• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    低溫下溶膠凝膠法制備TiO2納米晶

    2010-11-10 01:01:02陳志君趙高凌張俊娟韓高榮
    無機化學學報 2010年5期
    關鍵詞:浙江大學溶膠過量

    陳志君 趙高凌*, 李 紅 張俊娟 宋 斌 韓高榮

    (1浙江大學硅材料國家重點實驗室,材料科學與工程系,杭州 310027)(2浙江大學理學院物理系,杭州 310027)

    低溫下溶膠凝膠法制備TiO2納米晶

    陳志君1趙高凌*,1李 紅1張俊娟1宋 斌2韓高榮1

    (1浙江大學硅材料國家重點實驗室,材料科學與工程系,杭州 310027)(2浙江大學理學院物理系,杭州 310027)

    從含過量水的溶膠出發(fā),在室溫下得到了TiO2納米晶。通過紅外光譜,透射電子顯微鏡法和X射線粉末衍射法對含有過量水的溶膠體系中TiO2納米晶的室溫形成機理進行了研究。與傳統(tǒng)的溶膠凝膠法相比,在改良的溶膠凝膠體系中,在縮聚反應之前由于水過量使得鈦的先驅體快速且充分的水解,從而生成[TiO6]基團,隨之形成TiO2納米晶。晶粒的尺寸為約3.5 nm,該法得到的TiO2納米晶比傳統(tǒng)溶膠凝膠法得到的TiO2納米晶和商用光催化劑德固賽P25具有更好的光催化活性。

    TiO2納米晶;改良的溶膠凝膠體系;機理;光催化活性

    0 Introduction

    Crystalline titania(TiO2),as one of the most important oxide semiconductor material with a wide energy band gap,has attracted much attention for its wide applications as key material in gas sensors,dielectric ceramics,and photocatalysts[1-4],and in the field of photocatalysis and photoelectrochemistry[5-9].So far,a variety of methods have been successfully applied for the synthesis of TiO2nanoparticles,for example,hydrothermal method[10],magnetron sputtering technique[11],chemical vapor deposition[12]and sol-gel method[13].Among them,sol-gel method has been employed most widely due to its inexpensive equipment required,highly pure product produced,product shape controlled[14].In the conventional sol-gel system,the molar ratio of water to titanium precursor is often smaller than 15[15-16].Such prepared gel particles are amorphous and further heat treatment is generally required to induce crystallization.However,heat treatment frequently leads to particle growth and agglomeration.

    In the last decades,many efforts have been devoted to the formation of nanocrystalline TiO2particles at lower temperature.The nanocrystalline TiO2can be derived from sols containing large amount of water.For example,spherical-shaped TiO2particles with a size of about 4 nm were obtained by Hu et al.[17]by refluxing the solution containing titanium-n-butoxide,ethanol and distilled water at 75℃for 24 h,and the molar ratio of water to titanium precursor was 151.Kanna et al.[18]reported that nanocrystalline TiO2materials with size of 4~20 nm were prepared by adding TiCl4to the excessive deionized water,followed by heat treatment at 80℃.Chen et al.[19]showed that pure anatase type TiO2nanocrystallines with size of 3~7 nm were prepared by adding Ti(OC4H9)4to excessive water400)with pH value of 1 adjusted by dilute HNO3.However,much of the work was focused on the preparation of nanocrystalline TiO2,the photocatalytic activity and doping modification.To the best of our knowledge there has been little report on the formation mechanism of the nanocrystalline TiO2at low temperature.We report here the preparation of nanocrystalline TiO2materials by the modified and conventional sol-gel method using starting solutions with large amount of water and small amount of water,respectively.The products were characterized by IR,TEM and XRD techniques.The photocatalytic property of the prepared samples were also studied.

    Fig.1 Procedures used to prepare the TiO2-L powder sample(a)and TiO2-S powder sample(b)

    1 Experimental

    1.1 Preparation of powder TiO2samples

    Powder TiO2samples were prepared by the modified sol-gel method and the conventional sol-gel method.The differences between the two synthesis procedures were the molar ratio of the starting materials,the dropping order of the solution preparation,and the heat-treatment of the prepared sol samples.For the modified sol-gel method,the starting solution was with large amount of water,hereafter called as TiO2-L system.The experimental procedure is shown in Fig.1(a).The molar ratio of the staring materials was.Firstly,solution A was prepared by mixing [Ti(OC4H9)4]with two-thirds of amount of ethanol as shown in the above molar ratio setting.Secondly,solution B was prepared by mixing the distilled water with nitric acid,and the rest onethird of the ethanol.Then solution A was added dropwise to solution B under vigorous stirring.After aging for a certain period of time,the transparent sol was obtained,hereafter called as TiO2-L sol sample.TiO2-L sol sample was dried under infrared lamp at about 50℃to obtain TiO2-L powder sample.For the conventional solgel method,the starting solution was with a small amount of water,hereafter called as TiO2-S system.Its experimental procedure is schematically described in Fig.1(b).The molar ratio of the starting materials wasFirstly,solution C was prepared by mixing[Ti(OC4H9)4]with half of the above fixed amount of ethanol.Secondly,solution D was prepared by mixing the distilled water with nitric acid,and the rest half of the ethanol.Then solution D was added dropwise to solution C under vigorous stirring.After aging,the transparent sol sample was obtained.The TiO2-S sol sample was dried under infrared lamp at about 50 ℃ for 1.5 h to obtain the TiO2-S gel powders,which were heated at 500℃for 15 min to obtain the TiO2-S powder sample.

