• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    線狀和樹枝狀銀納米結(jié)構(gòu)、形成機(jī)理及表面增強(qiáng)拉曼散射性質(zhì)

    2010-12-12 02:42:58吳馨洲裴梅山王廬巖李肖男陶緒堂
    物理化學(xué)學(xué)報 2010年11期
    關(guān)鍵詞:化工學(xué)院物理化學(xué)濟(jì)南

    吳馨洲 裴梅山 王廬巖, 李肖男 陶緒堂

    (1濟(jì)南大學(xué)化學(xué)化工學(xué)院,山東省氟化學(xué)化工材料重點實驗室,濟(jì)南 250022; 2山東大學(xué)晶體材料國家重點實驗室,濟(jì)南 250100)

    Silver nanoparticles,especially one?dimensional nanostruc?tures,have drawn particular attention due to their highest elec?trical,thermal conductivities and strong surface plasmon reso?nance,which make them attractive for use in biochemistry as nanoscale biomaterials[1-5].For instance,Thorpe et al.[6]synthe?sized a composite electrode structure comprised of silver nanowires and carbon nanotubes for use as cathode catalysts in alkaline fuel cell.They found that silver nanowires had similar performance at a much lower catalyst loading than the bulk samples.

    In the past few years,many wet?chemical methods,like soft template,non-template,seedless and ionic liquid processes, have been developed for the synthesis of one dimensional sil?ver nanostructures[7-10].And their properties such as catalysis, SERS,and plasmon resonances have been investigated[5-6,11-12]. However,these methods have their own disadvantages,such as relatively high temperature,expensive and commercially un?available reagents,complicated operations,and low?yield.Suh et al.[10]prepared silver nanowires in the presence ofN?alkyl imidazolium based ionic liquids.The obtained straight wires are about 200 nm in width and up to about 15 mm in length with no or few nanoparticles.But this method requires expen?sive reagents and complicated operations.Therefore,there is still a need to develop a more straightforward procedure for fabricating silver nanowires.Monodispersed silver nanowires were synthesized under oil?bath heating in high yield(>90% without isolation)using bubbling of air through a reagent solu?tion from ca 20℃to the boiling point of ethylene glycol(EG) (198℃)for 20 min by Tsuji et al.[13].Nevertheless,this method is limited due to relatively high temperature and the bubbling of oxygen molecules is indispensable.Most recently,Saha et al.[14]prepared single crystalline micron?sized rectangular silver bar using polyacrylamide(PAM)and silver nitrate(AgNO3)by a hydrothermal process.But this method requires relatively high?er temperature(above 107℃)and the PAM aqueous solution needs to be mature for 7 days.And the main products are rect?angular silver bars,and this method has a low yield of silver bars according to the SEM images.

    Herein,we describe a simple one?step method to prepare tan?gled silver nanowires as well as the dendritic structures,using PAM as the stabilizer and soft template at room temperature in large quantities.The structures obtained in our system are all in tangled morphology,which is different from those silver nanow?ires reported before.Moreover,PAM,being widely used in pe?troleum exploitation,water treatment,textile dyeing and chemi?cal industry,is cheaper and easy to be purchased.It plays the key role in the formation of wire?like structures.The growth mechanism concerning the tangled sliver nanowires are pro?posed and detailed investigated.Further,the study on the SERS properties indicates that such anisotropic structures are suitable substrates for probing PATP and probably other analytes.

    1 Experimental

    1.1 Materials

    Acrylamide(AM,99.0%),Polyacrylamide(PAM,≥99.0%, Mw≈5000000)are purchased from Tianjin Kermel Reagent Co.Ascorbic acid(Vc,99.7%)and silver nitrate(AgNO3, 99.8%)are purchased respectively from Shanghai Reagent Co..4?aminothiophenol(PATP,97%)is purchased from Alfa Aesar China(Tianjin)Co.,Ltd..All chemicals are used without fur?ther purification.The secondary distilled water is used for all solution preparation and experiments.

    1.2 Synthesis of silver products

    A typical procedure to synthesize the silver tangled nanow?ires is as follows:2 mL of 10 mmol·L-1PAM([PAM]denotes concentrations calculated in terms of moles of the repeating unit of PAM,with a molecular weight of 71 g·mol-1,per liter of solution),1 mL of 10 mmol·L-1silver nitrate,1 mL of 10 mmol·L-1ascorbic acid are added to 6 mL of water.The final concentrations of PAM,ascorbic acid,and AgNO3are 2,1,and 1 mmol·L-1,respectively.The solution is stirred for several seconds and aged for 24 h at 25℃without any stirring.All samples are sealed in glass tubes and left at certain temperature for further study.

