.This effect was associated with at least one mechanism:Sodium salicylate reduced the degree of oxidative stress in the liver and skeletal muscle, and therefore improved hepatic and peripheral insulin resistance. IKK-β and NF-κB might provide a potential pathogenic link to oxidative stress.

    Funding: This study was supported by a grant from the Bureau of Education of Liaoning Province, China (No. 20060999).

    Ethical approval: Not needed.

    Contributors: HB proposed the study and wrote the fi rst draft.ZS analyzed the data. HP carried out the experiments. All authors contributed to the design and interpretation of the study and to further drafts. HP is the guarantor.

    Competing interest: No bene fi ts in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Westphal SA. Obesity, abdominal obesity, and insulin resistance.Clin Cornerstone 2008;9:23-31.

    2 Wilding JP. The importance of free fatty acids in the development of Type 2 diabetes. Diabet Med 2007;24:934-945.

    3 Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C,Park E, et al. Free fatty acid-induced reduction in glucosestimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 2007;56:2927-2937.

    4 Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br Med J 1901;1:760-762.

    5 Reid J, MacDougall AI, Andrews MM. Aspirin and diabetes mellitus. Br Med J 1957;2:1071-1074.

    6 Manrique C, Lastra G, Palmer J, Gardner M, Sowers JR.Aspirin and Diabetes Mellitus: revisiting an old player. Ther Adv Cardiovasc Dis 2008;2:37-42.

    7 Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA. Pioglitazone and sodium salicylate protect human betacells against apoptosis and impaired function induced by glucose and interleukin-1beta. J Clin Endocrinol Metab 2004;89:5059-5066.

    8 Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973-2001.

    9 Han P, Zhang YY, Lu Y, He B, Zhang W, Xia F. Effects of different free fatty acids on insulin resistance in rats.Hepatobiliary Pancreat Dis Int 2008;7:91-96.

    10 Lam TK, van de Werve G, Giacca A. Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am J Physiol Endocrinol Metab 2003;284:E281-290.

    11 Misra A, Khurana L. Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 2008;93:S9-30.

    12 Wiesenthal SR, Sandhu H, McCall RH, Tchipashvili V, Yoshii H, Polonsky K, et al. Free fatty acids impair hepatic insulin extraction in vivo. Diabetes 1999;48:766-774.

    13 Lam TK, Yoshii H, Haber CA, Bogdanovic E, Lam L, Fantus IG, et al. Free fatty acid-induced hepatic insulin resistance:a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab 2002;283:E682-691.

    14 van der Crabben SN, Allick G, Ackermans MT, Endert E, Romijn JA, Sauerwein HP. Prolonged fasting induces peripheral insulin resistance, which is not ameliorated by highdose salicylate. J Clin Endocrinol Metab 2008;93:638-641.

    15 Li L, Yang GY. Effect of hepatic glucose production on acute insulin resistance induced by lipid-infusion in awake rats.World J Gastroenterol 2004;10:3208-3211.

    16 Lam TK, Carpentier A, Lewis GF, van de Werve G, Fantus IG,Giacca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003;284:E863-873.

    17 Abdul-Ghani MA, Matsuda M, DeFronzo RA. Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects. Diabet Med 2008;25:1289-1294.

    18 Yang R, Shi Y, Li W, Yue P. Effect of lipoic acid on gene expression related to oxidative stress, lipid and glucose metabolism of mice fed with high fat diet. Wei Sheng Yan Jiu 2008;37:560-562, 565.

    19 Evans JL, Maddux BA, Gold fi ne ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005;7:1040-1052.

    20 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al.Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183-190.

    21 Hundal RS, Petersen KF, Mayerson AB, Randhawa PS,Inzucchi S, Shoelson SE, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002;109:1321-1326.

    22 Martínez JA. Mitochondrial oxidative stress and in fl ammation:an slalom to obesity and insulin resistance. J Physiol Biochem 2006;62:303-306.