    1.2 Characterization

    Infrared spectra were recorded by using the Avatar 360 infrared Spectrometric Analyzer.The IR samples were prepared by dropping the same volume of prepared sols on the surface of the KBr tablets,followed by drying under infrared lamp.The crystal behavior and morphologies of the sol samples were observed using a JEM 200CX transmission electron microscope.The crystal behavior of the powder samples was measured by a D/MAX-rA diffractormeter using nickel filtered Cu Kα radiation(λ=0.154 18 nm)with a scanning angle(2θ)of 15°~75°,and a voltage and current of 40 kV and 40 mA.The specific surface area was measured with a MicromeriticsASAP 2020 M+C instrument,using the adsorption of N2at the temperature of liquid nitrogen.

    1.3 Photocatalytic activity measurement

    The photocatalytic activity of the TiO2-S and TiO2-L powder samples was evaluated by degrading the methyl orange from its aqueous solution under UV light.Three strip tungsten lamps with intensity of 15 W·m-2were used as the light source,whose characteristic emission wavelength is 290 nm.The distance between the light source and the solution level was kept as 12 cm.An amount of 0.1 g of photocatalyst was added into a 10 mL aqueous solution of 10-4mol·L-1methyl orange with a maximum absorption at about 466 nm.Before irradiation,the solution was stirred for 30 min in the dark until adsorption-desorption balance was reached.After illumination,the solution was centrifuged and filtered,and the supernatant was used for the UV-Vis absorption test at the absorption peak(466 nm)before and after photodegradation.A0is the absorbance of the initial methyl orange solution at 466 nm and A is the absorbance of methyl orange solution at 466 nm when t is 3 h,6 h,9 h,12 h,respectively.The photocatalytic activity is characterized by apparent rate constant K,which could be calculated by the equation below[15]

    Theabsorptionspectra of the photodegraded methyl orange solution were recorded by a Hitachi U-4100 UVVis spectrophotometer.

    2 Results and discussion

    2.1 Formation mechanism of nanocrystalline TiO2 in sol with large amount of water

    Fig.2 Infrared transmission spectra of the preparedTiO2-S and TiO2-L sol samples

    Fig.2 shows the IR transmission spectra of the prepared TiO2-S and TiO2-L sol samples.Both TiO2-S and TiO2-L sol samples show bands around 1 636 and 3 200 to 3 600 cm-1,which correspond to the vibration of hydrogen bonded OH groups[20].The ethanol evaporated IR test samples prepared were dried,therefore it can be concluded that the OH groups are due to the Ti-OH from the hydrolysis of Ti(OC4H9)4.The much stronger bands of Ti-OH groups in TiO2-L means much more Ti-OH groups in the TiO2-L sol sample than that in the TiO2-S sol sample.The band at 600 cm-1in the two sol samples can be assigned to symmetric stretching vibration of the Ti-O-Ti bonds[21].Again,the band at 600 cm-1of the TiO2-L sol sample is stronger than that of the TiO2-S sample,which suggests that the TiO2-L sol sample has more Ti-O-Ti groups than TiO2-S sample.The small bands around 1 380,2 869 and 2 946 cm-1in the TiO2-S sol sample can be ascribed to the vibration of the C-H groups[22].The weaker band around 1 380 cm-1and the absent of bands around 2 869 and 2 946 cm-1in the TiO2-L sol sample suggest less organic residues or organic groups in TiO2-L sol sample than that in TiO2-S sol sample.The band at 1 110 cm-1only seen in TiO2-S sol sample can be assigned to the asymmetric vibration of the Ti-O-C due to unreacted alkoxide groups[23].Accordingly,it can be concluded that in TiO2-L sol sample the starting material Ti(OC4H9)4has already reacted completely,Ti groups exist in the form of inorganic substance containing Ti-O-Ti or Ti-OH groups.On the other hand,in TiO2-S sol sample,Ti groups exist in the form of not only inorganic substance containing Ti-O-Ti or Ti-OH,butalsoorganicsubstancecontainingTi-O-C.

    Fig.3 shows the TEM images of TiO2-L and TiO2-S sol samples.It can be seen that spherical particles with diameters of 3~7 nm are synthesized in TiO2-L sol sample.Fig.3(b)shows the electron diffraction patterns.The diffraction rings are indexed,and shown in Table 1,which are in good agreement with the crystal plane indexes of the anatase titania.Accordingly,it can be concluded that the anatase TiO2nanocrystalline has already existed in the TiO2-L sol sample before any further heat treatment.From Fig.3(c)and Fig.3(d),no diffraction ring is observed,indicating that the particles in the sol are amorphous.