    1.3 Characterization of silver products

    TEM observations are performed with a JEM?100CX II(JE?OL,Japan)electron microscope operated at an accelerating voltage of 100 kV.To prepare TEM samples,the reacted mix?tures are dispersed in water under sonication and centrifuged at 5500 r·min-1for 15 min.Then the upper solution containing unreduced ions and unbound molecules is removed.Such ob?tained samples are redispersed in water.A little drop of result?ing dispersion is put onto a Formvar?covered copper grid(230 meshes)and followed by drying naturally in the air at room temperature for TEM measurement.For the UV(HP 8453E UV?Vis spectrometer,US)measurements,the suspension obtained above is placed in a 1 cm light path quartz cell,and spectra are recorded at room temperature.Raman measurements are made with a Renishaw System 1000 Raman imaging microscope (Renishaw Plc,U.K.)equipped with 25 mW(632.8 nm)He?Ne laser(model 127?25RP,Spectra?Physics,USA)and a Pelti?er?cooled CCD detector(Renishaw,576 pixels×384 pix?els).A 50×objective(numerical aperture=0.80)mounted on an Olympus BH?2 microscope(Japan)is used to focus the laser onto a spot approximately 1 μm in diameter and collect the back?scattered light from the sample.To analyze the SERS ac?tivities of these samples,40 μL of these concentrated colloids is directly cast on the clean glass slide and let dry in air.Final?ly,10 μL of a 24 mmol·L-1ethanol solution of PATP is cast onto the colloid films formed on the glass slide,and allowing the solvent to evaporate.

    2 Results and discussion

    Fig.1(A-C)presents representative SEM and TEM images of the silver products obtained at a PAM concentration of 2 mmol·L-1,which apparently consists of tangled wire?like struc?tures as the main products with width ranging from 50 to 100 nm.Fig.1D shows a small amount of structures in the products, with some short wires and some aggregated quasi?spherical nanostructures.The quasi?spherical nanoparticles connect with the short wires(arrows in Fig.1D)with the tendency of form?ing tangled silver nanostructures.And the sizes of the sliver quasi?spherical nanostructures range from 50 to 100 nm in di?ameter,which is similar to the width of the wires.

    To investigate the growing mechanism of tangled silver nanostructures,different products obtained from the same sam?ple after certain reaction time are shown in Fig.2.The probable formation mechanism can be described in Fig.3,path A.PAM plays the key role in the formation of such silver nanowires as the capping agent as well as the soft template.In the reaction process,the ascorbic acid acts as the reducing agent.Nucle?ation first occurs in aqueous solution and small particles are formed(Fig.2A).Then the amide groups of PAM molecules are adsorbed on the surfaces of silver nanoparticles simultane?ously.On the basis of Flory?Krigbaum′s theory of dilute solu?tion[15],PAM molecules dissolved in the aqueous solution are mainly in the form of the cloud of chain segments(see Fig.3). The nascent nuclei and small nanoparticles would be arranged side by side along the polymer chains due to the presence of numerous amide groups on PAM chain(Fig.2(B-F)).This is helpful to the anisotropic growth of silver particles and then tangled silver nanowires can be formed through particles at?taching with each other.This can further be verified by Fig. 1D,where it can be seen that some wires are formed through aggregating of some quasi?spherical particles and short wires (denoted by arrows in Fig.1D).Saha et al.[14]demonstrated that when reaction solution containing PAM and AgNO3was heat?ed at a temperature of about 237℃,thermal degradation of am?ide bonds of acryl amide to carboxylic acids occur,accompa?nied by the release of ammonia.Then ammonium ions got re?placed by silver ions and reduced the silver ions attached to the PAM to form a silver nanoparticles assembly along the PAM chain.After oriented attachment and Ostwald ripening,single crystalline micron?sized rectangular silver bars with smooth sur?face were produced.According to Saha,the Ostwald ripening was the key to produce the rectangular smooth silver bars,so the longer reaction time(7 d)was necessary and the yield was relatively lower.In our system,silver tangled nanowires in?stead of rectangular silver bars are the main products due to the fast reaction rate and oriented attachment with the shorted reac?tion time and higher yield.

    According to the mechanism,PAM is the key factor in the synthesis of the tangled silver nanowires.To test this,further experiments are done to study the effects of concentrations of different components and AM(monomer of PAM)as the cap?ping agent on the products.

    Fig.1 SEM(A,B)and TEM(C)images of silver tangled nanostructures from PAM(2 mmol·L-1)?Vc(1 mmol·L-1)?AgNO3(1 mmol·L-1)aqueous solution at 25℃B is a magnified image marked by a white rectangle in A.D represents a few products obtained from the same reaction system with the tendency of forming structures like C.

    With the concentration of ascorbic acid increasing to 10 mmol·L-1,dendritic silver structures are produced(Fig.4A).A higher reducing agent concentration enhances the reduction rate of silver nitrate and results in the fast formation of more sliver nuclei,and such effect is disadvantageous to the growing of sliver nanostructures.The result tells us that the concentra?tion of ascorbic acid has great influence on the silver morpholo?gy.A little lower concentration of ascorbic acid is helpful to the anisotropic growth of silver nanostructures.Therefore,it can be concluded that too fast reduction process is unfavorable to silver tangled nanowires.These obtained dendritic silver structures(Fig.4A)further support our mechanism.As shown in Fig.3,path B,small particles,inside of the cloud of chain segments,connect each other rapidly due to the faster growth rate and lead to formation of the core with the diameter range from 800 nm to 2 μm.Wang et al.[16]reported that dendritic sil?ver nanostructures were synthesized very easily by dropping a droplet of AgNO3?HF solution on silicon wafers without any capping agent and surfactant.They explained the structural evolution by the oriented attachment?based aggregation mecha?nism,which can also be used to explain the formation of den?dritic silver nanostructures in this work(insert in Fig.4A). With prolonging reaction duration,the concentrations of the sil?ver salt and reduction agent decrease,the reaction process is dominated by a non?equilibrium condition(under kinetic fac?tor)due to a high silver ion concentration[16],so silver dendrites (outside the core)are formed.And with increasing reaction time and the consumption of the silver ions,the reaction pro?cess was dominated by a quasi?equilibrium or equilibrium con?dition(thermodynamic factor)[16].The branches(denoted by ar?rows in insert Fig.4A)become less and shorter.