    23 Tilg H, Moschen AR. In fl ammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;14:222-231.

    BACKGROUND: It has been reported that high-dose salicylates improve free fatty acids (FFAs)-induced insulin resistance and β-cell dysfunction in vitro, but the mechanism remains uncertain. In insulin-resistant rats, we found that the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde (MDA), a marker of oxidative stress. Few studies have investigated the effects of salicylates on oxidative stress levels in insulin-resistant animal models. This study aimed to assess the effect of sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance.

    METHODS: Intralipid+heparin (IH), saline (SAL), or intralipid+heparin+sodium salicylate (IHS) were separately infused for 7 hours in normal Wistar rats. During the last 2 hours of the infusion, hyperinsulinemic-euglycemic clamping was performed with [6-3H] glucose tracer. Plasma glucose was measured using the glucose oxygenase method. Plasma insulin and C-peptide were determined by radioimmunoassay. MDA levels and glutathione peroxidase (GSH-PX) activity in the liver and skeletal muscle were measured with colorimetric kits.RESULTS: Compared with infusion of SAL, IH infusion increased hepatic glucose production (HGP), and decreased glucose utilization (GU) (P<0.05). The elevation of plasma free fatty acids increased the MDA levels and decreased the GSH-PX activity in the liver and muscle (P<0.01). Sodium salicylate treatment decreased HGP, elevated GU (P<0.05),reduced MDA content by 60% (P<0.01), and increased the GSH-PX activity by 35% (P<0.05).CONCLUSIONS: Short-term elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and muscle. The administration of the anti-in fl ammatory drug sodium salicylate reduces the degree of oxidative stress,therefore improving hepatic and peripheral insulin resistance.IKK-β and NF-κB provide potential pathogenic links to oxidative stress.

    Author Af fi liations: Department of Endocrinology, Shengjing Af fi liated Hospital, China Medical University, Shenyang 110004, China (He B,Zhao S, Li Y and Han P); and Department of Internal Medicine, Fourth Af fi liated Hospital, China Medical University, Shenyang 110032, China(Zhang W)

    Ping Han, MD, Department of Endocrinology,Shengjing Af fi liated Hospital, China Medical University, Shenyang 110004,China (Tel: 86-24-83955273; Fax: 86-24-83955273; Email: hanping85@hotmail.com)

    ? 2010, Hepatobiliary Pancreat Dis Int. All rights reserved.