    Fig.3 TEM images:(a)TEM image of TiO2-L sol sample;(b)Electron diffraction(ED)pattern of TiO2-L sol sample;(c)TEM image of TiO2-S sol sample,(d)Electron diffraction(ED)pattern of TiO2-S sol sample

    Table 1 Electron diffraction rings of the TiO2-L sol sample

    The water amount plays a key role in the formation of TiO2crystal.For the titanium alkoxide,the hydrolysis and condensation both occur by nucleophilic substitution mechanisms,involving nucleophilic addition followed by proton transfer from the attacking molecule to an alkoxide or hydroxo-ligand within the transition state and removal of the protonated species as either alcohol or water.

    The possible hydrolysis reactions of Ti(OC4H9)4can be described as follows.

    Also,the possible polycondensation reactions can be described as follows.

    Usually,the condensation occurs before the completion of hydrolysis.Therefore,the complex processes happen.Reactions among the titanium alkoxide Ti(OC4H9)4,hydroxo-ligands Ti(OC4H9)3OH,Ti(OC4H9)2(OH)2,Ti(OC4H9)(OH)3and intermediate products will take place as follows.

    For TiO2-S sol sample,the molar ratio of water to Ti(OC4H9)4is 1.As shown in Fig.1(b),the small amount of water is added dropwise into the ethanol solution of Ti(OC4H9)4,so the hydrolysis of the Ti(OC4H9)4is very slow,the polycondensation proceeds simultaneously with the hydrolysis,as shown in the above equations.Hence the Ti group in TiO2-S sol sample mostly exists as Ti-O-C(see Fig.2),which acts as structural impurities and inhibits the formation of regular structure.So Ti-OTi and Ti-O-H groups in the sol can not connect with each other freely,therefore,no crystalline TiO2is found in TiO2-S sol sample(see Fig.3).

    For TiO2-L powder sample,the molar ratio of water to Ti(OC4H9)4is 100.As shown in Fig.1(a),Ti(OC4H9)4is added dropwise into the large amount of water,so the water is always in excess.Hence every Ti(OC4H9)4molecule is surrounded by massive H2O molecules,which makes the titanium precursor hydrolyze quickly and completely as follows.

    Therefore the Ti groups in TiO2-L sol sample exist

    in the form of inorganic substance containing Ti-O-Ti or Ti-OH groups,and there is no Ti-O-C groups in the sol(see Fig.2),which is beneficial for the connection of the Ti-OH or Ti-O-Ti and formation of the unit-[TiO6]octahedron.With the rearrangement of the [TiO6]octahedron units after aging for a certain time,the TiO2nucleates and grows,resulting in the formation of nanocrystalline TiO2in TiO2-L sol sample.

    2.2 Properties of nanocrystalline TiO2powders derived from sol with large amount of water

    Fig.4 shows XRD patterns of TiO2powder samples.As shown in the figure,no peak is found in pattern a,which is TiO2-S sol derived powder dried under infrared lamp.While typical anatase type TiO2peaks are found in pattern c,i.e.the pattern for TiO2-L sol derived powder dried under infrared lamp.The size of the formed anatase TiO2crystals is calculated using the Scherrer equation from the half-width of the(101)anatase reflection.

    Fig.4 XRD patterns for TiO2powder samples:(a)TiO2-S gel powders prepared by drying the TiO2-S sol sample under infrared lamp at about 50℃;(b)TiO2-S powder sample prepared by calcining the TiO2-S gel powders at 500℃,(c)TiO2-L powder sample prepared by drying the TiO2-L sol sample under infrared lamp at about 50℃

    The grain size of TiO2-L powder is 3.5 nm,fairly in agreement with the TEM result(see Fig.3(a)).This indicates that crystal growth does not occur during infrared lamp drying,confirming that nanocrystalline TiO2particles are formed in TiO2-L sol before any heat-treatment.

    b in Fig.4 is the XRD pattern for TiO2-S sol derived powder heated at 500℃.It can be found that not only strong and sharp peaks of anatase TiO2appear,but also small peak at 2θ=27.5°corresponding to rutile type TiO2(110)appears.The grain size of anatase and rutile in TiO2-S powder heated at 500℃is 16.8 and 12.3 nm,respectively,both are much larger than that in TiO2-L powder.