    Fig.2 TEM images of silver products obtained from the samples of Fig.1 for monitoring the tangled nanowires evolution over timet/min:(A)1,(B)60,(C)180,(D)300,(E)420,(F)540

    Fig.3 Schematic illustration of formation mechanism of tangled and dendritic silver nanostructures

    The growth mechanism of tangled nanowires is further certi?fied by the products from the AM?assistant method.AM(2 mmol·L-1)is introduced into the reaction system instead of PAM as the capping agent.Compared to the polyacrylamide, amide(the monomer of PAM)without the long carbon chain can not act as the template,so the silver products are dominat?ed by branched particles with long acuminate branches of more than 300 nm(Fig.4B).Increasing the ascorbic acid concentra?tion to 3 mmol·L-1,flower?like particles with short branches (about 50 nm)appear as the main products,as can be seen in Fig.4C.Moreover the number of the short branches on one sil?ver particle decreases and the central parts of the structures shrink.As we know,metals like Ag,Au,Pt,Pb,and Pd have a face?centered cubic(fcc)structure,which leads to no crystallograph?ic driving force for anisotropic growth[17].Indeed,atoms of these metals should assemble to form faceted spheres to mini?mize their surface energy[17].Therefore spherical core can be easily formed.Nevertheless the appearance of these branched structures demonstrates that amide group can adsorb on silver surface,which indirectly demonstrates the proposed mecha?nism mentioned above.

    Fig.4 TEM images of silver nanoproducts from different AgNO3(1 mmol·L-1)reaction systems at 25℃(A)PAM(2 mmol·L-1)-Vc(10 mmol/L);(B)AM(2 mmol·L-1)-Vc(1 mmol· L-1);(C)AM(2 mmol·L-1)-Vc(3 mmol/L);(D)Vc(1 mmol·L-1).The image inserted in A represents the magnified part of A.

    Additionally,the effect of PAM concentration on the prod?uct is also discussed.When PAM concentrations are changed from 0 to 0.05 mmol·L-1,the products are dendritic silver nanostructures.With PAM concentration increases from 0.1 to 2 mmol·L-1,the quantity of nanowires is also increased and fi?nally nanowires are the main product(Fig.1).Products of sys?tems with PAM concentration increasing to 8 mmol·L-1,are the same as those obtained from system containing PAM of 2 mmol·L-1.With the higher concentration of PAM,the PAM template dominates and directs the growth to form silver tan?gled nanostructures.These results are consistent with the mech?anism mentioned above.

    As can be seen from Fig.5,a large amount of long straight wires(the maximum length is about 7 μm)accompanied with tangled wires are obtained by stirring the reaction system.The stirring process makes the chains of PAM relatively extend, thus resulting to the formation of straight wires.

    Fig.6 shows the absorption spectra of the silver structures presented in Fig.1 and Fig.4A,respectively.It is well known that UV?Vis absorption spectra of silver nanostructures depend strongly on their shapes and sizes[18].The main optical response of spherical silver nanoparticles with diameters of 20-40 nm and 40-90 nm often exhibits a single absorption band around 410 and 480 nm attributed to the surface plasma resonance,re?spectively[19].While anisotropic metal particles could give rise to two or more surface plasmon resonance(SPR)bands[20].

    Fig.5 TEM image of silver nanoproducts from PAM(2 mmol·L-1)?Vc(1 mmol·L-1)?AgNO3(1 mmol·L-1)aqueous solution under stirring for 24 h at 25℃

    Fig.6 UV?Vis absorption spectra of tangled silver nanowires(a)and dendritic nanostructures(b)obtained from different AgNO3(1 mmol·L-1)reaction systems at 25℃(a)PAM(2 mmol·L-1)?Vc(1 mmol·L-1); (b)PAM(2 mmol·L-1)?Vc(10 mmol·L-1)

    The absorption spectrum(Fig.6a)of silver nanowires shows a shoulder peak at around 350 nm and an evident peak centered at 410 nm with a long tail extending to 800 nm.Gao et al.[21]syn?thesized uniform silver nanowires with an average length of 6 mm and diameter of 70 nm via PVP?assisted(polyvinylpyrrol?idone,PVP?K30)polyol reduction.They explained this tail band to the overlapping of the in?plane quadrupole and dipole resonance modes of nanowires with peaks at 445 and 514 nm, respectively[21].In our work,the peak(located at 410 nm)exhib?its a broad full?width at half?maximum of about 100 nm,which could be attributed to the existence of a broad distribution in size and morphology(as can be seen in Fig.1)for these silver structures.Moreover,the shoulder peak at about 350 nm which is attributed to the transversal modes could be considered as the optical signature of relatively long silver nanowires[22].And it is in good accordance with our TEM images.