    February 2, 2009

    Accepted after revision November 7, 2009

    亚洲精品乱久久久久久| 人人澡人人妻人| 一区二区三区乱码不卡18| 蜜桃国产av成人99| 免费在线观看完整版高清| 母亲3免费完整高清在线观看| 精品国产一区二区久久| 男女边吃奶边做爰视频| 波野结衣二区三区在线| av在线观看视频网站免费| 欧美中文综合在线视频| 精品久久久精品久久久| 一级爰片在线观看| 伊人亚洲综合成人网| 国产成人免费观看mmmm| 日本欧美国产在线视频| 美女午夜性视频免费| 亚洲成色77777| 精品国产乱码久久久久久小说| 欧美久久黑人一区二区| 黄色 视频免费看| 尾随美女入室| 欧美日韩一级在线毛片| 中文字幕高清在线视频| 伊人久久国产一区二区| 黄频高清免费视频| 国产精品人妻久久久影院| 咕卡用的链子| 精品人妻一区二区三区麻豆| 天堂中文最新版在线下载| 99热网站在线观看| 在现免费观看毛片| 久久婷婷青草| 日韩av在线免费看完整版不卡| av网站在线播放免费| 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 久久鲁丝午夜福利片| 91aial.com中文字幕在线观看| 国产日韩一区二区三区精品不卡| 飞空精品影院首页| 90打野战视频偷拍视频| 精品一区二区三区四区五区乱码 | 亚洲av福利一区| 人妻人人澡人人爽人人| 美女中出高潮动态图| 成人毛片60女人毛片免费| 日韩中文字幕视频在线看片| 日韩 亚洲 欧美在线| 日韩精品免费视频一区二区三区| 婷婷色麻豆天堂久久| 久久久精品94久久精品| 热re99久久精品国产66热6| 深夜精品福利| 人人妻人人澡人人看| 看免费av毛片| 亚洲精品在线美女| 十八禁网站网址无遮挡| 日韩av在线免费看完整版不卡| 啦啦啦在线观看免费高清www| 99久久99久久久精品蜜桃| 女人被躁到高潮嗷嗷叫费观| 亚洲国产日韩一区二区| 在线观看免费午夜福利视频| 啦啦啦在线免费观看视频4| 秋霞在线观看毛片| 久久av网站| 在线观看免费日韩欧美大片| 亚洲av电影在线观看一区二区三区| 亚洲国产精品成人久久小说| 精品酒店卫生间| 妹子高潮喷水视频| av电影中文网址| 男女无遮挡免费网站观看| 久久精品亚洲熟妇少妇任你| 精品久久蜜臀av无| 欧美精品人与动牲交sv欧美| 欧美黄色片欧美黄色片| 午夜精品国产一区二区电影| 热99国产精品久久久久久7| 男女国产视频网站| 在线观看免费日韩欧美大片| 99精国产麻豆久久婷婷| h视频一区二区三区| 搡老岳熟女国产| 国产亚洲av高清不卡| 国产av国产精品国产| 多毛熟女@视频| 在线天堂最新版资源| 日韩免费高清中文字幕av| 麻豆av在线久日| 免费观看av网站的网址| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播 | 亚洲欧洲精品一区二区精品久久久 | 无限看片的www在线观看| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 成人国产麻豆网| 丝袜美足系列| 亚洲精品久久久久久婷婷小说| 亚洲成人免费av在线播放| 高清欧美精品videossex| 色播在线永久视频| 亚洲,一卡二卡三卡| 国产成人免费无遮挡视频| 999久久久国产精品视频| www.av在线官网国产| 最黄视频免费看| 一二三四中文在线观看免费高清| 波多野结衣av一区二区av| 狠狠婷婷综合久久久久久88av| 最新在线观看一区二区三区 | 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 人妻一区二区av| 中文欧美无线码| 日韩成人av中文字幕在线观看| 老司机靠b影院| 在线天堂中文资源库| 少妇被粗大猛烈的视频| 一区二区三区乱码不卡18| 日本欧美视频一区| 欧美日韩成人在线一区二区| 丝袜美足系列| 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 国产成人av激情在线播放| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 中国三级夫妇交换| 亚洲精品第二区| 国产成人一区二区在线| 亚洲av日韩精品久久久久久密 | 国产精品秋霞免费鲁丝片| 国产在视频线精品| 日韩欧美一区视频在线观看| 日本午夜av视频| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 亚洲国产欧美日韩在线播放| 精品国产国语对白av| 久久婷婷青草| 日韩免费高清中文字幕av| 国产一区二区在线观看av| 男人操女人黄网站| 日韩伦理黄色片| 