    Fig.5 shows ln(A0/A)-t plots of TiO2-L powder,TiO2-S powder heated at 500℃and the commercial Degussa P25 crystallineTiO2.The degradation of methyl orange aqueous system containing TiO2powders follows the pseudo-first order kinetics.The result shows that the photocatalytic activities are in the order:P25<TiO2-S powder<TiO2-L powder.In addition,the SBETvalues of the P25,TiO2-S and TiO2-L sample are 55,74,120 m2·g-1,resepectively.Comparing with that of P25,the higher photocatalytic activity of TiO2-S powder can be ascribed to its higher specific surface area.So the TiO2-S powder shows better photocatalytic activity than P25.On the other hand,the particle size of TiO2-L powder is about 3.5 nm,which is smaller than that of TiO2-S powder.So TiO2-L powder owns higher specific surface area than TiO2-S powder.Moreover,the size of TiO2-L nanocrystalline(3.5 nm)approaches the Bohr radius of anatase type TiO2[24-25],which causes quantum-size effect.The quantum-size effect results in split of the energy level of TiO2,which causes an increase in its photocatalytic oxidation-reduction potential and thus enhances the photocatalytic activity.Accordingly,the TiO2-L powders show better photocatalytic activity than TiO2-S powders although the crystal intensity of the TiO2-L powder is much weaker than that of TiO2-S powd er.

    Fig.5 Photocatalytic degradation of methyl orange on P-25(Fig.5a)and prepared TiO2-S powder sample(Fig.5b)and prepared TiO2-L powder sample(Fig.5c)

    3 Conclusions

    The formation mechanism of nanocrystalline TiO2derived from sol with large amount of water was studied.It is found that the nanocrystalline TiO2has already existed in the sol.The large amount of water makes the titanium precursor hydrolyze quickly and completely before polycondensation.[TiO6]units are formed during polycondensation,thus favoring the formation of nanocrystalline TiO2.The grain size derived from the sol with large amount of water is 3.5 nm.The fine nanocrystalline sample shows better photocatalytic activity than powders derived from the conventional solgel method and commercial photocatalyst Degussa P25.

    Acknowledgment:This work is supported by National Natual Science Foundation of China,under grant No.50672086,and Zhejiang Province Fund of Science and Technology,under grant No.Y200909120.

    [1]Castro A,Nunes M,Carvalho A,et al.Solid State Sci.,2008,10:60-606

    [2]Kim E,Hahn S.Mater.Lett.,2001,49:244-249

    [3]Tang Z,Zhang J,Cheng Z,et al.Mater.Chem.Phys.,2002,77:314-317

    [4]WANG Zhen-Xing(王振興),DING Shi-Wen(丁士文),ZHANG Mei-Hong(張美紅).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2005,21(3):437-440

    [5]Zhao Y,Li C,Liu X,et al.Mater.Lett.,2007,61:79-83

    [6]Ren W,Ai Z,Jia F,et al.Appl.Catal.B,2007,69:138-144

    [7]Reddy K,Reddy C,Manorama S.J.Solid State Chem.,2001,158:180-186

    [8]HUANG Dong-Sheng(黃東升),CHEN Chao-Feng(陳朝鳳),LI Yu-Hua(李玉花),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(4):738-742

    [9]Zhu J,Yang J,Bian Z,et al.Appl.Catal.B,2007,76:82-91

    [10]YAO Chao(姚 超),YANG Guang(楊 光),LIN Xi-Ping(林西平),etal.ChineseJ.Inorg.Chem.(WujiHuaxueXuebao),2004,12(12):1821-1826

    [11]Satoshi T,Susumu S,Hidefumi O,et al.Thin Solid Films,2001,392:338-344

    [12]Ding Z,Hu X,Lu G,et al.Langmuir,2000,16:6216-6222

    [13]Zhao G,Utsumi S,Kozuka H,et al.J.Mater.Sci.,1998,33:3655-3659

    [14]ChengB,YuJ,ZhangX.J.Mater.Sci.Lett.,2003,22:967-970

    [15]Bavykin D,Friedrich J,Walsh F.Adv.Mater.,2006,18:2807-2824

    [16]Li H,Zhao G,Song B.J.Mater.Lett.,2008,62:3395-3397

    [17]Hu Y,Yuan C.J.Cryst.Growth,2005,274:563-568

    [18]Kanna M,Wongnawa S.Mater.Chem.Phys.,2008,110:166-175

    [19]Chen Z,Zhao G,Li H,et al.J.Am.Ceram.Soc.,2009,92:1024-1029

    [20]Huang M,Kuo S,Wu,F,et al.Polymer,2002,43:2479-2487

    [21]Thoms H,Epple M,Frfba M,et al.J.Mater.Chem.,1998,8,1447-1451

    [22]Bezrodna T,Gavrilko T,Puchkovska G,et al.J.Mol.Struct.,2002,614:315-324

    [23]Boccuzzi F,Chiorino,A.J.Phys.Chem.B,2000,104,5414-5416

    [24]Joo J,Kwon S,Yu T,et al.J.Phys.Chem.B,2005,109:15297-1530

    [25]Toyoda T,Tsuboya I.Rev.Sci.Instrum.,2003,74:782-784

    Preparation of Nanocrystalline TiO2by Sol-Gel-Method at Room Temperature

    CHEN Zhi-Jun1ZHAO Gao-Ling*,1LI Hong ZHANG Jun-Juan1SONG Bin2HAN Gao-Rong1
    (1State Key Laboratory of Silicon Materials,and Department of Materials Science and Engineering,Zhejiang University,Hangzhou 310027)(2Department of Physics,Zhejiang University,Hangzhou 310027)