    The spectrum in Fig.6b displays a broad plasmon band cen?tered at about 420 nm for sliver dendritic structures.The peak at 420 nm is attributed to the out?of?plane dipole resonance,but the expected longitudinal plasmon band does not appear,nei?ther.This may be explained by considering that the silver den?dritic structures do not adopt a uniform morphology(Fig.4A), which signifcantly can decrease the intensity of the longitudi?nal plasmon band,leading to the disappearance of the band[23].

    To investigate the SERS sensitivity of the silver nanowires substrates,the Raman spectra of the PATP molecules adsorbed on the surface of silver nanowires as well as silver dendritic structures are measured.All the obtained SERS spectra of PATP are in agreement with those in the literature[24].It should be noted that without silver colloids,no detectable spectrum could be obtained when the same amount of PATP is dropped on the glass slide(Fig.7a).And noticeable changes in the fre?quency shift and relative intensity of the bands can be ob?served from the SERS spectra on different silver substrates,in?dicating that the thiol group in PATP directly contacts with the silver surfaces.The SERS spectra obtained from the silver den?dritic structures(Fig.7b)and silver nanowires(Fig.7c)are dom?inated with theb2modes(in?plane,out of?phase modes)locat?ed at 1438,1389,1142,1189,and 1003 cm-1.Recent study has shown that the apparently selective enhancement of the non?to?lally symmetric b2modes could be ascribed to the surface cata?lytic reaction of adsorbed PATP molecules to form the aromat?ic azo compound[25].Moreover the enhancement of a1vibration?al modes(in?plane,in?phase modes),such as v(C—C)and v(C—S)at 1577 and 1077 cm-1,is also apparent.The apparent enhancement of a1modes in the SERS spectra may imply that the enhancement via an electromagnetic(EM)mechanism is significant.The better enhancement ability of sample is sup?posed to be closely related to its unique tangled structure be?cause the branches on the particles made the surface of them highly curved[26].In principle,high curvature features on the surface(lightening rod effect)could cause very large enhance?ment[24].In contrast with the silver dendritic structures,the SERS intensity of nanowires is stronger.According to Xia et al.[27],high surface areas and many sharp edges could serve as great substrates for SERS detection.From Fig.1A and Fig.4A, the tangled nanowires have larger surfaces areas than the den?dritic structures with the same amount of silver atoms,because the dendritic structures have relatively larger cores.Although it is difficult to calculate the enhancement factors from these data because of the complex particle shapes,the strong Raman sig?nals enabled by the particles indicate that these tangled silver structures are active SERS substrates.

    Fig.7 Comparison of normal Raman spectrum and SERS spectra of PATP(a)normal Raman spectrum of solid sample;(b)and(c)are SERS spectra of PATP(0.024 mol·L-1)on the dendritic structures and silver nanowires, respectively.

    3 Conclusions

    At mild conditions,a large yield of tangled silver nanowires and dendritic structures are synthesized from PAM aqueous solution under different concentrations of ascorbic acid.PAM provides a useful soft template for the growth of tangled silver nanowires.At the initial reaction stage,silver nuclei are formed and adsorbed by PAM with a tangled structure.As the reaction time is prolonged,the nanoparticles contact with each other and grow along the polymer chain,leading to the formation of tangled silver nanowires.When the reducer concentration become higher or small AM molecule is used to replace PAM as the capping agent,it is disadvantageous for silver particles to anisotropically grow along the soft template, so dendritic or branched nanostructures can be obtained. Raman measurements show silver nanowires and dendritic structures are active SERS substrates for probing PATP and probably other analytes.The tangled structures will provide new structural diversity for the applications in biological tagging,optoelectronics,SERS,and catalysis.

    1 Yao,H.J.;Liu,J.;Duan,J.L.;Hou,M.D.;Sun,Y.M.;Mo,D.; Chen,Y.F.;Xue,Z.H.Acta Phys.?Chim.Sin.,2007,23:489 [姚會軍,劉 杰,段敬來,侯明東,孫友梅,莫 丹,陳艷峰,薛智浩.物理化學(xué)學(xué)報,2007,23:489]

    2 Fu,X.F.;Zou,H.M.;Zhou,L.;Zhou,Z.K.;Yu,X.F.;Hao,Z. H.Acta Phys.?Chim.Sin.,2008,24:781 [付小鋒,鄒化民,周 利,周張凱,喻學(xué)峰,郝中華.物理化學(xué)學(xué)報,2008,24:781]

    3 Chi,G.J.;Yao,S.W.;Fan,J.;Zhang,W.G.;Wang,H.Z.Acta Phys.?Chim.Sin.,2002,18:532 [遲廣俊,姚素薇,范 君,張衛(wèi)國,王宏智.物理化學(xué)學(xué)報,2002,18:532]

    4 Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin, Y.;Kim,F.;Yan,H.Adv.Mater.,2003,15:353

    5 Sarkar,R.;Kumbhakar,P.;Mitra,A.K.;Ganeev,R.A.Curr. Appl.Phys.,2010,10:853

    6 Kostowskyj,M.A.;Gilliama,R.J.;Kirkb,D.W.;Thorpe,S.J. Int.J.Hydrog.Energy,2008,33:5773

    7 Gao,Y.;Jiang,P.;Liu,D.F.;Yuan,H.J.;Yan,X.Q.;Zhou,Z. P.;Wang,J.X.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,G.; Wang,C.Y.;Xie,S.S.Chem.Phys.Lett.,2003,380:146