精品久久久久久电影网| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 狂野欧美激情性xxxx| 男女高潮啪啪啪动态图| 国产欧美日韩一区二区三区在线| 制服丝袜香蕉在线| 国产一区二区 视频在线| 如何舔出高潮| 大香蕉久久网| 黄片无遮挡物在线观看| 人妻人人澡人人爽人人| 十八禁高潮呻吟视频| www.av在线官网国产| 亚洲一级一片aⅴ在线观看| 成年人午夜在线观看视频| 黄片小视频在线播放| 久久久精品国产亚洲av高清涩受| 久久久久精品性色| av有码第一页| 亚洲精品国产一区二区精华液| 久久久精品区二区三区| 国产伦人伦偷精品视频| 久久久久久久久免费视频了| 国产野战对白在线观看| 亚洲av国产av综合av卡| 美国免费a级毛片| 考比视频在线观看| 性少妇av在线| 亚洲精品在线美女| 男女免费视频国产| 黄色怎么调成土黄色| 国产在线一区二区三区精| 国产福利在线免费观看视频| 亚洲,一卡二卡三卡| 欧美在线黄色| 日韩伦理黄色片| 五月天丁香电影| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 老司机在亚洲福利影院| 亚洲av日韩精品久久久久久密 | 久久久久国产一级毛片高清牌| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看 | 午夜91福利影院| 久久国产精品男人的天堂亚洲| av在线观看视频网站免费| av国产久精品久网站免费入址| 午夜福利乱码中文字幕| 亚洲国产av新网站| 麻豆精品久久久久久蜜桃| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图| 日韩制服丝袜自拍偷拍| 只有这里有精品99| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 丰满乱子伦码专区| 91成人精品电影| 丝袜人妻中文字幕| av不卡在线播放| 高清视频免费观看一区二区| 国产精品 欧美亚洲| 在线亚洲精品国产二区图片欧美| 国产极品天堂在线| 不卡av一区二区三区| 尾随美女入室| 免费久久久久久久精品成人欧美视频| 亚洲伊人色综图| 男女边摸边吃奶| 国产成人a∨麻豆精品| h视频一区二区三区| 久久久久精品久久久久真实原创| 国产精品国产三级国产专区5o| 亚洲成色77777| 男女高潮啪啪啪动态图| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 婷婷色麻豆天堂久久| 国产亚洲精品第一综合不卡| 亚洲精华国产精华液的使用体验| 国产精品一区二区在线观看99| 在线看a的网站| 久久免费观看电影| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 色94色欧美一区二区| 亚洲欧洲国产日韩| 一区二区三区四区激情视频| 国产精品一区二区精品视频观看| 午夜福利在线免费观看网站| 精品一区二区三区av网在线观看 | 久久天躁狠狠躁夜夜2o2o | 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 深夜精品福利| 激情五月婷婷亚洲| 伊人久久国产一区二区| 国产熟女午夜一区二区三区| 激情视频va一区二区三区| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 欧美激情 高清一区二区三区| 中国三级夫妇交换| 亚洲av在线观看美女高潮| 91国产中文字幕| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 久久影院123| av在线老鸭窝| av福利片在线| 精品少妇一区二区三区视频日本电影 | 亚洲天堂av无毛| 九色亚洲精品在线播放| 国产成人精品久久久久久| av国产精品久久久久影院| 日韩视频在线欧美| 国产极品天堂在线| 久久久久视频综合| 国产精品av久久久久免费| 18在线观看网站| 多毛熟女@视频| 欧美日韩精品网址| 久久亚洲国产成人精品v| 91国产中文字幕| 91精品伊人久久大香线蕉| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 9色porny在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 国产日韩欧美视频二区| 精品免费久久久久久久清纯 | 黄色视频在线播放观看不卡| 男女免费视频国产| 免费日韩欧美在线观看| 香蕉丝袜av| 亚洲色图综合在线观看| 99国产精品免费福利视频| 免费久久久久久久精品成人欧美视频| 国产乱人偷精品视频| 男的添女的下面高潮视频| 亚洲国产欧美网| 亚洲成人国产一区在线观看 | 