    Nanocrystalline titania(TiO2)particles were obtained at room temperature by a modified sol-gel method starting from a solution with large amount of water.The nanocrystalline TiO2particles prepared with large amount of water at room temperature were characterized by IR,TEM and XRD.Comparing with conventional sol-gel method,the present system offers quick and complete hydrolysis of titanium precursor before polycondensation,thus resulting in[TiO6]units,and the formation of nanocrystalline TiO2particles with an average grain size of 3.5 nm.Moreover,the as-prepared nanocrystalline TiO2powders exhibit a better photocatalytic activity than both of the powders prepared by conventional sol-gel method and the commercial photocatalyst Degussa P25.

    nanocrystalline TiO2;modified sol-gel method;mechanism;photocatalytic activity

    O614.41+1

    A

    1001-4861(2010)05-0860-07

    2009-10-16。收修改稿日期:2010-03-10。

    國家自然科學基金(No.50672086),浙江省科研廳項目(No.Y200909120)資助。*

    。 E-mail:glzhao@zju.edu.cn

    陳志君,男,25歲,在讀碩士;研究方向:光催化劑納米材料的制備。

    猜你喜歡
    浙江大學溶膠過量
    過量食水果會加速衰老
    中老年保健(2021年7期)2021-08-22 07:43:44
    溶膠-凝膠法制備高性能ZrO2納濾膜
    陶瓷學報(2020年3期)2020-10-27 02:08:12
    浙江大學農業(yè)試驗站簡介
    浙江大學作物科學研究所簡介
    B3M4 Sandstorms in Asia Teaching Plan
    請勿過量飲酒
    吃糖過量也會“醉”?
    遵義(2018年15期)2018-08-28 12:20:14
    歡迎訂閱《浙江大學學報(農業(yè)與生命科學版)》
    La jeunesse chinoise d'aujourd'hui
    法語學習(2016年5期)2016-12-18 15:16:23
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅體
    應用化工(2014年11期)2014-08-16 15:59:13
    又黄又爽又免费观看的视频| 少妇熟女aⅴ在线视频| 精品福利观看| 亚洲国产精品999在线| 九九热线精品视视频播放| 一区二区三区免费毛片| 国产v大片淫在线免费观看| 脱女人内裤的视频| 12—13女人毛片做爰片一| 国产私拍福利视频在线观看| 亚洲国产精品成人综合色| 无人区码免费观看不卡| 亚洲国产欧美网| 九九在线视频观看精品| 久久中文看片网| 岛国在线免费视频观看| 精品99又大又爽又粗少妇毛片 | 欧美3d第一页| 97超级碰碰碰精品色视频在线观看| 又爽又黄无遮挡网站| 午夜免费男女啪啪视频观看 | 老司机午夜十八禁免费视频| 91在线观看av| 国产男靠女视频免费网站| 美女高潮喷水抽搐中文字幕| 久久久色成人| a级一级毛片免费在线观看| 久久精品91蜜桃| 色噜噜av男人的天堂激情| 51午夜福利影视在线观看| e午夜精品久久久久久久| 久久久久久久久中文| 99久久久亚洲精品蜜臀av| 美女黄网站色视频| 国产淫片久久久久久久久 | 韩国av一区二区三区四区| 国产乱人视频| 久久精品影院6| 日韩高清综合在线| 亚洲av成人精品一区久久| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 免费看十八禁软件| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 十八禁网站免费在线| 亚洲五月婷婷丁香| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 岛国视频午夜一区免费看| 午夜老司机福利剧场| 日本三级黄在线观看| 国产精品一区二区三区四区免费观看 | 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 一个人看的www免费观看视频| 国产一区二区在线观看日韩 | 免费av观看视频| 好男人电影高清在线观看| 琪琪午夜伦伦电影理论片6080| 麻豆国产av国片精品| 一级毛片女人18水好多| 免费在线观看影片大全网站| 色综合站精品国产| 99热6这里只有精品| 成人精品一区二区免费| 少妇人妻一区二区三区视频| 日本免费a在线| 欧美丝袜亚洲另类 | 嫩草影院精品99| 最近最新中文字幕大全免费视频| 99国产精品一区二区蜜桃av| 一夜夜www| 午夜老司机福利剧场| 国产日本99.