    8 Jiang,Z.Y.;Xie,Z.X.;Zhang,S.H.;Xie,S.Y.;Huang,R.B.; Zheng,L.S.Chem.Phys.Lett.,2003,374:645

    9 Chen,C.;Wang,L.;Yu,H.;Jiang,G.;Yang,Q.;Zhou,J.;Xiang W.;Zhang,J.Mater.Chem.Phys.,2008,107:13

    10 Kim,T.Y.;Kim,W.J.;Hong,S.H.;Kim,J.E.;Suh,K.S. Angew.Chem.Int.Edit.,2009,48:3806

    11 Sanders,A.W.;Routenberg,D.A.;Wiley,B.J.;Xia,Y.; Dufresne,E.R.;Reed,M.A.Nano Lett.,2006,6:1822

    12 Kang,T.;Yoon,I.;Jeon,K.S.;Choi,W.;Lee,Y.;Seo,K.;Yoo, Y.;Park,Q.H.;Ihee,H.;Suh,Y.D.;Kim,B.J.Phys.Chem.C, 2009,113:7492

    13 Tanga,X.;Tsuji,M.;Jiang,P.;Nishio,M.;Jang,S.M.;Yoon,S. H.Colloids and Surfaces A,2009,338:36

    14 Mondal,B.;Majumdar,D.;Saha,S.K.J.Mater.Res.,2010,25: 383

    15 Krigbaum,W.R.;Geyme,D.O.J.Am.Chem.Soc.,1959,81: 1859

    16 Ye,W.;Shen,C.;Tian,J.;Wang,C.;Hui,C.;Gao,H.Solid State Sci.,2009,11:1088.

    17 Chen,J.;Wiley,B.J.;Xia,Y.Langmuir,2007,23:4120

    18 Caswell,K.K.;Bender,C.M.;Murphy,C.J.Nano Lett.,2003, 3:667

    19 Mdluli,P.S.;Revaprasadu,N.Mater.Lett.,2009,63:447

    20 Brennan,M.E.;Whelan,A.M.;Kelly,J.M.;Blau,W.J.Synth. Met.,2005,154:205

    21 Gao,Y.;Jiang,P.;Song,L.;Liu,L.;Yan,X.;Zhou,Z.;Liu,D.; Wang,J.;Yuan,H.;Zhang,Z.;Zhao,X.;Dou,X.;Zhou,W.; Wang,G.;Xie,S.J.Phys.D?Appl.Phys.,2005,38:1061