亚洲精品成人av观看孕妇| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 久久久久国产一级毛片高清牌| 亚洲精品一区蜜桃| 性少妇av在线| 涩涩av久久男人的天堂| 日韩不卡一区二区三区视频在线| 伊人久久大香线蕉亚洲五| 制服诱惑二区| 黄色 视频免费看| 午夜日本视频在线| 丝袜脚勾引网站| 波野结衣二区三区在线| 免费av中文字幕在线| 婷婷成人精品国产| 久久久久久人人人人人| 国产 精品1| 18禁国产床啪视频网站| 国产欧美日韩综合在线一区二区| 欧美 亚洲 国产 日韩一| kizo精华| 在线天堂最新版资源| 精品国产一区二区久久| 欧美中文综合在线视频| www日本在线高清视频| 热99久久久久精品小说推荐| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| 国产毛片在线视频| 一区二区三区精品91| 日韩欧美精品免费久久| 午夜福利免费观看在线| 亚洲色图综合在线观看| 亚洲中文av在线| 亚洲 欧美一区二区三区| 久久av网站| av一本久久久久| 成年动漫av网址| e午夜精品久久久久久久| 熟妇人妻不卡中文字幕| 亚洲av成人精品一二三区| 亚洲国产欧美日韩在线播放| 操出白浆在线播放| 成年av动漫网址| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美软件| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 99国产综合亚洲精品| 亚洲国产最新在线播放| 久久人妻熟女aⅴ| 亚洲自偷自拍图片 自拍| 香蕉丝袜av| 夜夜骑夜夜射夜夜干| 欧美日韩综合久久久久久| 亚洲色图综合在线观看| 国产欧美亚洲国产| 亚洲国产欧美网| 免费高清在线观看日韩| 好男人视频免费观看在线| 天天添夜夜摸| 午夜福利影视在线免费观看| 久久人妻熟女aⅴ| 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版| 欧美日韩av久久| 中文天堂在线官网| 国产黄色视频一区二区在线观看| 十八禁人妻一区二区| 国产乱来视频区| 久久精品亚洲av国产电影网| 婷婷成人精品国产| 少妇人妻 视频| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 亚洲av福利一区| 精品一品国产午夜福利视频| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 人人澡人人妻人| 欧美在线黄色| 中文字幕制服av| 国产野战对白在线观看| 香蕉丝袜av| 久久久久精品国产欧美久久久 | 少妇被粗大的猛进出69影院| 美女主播在线视频| www日本在线高清视频| 精品久久蜜臀av无| 欧美国产精品va在线观看不卡| 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影 | 国产精品国产三级专区第一集| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| svipshipincom国产片| 精品人妻在线不人妻| 国产精品一区二区在线不卡| 欧美人与善性xxx| 久久97久久精品| 亚洲av电影在线进入| av国产久精品久网站免费入址| 在线天堂最新版资源| 久久久久网色| 亚洲av国产av综合av卡| 丝袜在线中文字幕| 亚洲av男天堂| 秋霞伦理黄片| 久久热在线av| 国产在线免费精品| 欧美人与性动交α欧美软件| 色精品久久人妻99蜜桃| 国产成人欧美| 桃花免费在线播放| 日韩电影二区| 成人18禁高潮啪啪吃奶动态图| 十八禁网站网址无遮挡| 精品少妇内射三级| 亚洲一码二码三码区别大吗| 国产精品免费视频内射| 免费观看a级毛片全部| 中文字幕制服av| 免费不卡黄色视频| 欧美97在线视频| 电影成人av| 男男h啪啪无遮挡| 久久国产精品大桥未久av| 99久国产av精品国产电影| 欧美日韩视频精品一区| 欧美 日韩 精品 国产| bbb黄色大片| 午夜福利视频在线观看免费| 免费久久久久久久精品成人欧美视频| 丁香六月天网| 性少妇av在线| 日韩av免费高清视频| 99热网站在线观看| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 男的添女的下面高潮视频| 我的亚洲天堂| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 老司机深夜福利视频在线观看 | 国产成人精品久久二区二区91 | 亚洲成国产人片在线观看| 欧美成人精品欧美一级黄| 亚洲美女黄色视频免费看| 麻豆精品久久久久久蜜桃| av在线观看视频网站免费| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 精品久久久久久电影网| 97人妻天天添夜夜摸| 亚洲av日韩在线播放| 咕卡用的链子| 深夜精品福利| 国产高清国产精品国产三级| 秋霞伦理黄片| 欧美另类一区| 国产精品久久久人人做人人爽| 日本vs欧美在线观看视频| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产看品久久| 国产伦理片在线播放av一区| 熟女少妇亚洲综合色aaa.