免费观看| 亚洲精品乱码久久久v下载方式 | 久久精品国产清高在天天线| 黄色视频,在线免费观看| 18美女黄网站色大片免费观看| 在线看三级毛片| 亚洲男人的天堂狠狠| 日日摸夜夜添夜夜添小说| 欧美日韩精品网址| 国产免费一级a男人的天堂| 91av网一区二区| 床上黄色一级片| 亚洲国产精品成人综合色| 99久久精品国产亚洲精品| 天堂av国产一区二区熟女人妻| 亚洲 国产 在线| 亚洲无线在线观看| 久久草成人影院| 成人高潮视频无遮挡免费网站| 亚洲精品成人久久久久久| av视频在线观看入口| 亚洲国产中文字幕在线视频| 12—13女人毛片做爰片一| 久久久国产精品麻豆| 国产中年淑女户外野战色| 免费av观看视频| 亚洲精品日韩av片在线观看 | 亚洲成av人片在线播放无| 无遮挡黄片免费观看| 一夜夜www| 国产久久久一区二区三区| 成年版毛片免费区| 一级黄片播放器| 中文字幕久久专区| 欧美一区二区精品小视频在线| 国产一区二区亚洲精品在线观看| 免费看日本二区| 色老头精品视频在线观看| 久久亚洲精品不卡| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 久久国产乱子伦精品免费另类| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| ponron亚洲| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 欧美区成人在线视频| 国产成年人精品一区二区| 久99久视频精品免费| 18+在线观看网站| 亚洲乱码一区二区免费版| а√天堂www在线а√下载| 欧美中文综合在线视频| 国产高清视频在线播放一区| 听说在线观看完整版免费高清| 国产成人欧美在线观看| 99视频精品全部免费 在线| 男女床上黄色一级片免费看| 国产69精品久久久久777片| www日本在线高清视频| 久久精品国产亚洲av香蕉五月| 久久久色成人| 国内精品一区二区在线观看| www.999成人在线观看| 女警被强在线播放| 手机成人av网站| 久久久久久久久大av| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 免费观看精品视频网站| www日本黄色视频网| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| www.www免费av| 亚洲不卡免费看| 久久精品91蜜桃| 国产精品爽爽va在线观看网站| 狂野欧美激情性xxxx| 欧美日韩综合久久久久久 | 日韩免费av在线播放| 俄罗斯特黄特色一大片| 久久国产精品人妻蜜桃| 亚洲精品日韩av片在线观看 | 国产毛片a区久久久久| 午夜免费观看网址| 国产成人欧美在线观看| 国产精品亚洲一级av第二区| 我要搜黄色片| 精品国内亚洲2022精品成人| 国产精品香港三级国产av潘金莲| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 男女做爰动态图高潮gif福利片| 亚洲最大成人手机在线| 搞女人的毛片| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 精品国产亚洲在线| 观看美女的网站| 国产av一区在线观看免费| 两个人的视频大全免费| 日本 欧美在线| 看免费av毛片| 色综合亚洲欧美另类图片| tocl精华| 欧美不卡视频在线免费观看| 亚洲av电影在线进入| 中出人妻视频一区二区| 一区二区三区高清视频在线| 久久久久久久精品吃奶| 亚洲成av人片在线播放无| 亚洲美女视频黄频| 女警被强在线播放| 又紧又爽又黄一区二区| 天美传媒精品一区二区| 欧美最黄视频在线播放免费| 国产精品香港三级国产av潘金莲| 在线看三级毛片| 小说图片视频综合网站| 亚洲七黄色美女视频| 久久国产精品人妻蜜桃| 最新中文字幕久久久久| 一级黄片播放器| av天堂中文字幕网| 免费大片18禁| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 欧美xxxx黑人xx丫x性爽| svipshipincom国产片| 欧美绝顶高潮抽搐喷水| 白带黄色成豆腐渣| 亚洲成人久久性| 一区福利在线观看| 18禁美女被吸乳视频| 性欧美人与动物交配| 欧美高清成人免费视频www| 老熟妇仑乱视频hdxx| 亚洲内射少妇av| 久9热在线精品视频| 午夜精品一区二区三区免费看| 三级国产精品欧美在线观看| 亚洲国产欧洲综合997久久,| 久久性视频一级片| 九色国产91popny在线| 每晚都被弄得嗷嗷叫到高潮| 淫秽高清视频在线观看| 国产成人啪精品午夜网站| 国产爱豆传媒在线观看| 99riav亚洲国产免费| 91在线观看av| 99在线人妻在线中文字幕| 免费看日本二区| 1000部很黄的大片| 嫁个100分男人电影在线观看| 国产亚洲精品av在线| 97超视频在线观看视频| 国产成人欧美在线观看| 神马国产精品三级电影在线观看| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 国产又黄又爽又无遮挡在线| 欧美bdsm另类| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| a级毛片a级免费在线| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 欧美乱妇无乱码| 欧美精品啪啪一区二区三区| 中文字幕熟女人妻在线| 高潮久久久久久久久久久不卡| 国产不卡一卡二| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 叶爱在线成人免费视频播放| 国产av麻豆久久久久久久| 国产伦精品一区二区三区视频9 | 一区二区三区高清视频在线| 亚洲国产精品久久男人天堂| 国产高潮美女av| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 一本久久中文字幕| 网址你懂的国产日韩在线| 久久久国产精品麻豆| 久久国产精品人妻蜜桃| www.