    22 Sun,Y.;Yin,Y.;Mayers,B.T.;Herricks,T.;Xia,Y.Chem. Mater.,2002,14:4736

    23 Zhang,J.;Liu,K.;Dai,Z.;Feng,Y.;Bao,J.;Mo,X.Mater. Chem.Phys.,2006,100:313

    24 Zou,X.;Ying,E.;Dong,S.J.Colloid Interface Sci.,2007,306: 307

    25 Wu,D.Y.;Liu,X.M.;Huang,Y.F.;Ren,B.;Xu,X.;Tian,Z.Q. J.Phys.Chem.B,2009,113:18212

    26 Jana,N.R.;Pal,T.Adv.Mater.,2007,19:1761

    27 Wang,Y.;Camargo,P.H.C.;Skrabalak,S.E.;Gu,H.;Xia,Y. Langmuir,2008,24:12042

    猜你喜歡
    化工學(xué)院物理化學(xué)濟(jì)南
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    Paving Memory Lane
    濟(jì)南
    汽車與安全(2016年5期)2016-12-01 05:21:55
    《化工學(xué)報》贊助單位
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    亚洲精品国产精品久久久不卡| 久9热在线精品视频| 亚洲第一电影网av| 欧美国产精品va在线观看不卡| 麻豆久久精品国产亚洲av| 丁香欧美五月| 天天添夜夜摸| 国产国语露脸激情在线看| 91老司机精品| 色哟哟哟哟哟哟| 亚洲第一av免费看| 亚洲aⅴ乱码一区二区在线播放 | 高清毛片免费观看视频网站| 国产日韩一区二区三区精品不卡| 黑人巨大精品欧美一区二区mp4| 美女午夜性视频免费| 久久久久久国产a免费观看| 久久久久国内视频| 欧美久久黑人一区二区| 色哟哟哟哟哟哟| 深夜精品福利| av福利片在线| 国产成人精品久久二区二区免费| 精品人妻1区二区| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 亚洲成人久久性| 岛国视频午夜一区免费看| 久久久久国内视频| 免费在线观看日本一区| 日韩精品青青久久久久久| 欧美日本中文国产一区发布| 国产麻豆成人av免费视频| 日日夜夜操网爽| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 国产精品久久视频播放| √禁漫天堂资源中文www| 岛国在线观看网站| 婷婷六月久久综合丁香| 最近最新免费中文字幕在线| 日本在线视频免费播放| 亚洲中文字幕一区二区三区有码在线看 | 88av欧美| 久久精品国产亚洲av香蕉五月| 亚洲精品美女久久久久99蜜臀| 久久久精品欧美日韩精品| av超薄肉色丝袜交足视频| 中文字幕人妻熟女乱码| 精品午夜福利视频在线观看一区| 欧美日韩精品网址| 亚洲片人在线观看| 国产亚洲av嫩草精品影院| 欧美大码av| 精品不卡国产一区二区三区| 亚洲久久久国产精品| 国产色视频综合| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 国产91精品成人一区二区三区| 日本 欧美在线| www.精华液| 午夜激情av网站| 国产主播在线观看一区二区| 久久九九热精品免费| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 国产亚洲欧美98| 午夜福利影视在线免费观看| 午夜福利一区二区在线看| 国产精品 国内视频| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 亚洲熟妇熟女久久| 免费在线观看亚洲国产| 成人国产综合亚洲| 人人妻人人爽人人添夜夜欢视频| 美女 人体艺术 gogo| 一区二区三区国产精品乱码| 国产成人系列免费观看| 欧美成人一区二区免费高清观看 | 日韩欧美三级三区| bbb黄色大片| netflix在线观看网站| 人人妻,人人澡人人爽秒播| 亚洲性夜色夜夜综合| 女人精品久久久久毛片| 国产精品1区2区在线观看.| 国产精品久久久久久精品电影 | 久久人妻av系列| 一区二区三区激情视频| 90打野战视频偷拍视频| 亚洲avbb在线观看| 一区二区三区激情视频| 日韩视频一区二区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品国产高清国产av| 日韩精品免费视频一区二区三区| 男人的好看免费观看在线视频 | 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 99热只有精品国产| 操美女的视频在线观看| 成年版毛片免费区| 88av欧美| 桃色一区二区三区在线观看| 亚洲专区国产一区二区| 色综合站精品国产| 欧美中文日本在线观看视频| 亚洲熟女毛片儿| 国产精品一区二区三区四区久久 | 亚洲第一欧美日韩一区二区三区| 国产视频一区二区在线看| 日韩欧美三级三区| 亚洲免费av在线视频| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 国产三级在线视频| 又大又爽又粗| 91精品国产国语对白视频| 99国产极品粉嫩在线观看| 国产亚洲精品久久久久5区| 欧美日韩亚洲国产一区二区在线观看| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 日韩一卡2卡3卡4卡2021年| 亚洲自偷自拍图片 自拍| 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 又黄又爽又免费观看的视频| 国产欧美日韩精品亚洲av| 精品国产一区二区久久| 欧美激情久久久久久爽电影 | 免费一级毛片在线播放高清视频 | 亚洲精品国产色婷婷电影| 丝袜在线中文字幕| 满18在线观看网站| 国产在线精品亚洲第一网站| 国产野战对白在线观看| 男人的好看免费观看在线视频 | 最近最新中文字幕大全电影3 | 亚洲国产毛片av蜜桃av| 日韩av在线大香蕉| 国产99久久九九免费精品| 国产av在哪里看| 啪啪无遮挡十八禁网站| 啦啦啦观看免费观看视频高清 | 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 久久久久久久久久久久大奶| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 真人一进一出gif抽搐免费| 精品卡一卡二卡四卡免费| 午夜福利欧美成人| 真人一进一出gif抽搐免费| 久久精品国产综合久久久| 成人三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品合色在线| 国产亚洲欧美在线一区二区| 国产亚洲欧美精品永久| 久久久久久人人人人人| av网站免费在线观看视频| 