| av在线老鸭窝| 中国三级夫妇交换| 18禁动态无遮挡网站| 欧美日韩成人在线一区二区| 日本一区二区免费在线视频| 亚洲国产av新网站| 久久精品国产a三级三级三级| 国产精品一国产av| 建设人人有责人人尽责人人享有的| 在线观看免费日韩欧美大片| 国产精品久久久久久久久免| 69精品国产乱码久久久| 国产无遮挡羞羞视频在线观看| 最黄视频免费看| 久久久久久人妻| 亚洲av综合色区一区| 亚洲色图 男人天堂 中文字幕| 在线免费观看不下载黄p国产| 美女高潮到喷水免费观看| 一二三四中文在线观看免费高清| 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 看十八女毛片水多多多| 人妻人人澡人人爽人人| 精品国产乱码久久久久久男人| 日韩免费高清中文字幕av| 欧美日韩亚洲综合一区二区三区_| av在线播放精品| 亚洲av日韩精品久久久久久密 | 国产精品秋霞免费鲁丝片| av在线app专区| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 美女主播在线视频| 欧美亚洲日本最大视频资源| 久久99精品国语久久久| 久久久精品区二区三区| 日本色播在线视频| 丝袜在线中文字幕| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区蜜桃| 操出白浆在线播放| 99久久人妻综合| 视频区图区小说| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| 欧美97在线视频| 国产精品一区二区在线不卡| 精品少妇黑人巨大在线播放| 久久人人爽av亚洲精品天堂| 亚洲在久久综合| 啦啦啦中文免费视频观看日本| 亚洲男人天堂网一区| 午夜免费鲁丝| 国产成人精品福利久久| 嫩草影院入口| 亚洲成色77777| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 日韩欧美精品免费久久| av.在线天堂| 大片免费播放器 马上看| 伦理电影大哥的女人| 精品卡一卡二卡四卡免费| 国产欧美亚洲国产| 丰满少妇做爰视频| 久久精品国产亚洲av高清一级| 欧美精品亚洲一区二区| 又大又爽又粗| 黄色视频在线播放观看不卡| 一级片免费观看大全| 亚洲欧美日韩另类电影网站| 亚洲精品视频女| 亚洲精品在线美女| 日本一区二区免费在线视频| 精品亚洲成国产av| 一级毛片 在线播放| 免费少妇av软件| 高清av免费在线| 成人午夜精彩视频在线观看| 精品第一国产精品| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 黄色视频不卡| xxxhd国产人妻xxx| 亚洲成人国产一区在线观看 | 亚洲色图综合在线观看| 久久久久久久久久久免费av| 不卡av一区二区三区| 永久免费av网站大全| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 亚洲图色成人| 成人国产av品久久久| 91成人精品电影| 成人国产av品久久久| 亚洲国产欧美日韩在线播放| bbb黄色大片| 精品亚洲成国产av| 2018国产大陆天天弄谢| avwww免费| 中国国产av一级| 亚洲男人天堂网一区| 久久精品久久精品一区二区三区| 国产探花极品一区二区| 久久久久久久久免费视频了| 丝袜喷水一区| 少妇的丰满在线观看| 国产一区有黄有色的免费视频| 又粗又硬又长又爽又黄的视频| 日日啪夜夜爽| 久久久国产一区二区| 最近最新中文字幕大全免费视频 | 亚洲国产精品成人久久小说| 久久天躁狠狠躁夜夜2o2o | 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 国产片内射在线| 九草在线视频观看| 国产在视频线精品| 母亲3免费完整高清在线观看| 日韩一区二区三区影片| 国产熟女午夜一区二区三区| 嫩草影视91久久| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 9色porny在线观看| 在线天堂中文资源库| 婷婷色综合www| 亚洲av日韩在线播放| 久久人人爽人人片av| 18在线观看网站|