色视频.com| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区视频了| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 欧美不卡视频在线免费观看| 91在线精品国自产拍蜜月 | 最近视频中文字幕2019在线8| 国产综合懂色| 色噜噜av男人的天堂激情| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 国产精品 国内视频| 欧美乱色亚洲激情| 露出奶头的视频| 国产色爽女视频免费观看| www日本黄色视频网| 精品无人区乱码1区二区| 国产精品久久久久久久电影 | 精品国产亚洲在线| 天天躁日日操中文字幕| 国产精品99久久久久久久久| 亚洲狠狠婷婷综合久久图片| 99久久精品一区二区三区| 黄片小视频在线播放| 精品日产1卡2卡| 波多野结衣高清无吗| 毛片女人毛片| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看| 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 国内精品一区二区在线观看| 日日干狠狠操夜夜爽| 少妇的逼水好多| 久久久久久久久久黄片| xxx96com| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 久久精品国产亚洲av香蕉五月| 国产成人欧美在线观看| 神马国产精品三级电影在线观看| 中文字幕精品亚洲无线码一区| 国产午夜福利久久久久久| 最近最新免费中文字幕在线| 黄色成人免费大全| 一区二区三区免费毛片| 小说图片视频综合网站| 日韩高清综合在线| 全区人妻精品视频| 日韩欧美精品免费久久 | 草草在线视频免费看| 蜜桃亚洲精品一区二区三区| 男女午夜视频在线观看| 久久久久性生活片| 91字幕亚洲| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 亚洲狠狠婷婷综合久久图片| 久久精品国产综合久久久| 少妇的逼好多水| 国产色爽女视频免费观看| 他把我摸到了高潮在线观看| 一本精品99久久精品77| 精品国产美女av久久久久小说| 亚洲国产中文字幕在线视频| 男女做爰动态图高潮gif福利片| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 老司机午夜十八禁免费视频| 免费看a级黄色片| 欧美日韩福利视频一区二区| 久久精品人妻少妇| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 最近在线观看免费完整版| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 在线a可以看的网站| 欧美黑人巨大hd| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全免费视频| 国产精品一区二区三区四区免费观看 | 精品人妻一区二区三区麻豆 | 亚洲第一欧美日韩一区二区三区| 18禁黄网站禁片免费观看直播| 国产日本99.免费观看| 欧美日韩黄片免| 男女之事视频高清在线观看| 最近最新中文字幕大全电影3| 每晚都被弄得嗷嗷叫到高潮| 深爱激情五月婷婷| 欧美极品一区二区三区四区| 999久久久精品免费观看国产| 久久精品综合一区二区三区| 成年女人毛片免费观看观看9| av天堂中文字幕网| a级毛片a级免费在线| www.熟女人妻精品国产| 日韩欧美 国产精品| 狠狠狠狠99中文字幕| 日日夜夜操网爽| 少妇丰满av| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 欧美大码av| 亚洲欧美日韩无卡精品| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 亚洲精品美女久久久久99蜜臀| 国产色爽女视频免费观看| 日韩欧美三级三区| 国产激情欧美一区二区| 欧美一区二区国产精品久久精品| 看黄色毛片网站| 成人特级av手机在线观看| 中文字幕高清在线视频| 国产精品自产拍在线观看55亚洲| 国产伦在线观看视频一区| 天美传媒精品一区二区| 白带黄色成豆腐渣| 一本久久中文字幕| 国产高清视频在线播放一区| 免费在线观看成人毛片| 国产成人系列免费观看| 国产久久久一区二区三区| 久久久成人免费电影| 中文在线观看免费www的网站| 欧美午夜高清在线| 99热这里只有是精品50| 国产一区二区亚洲精品在线观看| 中文资源天堂在线| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区| 一区二区三区免费毛片| 亚洲一区二区三区色噜噜| 一级作爱视频免费观看| 日本五十路高清| av片东京热男人的天堂| 久久精品国产自在天天线| 久久伊人香网站| 免费av毛片视频| 亚洲天堂国产精品一区在线| 少妇的逼好多水| 一级毛片高清免费大全| 香蕉丝袜av| 亚洲国产精品合色在线| 性色avwww在线观看| 精品国产超薄肉色丝袜足j| 国产淫片久久久久久久久 | 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 亚洲精品乱码久久久v下载方式 | 香蕉久久夜色| 国产精品久久久久久人妻精品电影| 精品福利观看| 久久午夜亚洲精品久久| 午夜福利在线在线| 亚洲av电影不卡..