精品第一国产精品| 波多野结衣av一区二区av| a级毛片在线看网站| 我的亚洲天堂| 亚洲国产看品久久| 在线观看午夜福利视频| 免费av毛片视频| 免费高清视频大片| 午夜福利在线观看吧| 国产亚洲欧美精品永久| 欧美绝顶高潮抽搐喷水| 村上凉子中文字幕在线| 极品教师在线免费播放| 操出白浆在线播放| 国产熟女xx| 国产又爽黄色视频| 欧美日韩乱码在线| 最新在线观看一区二区三区| 99久久99久久久精品蜜桃| 亚洲国产高清在线一区二区三 | 高清黄色对白视频在线免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩大尺度精品在线看网址 | 狠狠狠狠99中文字幕| 一级作爱视频免费观看| 91老司机精品| 久热爱精品视频在线9| 久久狼人影院| 久久人妻熟女aⅴ| 国产97色在线日韩免费| 男男h啪啪无遮挡| 伊人久久大香线蕉亚洲五| 亚洲无线在线观看| 国产成人一区二区三区免费视频网站| 波多野结衣巨乳人妻| 日韩免费av在线播放| 成人免费观看视频高清| 操出白浆在线播放| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 久久香蕉国产精品| 久久久精品国产亚洲av高清涩受| 亚洲av成人一区二区三| 亚洲少妇的诱惑av| 男女下面插进去视频免费观看| 国产单亲对白刺激| 老司机靠b影院| 久久精品国产亚洲av高清一级| 50天的宝宝边吃奶边哭怎么回事| 精品人妻在线不人妻| 无人区码免费观看不卡| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 日韩国内少妇激情av| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 成人国产一区最新在线观看| 欧美乱妇无乱码| 搞女人的毛片| 亚洲无线在线观看| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 搡老妇女老女人老熟妇| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 精品午夜福利视频在线观看一区| ponron亚洲| 人成视频在线观看免费观看| 国产熟女xx| 88av欧美| 级片在线观看| 在线视频色国产色| 热99re8久久精品国产| 在线观看免费视频日本深夜| 两个人视频免费观看高清| 窝窝影院91人妻| 一区福利在线观看| 国产单亲对白刺激| 亚洲精品一区av在线观看| 国产精品 国内视频| 怎么达到女性高潮| 国产精品免费视频内射| 岛国在线观看网站| 免费看a级黄色片| 一夜夜www| svipshipincom国产片| 久久影院123| 老汉色∧v一级毛片| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 中文字幕精品免费在线观看视频| 亚洲av成人不卡在线观看播放网| 香蕉丝袜av| 欧美中文日本在线观看视频| 国产亚洲精品一区二区www| 国产高清激情床上av| 大香蕉久久成人网| 我的亚洲天堂| 国产av在哪里看| 欧美日韩亚洲综合一区二区三区_| 免费在线观看亚洲国产| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 亚洲精品久久国产高清桃花| 成人精品一区二区免费| 日本 av在线| 99精品久久久久人妻精品| 不卡av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 午夜精品久久久久久毛片777| 亚洲一区二区三区不卡视频| 欧美老熟妇乱子伦牲交| av片东京热男人的天堂| 在线观看免费视频日本深夜| 成在线人永久免费视频| 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕| 超碰成人久久| 亚洲精品美女久久久久99蜜臀| 午夜老司机福利片| 亚洲 欧美一区二区三区| 一区二区三区高清视频在线| 深夜精品福利| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 亚洲第一av免费看| 久久久久国内视频| 国产激情欧美一区二区| 欧美日本亚洲视频在线播放| 久久亚洲真实| 日韩大尺度精品在线看网址 | 极品教师在线免费播放| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| 欧美色视频一区免费| 韩国av一区二区三区四区| av视频免费观看在线观看| 后天国语完整版免费观看| 老司机在亚洲福利影院| 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品久久二区二区免费| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 国产又爽黄色视频| 91麻豆av在线| 美女午夜性视频免费| 亚洲免费av在线视频| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| 午夜两性在线视频| 日韩大码丰满熟妇| 日韩精品中文字幕看吧| 亚洲精品粉嫩美女一区| 亚洲av电影在线进入| 久久久精品欧美日韩精品| 国内精品久久久久久久电影| 97人妻天天添夜夜摸| 亚洲中文av在线| 成人18禁在线播放| 久久欧美精品欧美久久欧美| 亚洲精品久久国产高清桃花| 午夜福利影视在线免费观看| 1024香蕉在线观看| 亚洲人成电影免费在线| 成年版毛片免费区| 淫秽高清视频在线观看| 黄片播放在线免费| 国产一区二区三区视频了| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 亚洲色图av天堂| 国产黄a三级三级三级人| 精品无人区乱码1区二区| 99久久99久久久精品蜜桃| 日韩欧美一区视频在线观看| 国产色视频综合| 亚洲中文日韩欧美视频| 精品久久久久久,| 大香蕉久久成人网| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 一二三四在线观看免费中文在| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 岛国在线观看网站| 中亚洲国语对白在线视频| 欧美不卡视频在线免费观看 | 国产精品香港三级国产av潘金莲| 成人亚洲精品av一区二区| 啦啦啦免费观看视频1| 99久久综合精品五月天人人| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 国产高清videossex| 黄色女人牲交| 黑人欧美特级aaaaaa片| 在线天堂中文资源库| 窝窝影院91人妻| 19禁男女啪啪无遮挡网站| 国产精品电影一区二区三区| videosex国产| 韩国av一区二区三区四区| 久久中文字幕一级| 亚洲最大成人中文| 久久久久久久久久久久大奶| 亚洲熟女毛片儿| 国产精华一区二区三区| 国产精品综合久久久久久久免费 | 又紧又爽又黄一区二区| 麻豆av在线久日| 久久国产精品影院| 两性夫妻黄色片| 久久婷婷成人综合色麻豆| 麻豆国产av国片精品| 午夜视频精品福利| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃| 首页视频小说图片口味搜索| 欧美在线黄色| 多毛熟女@视频| 亚洲视频免费观看视频| 黄色a级毛片大全视频| 亚洲熟妇熟女久久| netflix在线观看网站| 久久人妻福利社区极品人妻图片| 亚洲午夜精品一区,二区,三区| 母亲3免费完整高清在线观看| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 激情在线观看视频在线高清| 桃红色精品国产亚洲av| 一区二区三区高清视频在线| 日本vs欧美在线观看视频| 波多野结衣av一区二区av| 精品日产1卡2卡| 一区福利在线观看| xxx96com| 欧美日韩中文字幕国产精品一区二区三区 | 少妇 在线观看| a在线观看视频网站| 亚洲精品在线美女| 国产欧美日韩综合在线一区二区| 亚洲美女黄片视频| 校园春色视频在线观看| 免费在线观看完整版高清| 人妻丰满熟妇av一区二区三区| 亚洲中文av在线| 韩国av一区二区三区四区| 亚洲精品中文字幕一二三四区| 手机成人av网站| 色播亚洲综合网| 亚洲人成网站在线播放欧美日韩| 久9热在线精品视频| 成人国产一区最新在线观看| 久久久久国产一级毛片高清牌| 男人舔女人下体高潮全视频| 国产aⅴ精品一区二区三区波| 男女做爰动态图高潮gif福利片 | 欧美日本视频| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品综合一区二区三区| 亚洲中文av在线| 91大片在线观看| 国产又爽黄色视频| 色综合亚洲欧美另类图片| 国产区一区二久久| 国产1区2区3区精品| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 欧美中文日本在线观看视频| 亚洲av成人不卡在线观看播放网| 久久午夜亚洲精品久久| 午夜两性在线视频| 18美女黄网站色大片免费观看| 好看av亚洲va欧美ⅴa在| 久久久久久国产a免费观看| 久久人妻av系列| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 久久欧美精品欧美久久欧美| 久久香蕉激情| 亚洲中文字幕日韩| 18美女黄网站色大片免费观看| 久热爱精品视频在线9| 18禁裸乳无遮挡免费网站照片 | 麻豆成人av在线观看| 后天国语完整版免费观看| 亚洲伊人色综图| 婷婷丁香在线五月| 黄片小视频在线播放| 精品国内亚洲2022精品成人| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩无卡精品| 高清在线国产一区| 久久久久久久午夜电影| 国产精品乱码一区二三区的特点 | 天天躁夜夜躁狠狠躁躁| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三| 成人欧美大片| 亚洲精品中文字幕一二三四区| 国产亚洲av高清不卡| 午夜精品久久久久久毛片777| 久久人人精品亚洲av| 国产激情久久老熟女| 88av欧美| 午夜福利影视在线免费观看| 18禁裸乳无遮挡免费网站照片 | 午夜福利欧美成人| 精品国产乱子伦一区二区三区| 极品教师在线免费播放| 精品不卡国产一区二区三区| 美女 人体艺术 gogo| 国产一区在线观看成人免费| 夜夜躁狠狠躁天天躁| or卡值多少钱| 黄色成人免费大全| 无人区码免费观看不卡| 久久亚洲精品不卡| 窝窝影院91人妻| 亚洲七黄色美女视频| 激情视频va一区二区三区| 国产成人一区二区三区免费视频网站| 日本 av在线| 99精品在免费线老司机午夜| 日本a在线网址| 在线观看www视频免费| 操美女的视频在线观看| 91麻豆精品激情在线观看国产| 男男h啪啪无遮挡| 日韩av在线大香蕉| ponron亚洲| 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 熟妇人妻久久中文字幕3abv| 久久九九热精品免费| 午夜影院日韩av| 伦理电影免费视频| 嫩草影院精品99| 久久国产精品影院| 老司机午夜十八禁免费视频| 亚洲视频免费观看视频| 91九色精品人成在线观看| 亚洲精华国产精华精| 12—13女人毛片做爰片一| 99久久综合精品五月天人人| 亚洲av成人av| 日韩精品中文字幕看吧| 精品熟女少妇八av免费久了| 精品一品国产午夜福利视频| 麻豆一二三区av精品| 老鸭窝网址在线观看| 91字幕亚洲| 日本三级黄在线观看| 亚洲av日韩精品久久久久久密| 97人妻天天添夜夜摸| 国产国语露脸激情在线看| 日韩欧美一区视频在线观看| 精品高清国产在线一区| 1024视频免费在线观看| 日韩精品青青久久久久久| 欧美国产日韩亚洲一区| 免费高清在线观看日韩| 亚洲欧美激情在线| 桃色一区二区三区在线观看| 亚洲av美国av| 一本大道久久a久久精品| 禁无遮挡网站| 国产成人系列免费观看| 国产99久久九九免费精品| 欧美在线一区亚洲| 日韩免费av在线播放| 精品欧美一区二区三区在线| 他把我摸到了高潮在线观看| 一级毛片女人18水好多| 琪琪午夜伦伦电影理论片6080| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 亚洲精品在线美女| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看 | 亚洲片人在线观看| 亚洲国产精品久久男人天堂| 久久天堂一区二区三区四区| 欧美久久黑人一区二区| 18禁国产床啪视频网站| 啦啦啦观看免费观看视频高清 | 免费一级毛片在线播放高清视频 | 韩国av一区二区三区四区| 久久精品国产亚洲av高清一级| 亚洲色图av天堂| 一区二区三区精品91| 亚洲全国av大片| 亚洲国产精品久久男人天堂| 黑丝袜美女国产一区| 中文亚洲av片在线观看爽| 狂野欧美激情性xxxx| 19禁男女啪啪无遮挡网站| 一级a爱视频在线免费观看| e午夜精品久久久久久久| 99精品欧美一区二区三区四区| 在线十欧美十亚洲十日本专区| 黄片大片在线免费观看| 亚洲 国产 在线| 精品欧美一区二区三区在线| 1024香蕉在线观看| 热re99久久国产66热| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 国产激情久久老熟女| 欧美激情 高清一区二区三区| 人人澡人人妻人| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品成人综合色| 久久久久久免费高清国产稀缺| 99在线视频只有这里精品首页| 午夜a级毛片| 国产熟女xx| 一级作爱视频免费观看| 免费av毛片视频| 欧美国产精品va在线观看不卡| bbb黄色大片| 岛国视频午夜一区免费看| 亚洲午夜精品一区,二区,三区| 亚洲欧美激情综合另类| 国产精品一区二区三区四区久久 | 国产成人欧美| 日本在线视频免费播放| 制服丝袜大香蕉在线| 天天躁夜夜躁狠狠躁躁| 两个人看的免费小视频| 国产精品久久久久久人妻精品电影| 午夜免费成人在线视频|