在线观看| 亚洲激情在线av| 亚洲人成网站高清观看| 国产一区二区激情短视频| 国产亚洲精品av在线| 日本a在线网址| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 狂野欧美白嫩少妇大欣赏| 午夜福利在线在线| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久久电影 | www.色视频.com| 成人av在线播放网站| av天堂中文字幕网| 国产黄色小视频在线观看| 少妇的逼水好多| 19禁男女啪啪无遮挡网站| 国产精品日韩av在线免费观看| 国产97色在线日韩免费| 在线观看av片永久免费下载| 亚洲成av人片免费观看| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 熟妇人妻久久中文字幕3abv| 欧美激情在线99| 午夜两性在线视频| 美女 人体艺术 gogo| 91av网一区二区| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出| 免费av观看视频| 久久久久久久精品吃奶| 欧美日韩黄片免| 精品无人区乱码1区二区| 亚洲成人中文字幕在线播放| 高清在线国产一区| 国产国拍精品亚洲av在线观看 | 97超视频在线观看视频| 午夜免费男女啪啪视频观看 | 悠悠久久av| 国产亚洲欧美98| 在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 嫩草影院精品99| 白带黄色成豆腐渣| 麻豆成人午夜福利视频| 日韩成人在线观看一区二区三区| 欧美大码av| 色综合站精品国产| 白带黄色成豆腐渣| 国产真实乱freesex| 亚洲成人精品中文字幕电影| 中文在线观看免费www的网站| 久久久久久国产a免费观看| 免费看光身美女| 亚洲精品久久国产高清桃花| 91久久精品电影网| 精品日产1卡2卡| 99精品欧美一区二区三区四区| 国产亚洲精品综合一区在线观看| 老鸭窝网址在线观看| 我的老师免费观看完整版| 午夜精品久久久久久毛片777| 1000部很黄的大片| 国产欧美日韩一区二区精品| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 国语自产精品视频在线第100页| 性色av乱码一区二区三区2| 国产成+人综合+亚洲专区| 精品久久久久久久毛片微露脸| av专区在线播放| 国产av不卡久久| 99精品在免费线老司机午夜| www.999成人在线观看| 日韩大尺度精品在线看网址| 宅男免费午夜| 久久国产精品人妻蜜桃| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 国产成人a区在线观看| 中文字幕人妻丝袜一区二区| 午夜精品一区二区三区免费看| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 日韩欧美精品免费久久 | 国产精品精品国产色婷婷| 手机成人av网站| 午夜精品久久久久久毛片777| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久免费视频| 午夜亚洲福利在线播放| 日本黄大片高清| 成年女人毛片免费观看观看9| 男女床上黄色一级片免费看| 伊人久久精品亚洲午夜| 欧美色视频一区免费| 色在线成人网| 亚洲在线自拍视频| 亚洲七黄色美女视频| 老汉色∧v一级毛片| 欧美一级毛片孕妇| 国产黄a三级三级三级人| 欧美绝顶高潮抽搐喷水| 日韩亚洲欧美综合| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区视频9 | 精品电影一区二区在线| 五月伊人婷婷丁香| 国产69精品久久久久777片| 久久人人精品亚洲av| e午夜精品久久久久久久| 国产真实伦视频高清在线观看 | 国产野战对白在线观看| 欧美3d第一页| 少妇丰满av| 国产高清videossex| 99精品欧美一区二区三区四区| 国产精品电影一区二区三区| 午夜福利免费观看在线| 国产亚洲精品av在线| 51午夜福利影视在线观看| 国语自产精品视频在线第100页| 成人无遮挡网站| 亚洲中文字幕日韩| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线在线| 亚洲第一欧美日韩一区二区三区| 热99在线观看视频| 国产在线精品亚洲第一网站| 麻豆国产97在线/欧美| 国产亚洲精品综合一区在线观看| 天美传媒精品一区二区| 国语自产精品视频在线第100页| 黄片大片在线免费观看| 日韩精品青青久久久久久| 国产在视频线在精品| 亚洲av一区综合| 亚洲成人久久性| 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 国产精品亚洲一级av第二区| 免费看日本二区| 有码 亚洲区| 变态另类成人亚洲欧美熟女| 欧美丝袜亚洲另类 | 最新中文字幕久久久久| 色综合婷婷激情| 国产精华一区二区三区| 中文字幕人成人乱码亚洲影| 美女被艹到高潮喷水动态| 久久天躁狠狠躁夜夜2o2o| 久久人人精品亚洲av| 看免费av毛片| 中亚洲国语对白在线视频| 欧美日本亚洲视频在线播放| 免费在线观看日本一区| 久久亚洲真实| 亚洲乱码一区二区免费版| 看免费av毛片| 久久精品91无色码中文字幕| 村上凉子中文字幕在线| 国产激情欧美一区二区| 日韩欧美精品免费久久 | 亚洲黑人精品在线| 亚洲真实伦在线观看| 国产又黄又爽又无遮挡在线| 最近最新中文字幕大全免费视频| 日韩精品青青久久久久久| 国产精品一区二区免费欧美| 最近最新中文字幕大全免费视频| 此物有八面人人有两片| 亚洲在线自拍视频| 嫩草影院入口| ponron亚洲| 欧美一级毛片孕妇| 黄片小视频在线播放| 久久精品国产99精品国产亚洲性色| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 国内精品一区二区在线观看| 男人的好看免费观看在线视频| 欧美成狂野欧美在线观看| 精品电影一区二区在线|